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A number of important theorems in General Relativity have required a causality assump- 
tion; for example, the Geroch topology change theorem, and most of the Hawking-Penrose-- 
Geroch singularity theorems. It is shown in this paper that the causality condition can be 
replaced by weaker causality conditions, and in some cases removed altogether. In particular. 
(a) it is shown that if the Einstein equations (and the weak energy condition) hold on the 
“topology-changing” space-time considered by Geroch, then topology change cannot occur. 
No causality assumption is needed in the proof. Furthermore, it is shown that if topology 
change occurs within a finite region, then this change of topology must be accompanied by 
singularities. (b) It is shown that causality violation cannot prevent the Hawking-Penrose- 
Geroch singularities unless the causality violation begins “at infinity”-a region which is 
free of matter and gravitational radiation-and this seems very unlikely. 

I. TNTR~DUCTI~N 

It has long been known that many solutions to the Einstein Equations possess 
causal anomalies in the form of closed timelike lines (CTL). In fact. all known asymp- 
totically flat vacuum solutions with nonzero angular momentum contain such 
anomalies [I, 21, and there are indications that a very rapidly rotating star would have 
them also [3]. These considerations do not guarantee that our universe actually 
contains such a causality violating region, however, and the question of whether or 
not such a region exists in the real universe is clearly an important question to answer. 
Furthermore, we would like to know if it would be possible to rmnufactzcrr such a 
region, say by speeding up the rotation of a star. 

I shall provide a partial answer to the second question in this paper; 1 shall show 
that, in general, any attempt to evolve CTL from regular initial data will cause 
singularities to form in space-time. Thus if by the word “manufacture” we mean 
“construct using only ordinary materials everywhere,” then the theorems of this paper 
will conclusively demonstrate that a CTL-containing region cannot be manufactured. 
For a singularity is a region where the matter density becomes infinite [4], and matter 
with arbitrarily large density clearly cannot be considered “ordinary material.” 
Tt does not, of course, follow from this result that causality violating regions cannot 
exist, for the entire universe could be a causality violating set. In this case the notion 
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of “regular initial data” could not even be defined. Nor does it follow that it 
is impossible to create CTL. After all, singularities are expected to occur in black 
hole explosions in any case [5]. Thus the first question, the question concerning the 
existence of causality violating regions, is still open. 

The proofs contained in this paper will be based on the “Global Techniques” 
developed by Hawking, Penrose, and Geroch. In order to make this paper largely 
self-contained, the basic lemmas from Global Techniques will be given in Section 2. 
The proofs of these lemmas can be found in such works as Geroch [6], Penrose [7, 81, 
and Hawking and Ellis [9]. I shall also include in this section some necessary lemmas 
from the theory of ordinary differential equations. 

The next five sections will discuss the relationship between CTL and singularities 
from several points of view. Section 3 will begin with a summary of a theorem 
(published elesewhere [lo]) which shows that a time machine cannot be manufactured 
in an asymptotically flat space-time without the formation of singularities. This 
section will conclude with a theorem showing that any causality violation which 
begins in a small region and expands must be accompanied by the formation of 
singularities. 

The attempt to define which is meant by the phrase “small region” leads to a 
consideration of the relationship between CTL and the topological notion of com- 
pactness, and this relationship is discussed in Sections 4, 5, 6. Section 4 is devoted to 
the statement and proof of a very general theorem which states that causality violation 
which begins in a finite region with compact boundary must result in the formation 
of singularities. Section 5 and 6 will apply this theorem (and certain modifications 
of it) to various problems in General Relativity. In particular, Section 5 will apply 
this theorem to the problem of topology change. It will be shown that topology change 
cannot occur in a compact region if the weak energy condition holds. Also included 
in this section is a proof that if topology change occurs in a finite (but not compact) 
region, the change must be accompanied with singularities. Previous topology change 
theorems [ 111 have assumed the nonexistence of CTL; no such assumption is necessary 
in the above-mentioned theorems. Section 6 will be devoted to compact space-times. 
It will be shown that causality is violated at every point in a generic compact space- 
time in which the weak energy condition holds. 

These results suggest that it might be possible to prove a conjecture made by 
Geroch [12] and Hawking and Ellis [9, p. 2721: Causality violation cannot prevent 
the formation of the singularities predicted by the Hawking-Penrose-Geroch singu- 
larity theorems. (It is important to prove that causality violation cannot prevent these 
singularities; one should not merely dismiss the possibility with word play as in “their 
[CTL] existence in itself would be singularity” [13], or as in “...collapse presumably 
produces singularities-or a violation of causality, which is also a rather singular 
occurrence !” [I 4, p. 9351. This conjecture is dealt with in Section 7, and to some extent 
it is proven. It is shown that causality violation can prevent singularities only if the 
causality violation begins at infinity. 

Finally, Section 8 concludes the paper with an attempt to answer the question: 
Are CTL possible ? 
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The notation, terminology, and conventions used in this paper are the same as 
those of Hawking and Ellis [HE] [9], unless otherwise noted. (However, it will be 
assumed that /1 = 0; the Einstein equations are R,,,, - ig,,,R = 8~7’,,,,.) 

2. PRELIMINARIES 

The object of study in this paper is a space-time, which is a pair (M, g) where M 
is a real, four-dimensional, connected C” Hausdorff manifold and g is a C” Lorentz 
metric. (M, g) is C” inextendibie, orientable, and space and time orientable. 

The Global Techniques used to analyze the structure of space-time are naturally 
divided into two parts, the first being the study of a space-time’s causal structure. and 
the second being the analysis of conjugate points along a geodesic. The two basic 
relationships of the first are given in the 

DEFINITION. A point p will be said to chronologically precede q (written p .:. ~1) 
if and only if there is a smooth (Ca) future-directed nondegenerate timelike curve 
from p to q. (A degenerate curve is a curve which consists of only one point. Thus 
p < p will mean that there is a CTL passing through p.) Similarly, we will say that 
p causally precedes q (written p < q) if and only if there is a future-directed causal 
(timelike or null) curve fromp to q. We will allow the possibility that the causal curve 
is degenerate, so we have p ( p for all p in M. A closed causal curve is signified 
by the existence of a pair of distinct points p, q such that p 4’ y and c/ 4 p. The 
relations -< and < have the following properties. 

LEMMA I. 

a << b implies a < 6: 

a < 6, b < c implies a .:< (3; 

a < b < c implies a < c: 

a < b < c implies a +< c; 

a < b < c implies a < c. 

We can use the relations < and < to construct sets. 

DEFINITION. The set I’-(p) = {q E M p <q) is called the chronological ,firrure 
of p; I-(p) z {q E M 1 q < p> is the chronological past of q. We also have J ’ ( p) 
{q E M / p < q), the causaljirture ofp and J-(p) = {q E M ~ q < p) the causalpast of p. 
The chronological or causal future of a set S is defined by I’(S) ~-: UI,ES I (p), 
J+(s) G u BES J+(p), respectively, and similarly for the pasts of S. I+(S) is open but 
J+(S) is not necessarily closed. The boundary of I+(s) will be denoted i’(S). 

DEFINITION. A set S will be called achronal if there are no points p. (1 E S such 
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that p < q. A set S is said to be acausal if there are no points p, q E S for which p < q. 
The edge of an achronal closed set S (denoted edge (S)) is the set of points p in S such 
that if r < p < q, with y a timelike curve from r to q, p E y, then every neighborhood 
of y contains a timelike curve from r to 4 not meeting S. 

LEMMA 2. Every point p in the achronal set f+(q) - q is the future endpoint of a 
null geodesic on f+(q) which can be extended into the past on Z’-(q) either indejnitely, 
or until it meets q. 

Another way to state this lemma is as follows. f+(q) is generated by null geodesics 
which either have no past endpoints or have past endpoints at q. Generators which 
have no past endpoints never intersect as they are extended into the past. 

As noted earlier, the existence of a CTL through a point p is denoted by p <p. 
We shall say that a space-time (M, g) satisfies the chronology condition if there are 
no points p E M such that p < p. Similarly, a space-time will be said to satisfy the 
causality condition if there are no closed causal curves. The set of points at which the 
chronology condition does not hold is the disjoint union of sets of the form 
Z+(q) n Z-(q) # m, q E M. The set of points at which the causality condition does 
not hold is the disjoint union of sets of the form J+(q) n J-(q) # (q), q E M. Another 
causality requirement that is often imposed on a space-time is given by the following. 

DEFINITION. The strong causality condition is said to hold at p if every neighbor- 
hood of p contains a neighborhood of p which no non-spacelike curve intersects 
more than once. Thus if a space-time satisfies the strong causality condition at every 
point, then not only are there no closed causal curves, but there are also no “almost” 
closed curves; that is, no causal curve from p can ever return to the vicinity of p. 
It is not possible for a causal curve to be “imprisoned” inside a compact set if strong 
causality holds. The notion of “imprisonment” is made precise by the following 

DEFINITION. A causal curve y that is future-inextendible is said to be total/y future 
imprisoned in S if it enters and remains within a compact set S. A future-inextendible 
causal curve which does not remain within any compact set but continually reenters 
a compact set S is said to be partially future imprisoned in S. 

We want to prove that causality violation which evolves from regular initial data 
must be accompanied by singularities; to do this we must put some restrictions on what 
is meant by “regular initial data.” The set upon which it is most natural to give initial 
data is a partial Cauchy surface which is defined to be a closed acausal set S with no 
edge (i.e., edge (S) = a). A partial Cauchy surface is thus a spacelike hypersurface 
which no causal curve intersects more than once. We shall take the existence of such 
a set as a necessary condition for the existence of “regular initial data.” For any 
partial Cauchy surface S, there are sets within which events are completely determined 
by data on S. These sets are given by 
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DEFINITION. The ,future domain of dependence or CUUC~IJ; development of S is 
defined by 

Z?t(S) G {p 1 p t A4 and every past inextendible timelike 

curve containing p intersects Si. 

Similarly for the past history of S, we define 

ii-(S) = {p 1 p E M and every future inextendible timelike 

curve containing p intersects Sj 

3s the past domain ?f dependence of S, and we call D(S) ::I D+(S) LJ Z>-(S) the totul 
domain of’ dependence of S. The future boundary of D+(S), that is, the limit of the 
region that can be predicted from knowledge of data on S, is defined by 

H b(S) is called the-ftirure Catchy horizon; H-(S), the past Cauchy horizon. and H(S), 
the total Cauchy horizon are correspondingly defined. H+(S) and Dt(S) have the 
properties (for S closed and achronal) 

(a) D.(S) is closed, 

(b) H,(S) is achronal and closed, 

(c) Pa(s) = H’(‘S)LJ s. 

(d) edge S : edge H+(S). 

(The above statements are still true if (+) is replaced by (-).) 
If D(S) M, then the entire future and past can be predicted from data on S; 

in this case we call S a Cuuchy surface. If (M, g) contains a Cauchy surface S, then 
H(S) =m: :‘ . Some other important properties of Cauchy surfaces and partial Cauchy 
surfaces are given in the following five lemmas. 

LEMMA 3. JfS is a partial Cauchy suTface, then H+(S), if nonempt?: is generated 
bj, ml1 geodesic segments which have no past endpoints: these segments never intersect 
as the). are e.utended into the past. 

LEMMA 4. The strong causalit~~ condition holds OH int D+(S), ,for S achronal and 
closed. 

LEMMA 5. I f  S is closed and achronal, then Jtir each set qf points q < p with 
p E int D-‘(S) and q ES, there is a timelike geodesic from q to p which attains the 
maximum Iength ,for timelike curves connecting q and p. Furthermore, to each 
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p E int s+(S) there is a timelike geodesic orthogonal to S which attains the maximum 
length for timelike curves connecting p and S. (The term “length” of a causal curve 
denotes its proper time integral.) 

LEMMA 6. Let S be a Cauchy surface for the space-time (M, g). Then M is homeo- 
morphic to R1 x S, and for each a E RI, {a} x S is a Cauchy surface for (M, g). 
Thus topology change is impossible if the space-time contains a Cauchy surface. 

LEMMA 7. Zf p E int D+(S), then Z+(S) n J-(p) is compact, provided S is a partial 
Cauchy surface. 

The second part of Global Techniques is the study of conjugate points and the 
relationship of these points to the causal structure. Roughly speaking, two points 
p and q on a causal geodesic y(t) are said to be conjugate along r(t) if a geodesic which 
is infinitesimally close to y(t) intersects r(t)(at p and q. More precisely, p and q will 
be conjugate along y(t) if the expansion 0 of a geodesic congruence containing y(t) 
becomes infinite at p and q [HE, pp. 96-97; lOO-1011. The expansion 8 satisfies the 
equation 

dl9ldt = -R,,KaKb - 20~ - (l/n) P (2.1) 

where Ku is the tangent vector to the geodesic, t is an affine parameter along y(t), 
and n = 3 for timelike geodesics, and n = 2 for null geodesics. The function o2 
is called the shear of the congruence and is positive definite. For null geodesics it 
satisfies the equation 

da,,ldt = -CmanbKaKb - 6u,, G.2) 

where 2a2 = gmncrnn and m, n = I,2 label the two spacelike directions of a pseudo- 
orthonormal frame parallel propagated along y(t) [HE, p. 861. It can be shown [HE, 
pp. 97, 1001 that p and q are conjugate along y(t) if and only if a function y, defined 
by 8 = (l/y) dy/dt, satisfies y = 0 at q and p. If we define a new function z by the 
relation zn = y, then B = (n/z) dz/dt and (2.1) becomes 

where 

(d2z/dt2) + H(t) z = 0 (2.3) 

H(t) z (l/n)(R,bK”Kb + 203. (2.4) 

Since z” = y, y will be zero at p and q if and only if z = 0 and p at q. Thus we.have 
reduced the problem of finding conjugate points to the problem of discovering the 
location of zeros in solutions to Eq. (2.3). This, fortunately, is a well-known problem 
in the theory of ordinary differential equations. This problem has an extensive 
literature from which we will take the following two lemmas. 
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LEMMA 8. Let H(t) be continuous and nonnegative in the interval (a, $ ~1. !f 

li~+i~f t2H(t) > 6. (2.5) 
I 2 

Then every solution to (2.3) has infinitely many zeros on (a, $- co). 

The proof can be found in Ref. [ 151. 

LEMMA 9. Let H(t) be continuous on (a, + co). If 

s % 
H(t) dt = -1-m 

0 

then all solutions to (2.3) have injinitely many zeros on (a, i- 03‘). 

The proof can be found in Ref. [16]. 
We shall also need the following proposition, a result which is /jot in the literature. 

PROPOSITION 1. A sufficient condition for the existence of a solution to (2.3) with 
at least t++‘o zeros in the interval [t, , m) is that there exist mrmbers t, . t, M’ith 
t ,, 4 tl -< t, such that 

(2.6) 

assuming that H(t) is continuous and H(t) 3 0 in [t, , CO). 

ProqjI We can always find a solution z(t) which has a zero at to We will show that 
this solution has another zero in (to, co); for assume it does not. Then without loss 
of generality we can assume z(t) > 0 and dzjdt > 0 in (t, , a), since if dz/dt c 0 
at any point in (to , a). we would have a zero in (t,, , co) by the condition H(t) 3.- 0. 
From (2.3) we obtain 

dz dz 
=-I I’ 

f., 

27 +t2 dt t=f, -- .fI 
z(t) H(t) dr. 

Since dzjdt :‘; 0, we have z(t) 3 z(t,) for any t :> t, . Since H(r) ‘-:, 0. we have 

Thus dz i s 12 Ji t=!l tl z(t) H(t) dt < ; z(tJ H(t) dt 

, dz 
G dr f-f1 - (h - to) $ 1,: 1 .r,‘? H(t) dz 

I I 

I -~ (t, -- t,) if’ H(r) dt 
- ‘I 
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By hypothesis, the factor in brackets is negative. If dzjdt It+ > 0, then dzjdt jtZtl < 0, 
implying a zero of z(t) in (tz , 
J;: z(t) H(t) dt > 0 

co). If dzjdt It+ = 0, then dzjdt It+ < 0 since 
b y assumption. In either case, z(t) must have a zero in (to, co). 

This contradicts the assumption that z(t) has no zeros in (to , co). Thus z(t) must have 
at least one zero in (to, co), and hence two zeros in [t, , co). i 

Proposition 1 concludes our digression into the theory of ordinary differential 
equations. Now we will connect this mathematical interlude with physics. Recall that 
most of the theorems required the assumption H(t) 3 0. From Eq. (2.4) we see that 
for causal geodesics this corresponds to R,,,KaKb + 2 g2 >, 0, or since a2 is intrinsically 
nonnegative, to RGbKaKb 3 0. The Einstein equations tell us that when Ka is null, 
Rab = 8nT,,KaKb, so the above inequality will hold whenever T,,KaKb b 0. This is 
assured by the Weak Energy Condition, which says that the energy-momentum tensor 
at each point p in M obeys the inequality T,, W” Wb > 0 for any timelike vector Wa 
in T, , where TP is the space of all tangent vectors to M at p. By continuity we will 
have TabKaKb > 0 for any null vector KO in T, . Physically, this condition says that 
the energy density as measured by any observer is nonnegative, and this holds for all 
known forms of matter (see [HE, pages 89-911 for a more detailed discussion of this 
point; see, however, Epstein et al. [17]). But the weak energy condition insures 
RabKaKb > 0 only for null geodesics. For timelike geodesics, we need a different 
condition to insure this. 

DEFINITION. We shall say that the energy-momentum tensor satisfies the Strong 
Energy Condition at all p E M if for every timelike Wa E T, , we have 

T,,WaWb > $WaW,T. 

Combining the Einstein equations and the strong energy condition, we get 
R,, Wa Wb > 0 for all causal vectors W”. Physically, the strong energy condition says 
that gravitation is always attractive, and this is true for all known forms of matter 
(see [HE, p. 951). 

The final locally defined energy condition we will need is the following 

DEFINITION. We will say that the Ubiquitous Energy Condition holds on a set S 
if the energy-momentum tensor at each point p ES satisfies TabKaKb > 0 for all 
non-spacelike vectors Ka E T, , (If S is not specified, S = M will be implied.) 
Physically, the ubiquitous energy condition says that the energy density is nonzero 
for every observer at every point of S. Furthermore, for all observed forms of matter, 
the condition TabPUb > 0 for all timelike vectors V implies TabKaKb > 0 for all 
null vectors Ka also; the ubiquitous energy condition assumes this to be a property 
of all physically reasonable Tab . Thus matter consisting entirely of radiation moving 
in one special direction-Type II matter in the notation of Hawking and Ellis 
[9, p. 89]-is ruled out by the ubiquitous energy condition even though T,, # 0. 
However, such an energy-momentum tensor is extremely unlikely. 

The ubiquitous energy condition was apparently originally proposed by Aristotle 
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(Nature abhors a vacuum), and later defended by numerous authors, among them 
G. W. Leibniz, who supported it with an argument which is cogent even in the world 
view of General Relativity: At any point in space-time we expect there will be a 
little randomly oriented radiation present, even in what would otherwise be a perfect 
vacuum. The microwave background radiation, for example, is expected to be present 
everywhere in space-time, except perhaps where there is matter to shield it out. This 
random background radiation would be sufficient to satisfy the ubiquitous energy 
condition. Even in radiation shielded regions there would be quantum mechanical 
zero-point radiation (Sakurai [18, p. 331; see however, Epstein et al. [17]) which would 
in itself be sufficient to satisfy the condition. Thus the ubiquitous energy condition 
seems to be an eminently reasonable condition to impose on the whole of space-time. 
though for our purposes we will need to impose it only on certain compact sets. 
The ubiquitous energy condition has been imposed (in effect) on a compact set by 
Hawking [19] in one of his early singularity theorems. 

DEFIXIUON. A space-time will be said to satisfy the generic condition if ecer! 
timelike or null geodesic contains at least one point p at which 

(2.71 

where K” is the tangent vector to the geodesic at 17. 
If (3.7) is satisfied at some point p, then the tidal force ROaiil (or R,n4n4) is nonzero 

at p along a timelike (or null) geodesic [HE, p. IOl]. Thus physically this condition 
says that every geodesic feels tidal force at one point in its history at the very least. 
To see that this condition is reasonable, see [HE, p. 1011. In the theorems of this paper 
the generic condition and the ubiquitous energy condition will be used for the same 
purpose: to focus geodesic congruences. 

The relationship between the causal structure and conjugate points lies in the 
following two lemmas. 

LEMMA 10. A timelike geodesic curve y  j>om q to p is qf’ maxima/ proper tinw 

IengtII if’nd on/J, if there is no point conjugate to q along y  in the iflterral (y. p). 

LFMM~ 1 1. If  there is a point r in (q, p) conjugate to q along (I causal geodesic, 1’. 
then there is a timelike curve,from q to p. 

3. FINITELY VICIOUS SPACE-TIMES 

One of the major purposes of this paper is to show that it is not possible to manu- 
facture a time machine-which we will define to be a region of high curvature gener- 
ating a chronology violating set Vsuch that Vintersects the earth’s world line-without 
the formation of singularities. One way of showing this is to note that a manufactured 
time machine would have to embody the following features. The time machine would 
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have to be constructed in some localized region, for it is beyond our power to mani- 
pulate all the matter in the universe. Thus we would expect the gravitational field 
generated by the time machine to decrease in strength as we move away from it, 
eventually becoming negligible at large distances. That is, the time machine is formed 
in asymptotically flat space. (In the first approximation, complications introduced 
by cosmology are ignored.) The time machine would be built from normal matter 
(matter satisfying the weak energy condition) in a universe which is initially free of 
CTL; that is, the time machine evolves from regular initial data in the asymptotically 
flat space-time. Thus we will require the existence of a partial Cauchy surface S in 
the space-time so that we can define “initial data.” We will further require (M, g) 
to be “partially asymptotically predictable” from S, which essentially means that 
D+(S) comes to an end because of the formation of CTL or singularities and not 
because of the choice of S [20]. Otherwise, we could not say that the CTL evolved 
from S. Finally, in order to use the time machine, it must be possible for an observer 
initially far away from the time machine, on earth, say, to travel to the time machine, 
go backwards in time, and return to earth before he left. In order for this to happen, 
the time machine must not be shielded from outside observers by an event horizon; 
in symbols, J-(9+) n V is nonempty, where V is the chronology-violating set. (Note 
that this condition does not preclude the existence of an event horizon. It merely 
says that some CTL are to be found outside of an event horizon.) 

The following theorem shows that such a time machine cannot be constructed 
without the formation of singularities; CTL cannot arise from regular initial data 
in any asymptotically flat, geodesically complete space-time. 

THEOREM 1. An asymptotically flat space-time (M, g) cannot be null geodesically 
complete if 

(1) RabKaKb > Ofur ail null vectors Ka; 

(2) the generic condition holds on (M, g); 

(3) (AI, g) is partially asymptotically predictable from a partial Cauchy surface S; 

(4) the chronology condition is violated in 

J+(s) n J-(3+). 

(Note that condition (1) follows from the Einstein equations and the weak energy 
condition.) 

The idea behind the proof is quite simple; we first show that under the above con- 
ditions there exists a null geodesic which never leaves H+(S). This geodesic cannot be 
complete, for it can be shown that (1) and (2) imply that all complete null geodesics 
have a pair of conjugate points. This would be impossible, by Lemma 11 and the 
achronality of H+(S). The rigorous proof has been published elsewhere [lo]. 

The theorem above has two major weaknesses from the physical point of view. 
First of all, the proof depends on the existence and structure of asymptotic infinity; 
the theorems ignore complications due to cosmology. This objection is perhaps not 
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roe serious, for the condition of asymptotic flatness is used only to show that at least 
one generator of H+(S) could be continued into the future for infinite affine parameter 
length while remaining in H+(S). This state of affairs would be expected even in a 
nonasymptotically flat universe, unless there were many causality violating regions 
whose Cauchy horizons intersected, as in Fig. 1. The other weakness is the fact that 

,,/u,, 
\ - 

partial Cauchy surface S /’ 

FIG. 1. Multiregion causality violation. 

although we know singularities must occur with the formation of CTL in asympto- 
tically flat space-times, we do not know where they occur. In this paper it will be shown 
that if causality violation arises in ajnite region from regular initial data, then singu- 
larities must occur. and further they must occur in the finite region. The word “finite” 
can be made more precise in several ways; however, note that this word is usually 
associated in some manner with the mathematical notation of compactness (in standard 
cosmology, for example, ajnite universe is one whose spacelike sections are topo- 
logically compact). Thus one way of making “finite” more precise is given in the 
following 

DEFINITION. A space-time (M, g) will be called jnitelv vicious if it contains a 
partial Cauchy surface S; if it violates the causality condition in a subset of J’-(S); 
and if it has a hypersurface slicing S(T) with the properties 

(i) S is one of the slices with S(0) = S: 

(ii) there is a closed interval [T 1, TJ of the slice parameter such that if 
-7 E [T, 9 ~~1, then S(7) n D+(S) is spacelike, and S(T) n H+(S) is compact. Also, if 
TV, TV are any two numbers in [TI , TJ with 73 > T:~, then s(‘T4) n a+(S) lies to the 
future of S(7.J n D+(S); 

(iii) let B be the region of space-time in D+(S) between s(T1) and s(T2) inclusive, 
and let y be any segment of a generator of H+(‘S) with y n s(T2) i; B and y C B. 
Then y can be extended in H+(S) n B such that the extension intersects each s(T) 

for 7 E [T 1 , TJ exactly once. (The adverb “finitely” comes from the compactness of 
f+(S) n s(T); “vicious” is the adjective Carter [21] applies to any set containing 
CTL.) 

The precise definition of a finitely vicious space-time is somewhat complicated. 
but the physical situation it is meant to model is actually very simple, ar.d is illustrated 
in Fig. 2. If causality violation occurs somewhere in the future of a partial Cauchy 
surface S, a Cauchy horizon, H+(S), must develop to separate the acausal region 
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from the interior of D+(S), since by Lemma 4, the strong causality condition holds 
on int B+(S). In the region where causality violation begins, H+(S) may have a very 
strange structure-indeed, the structure of the entire region may be very strange-but 
far away from this region we would expect space-time to take on familiar features. 
For example, we would expect that it would be possible to slice the space-time with 
a sequence of hypersurfaces, such that these hypersurfaces become spacelike far away 
from the region where causality violation begins. Furthermore, if we continue suffi- 

FIG. 2. A finitely vicious space-time. The shaded region is region B, and S is a partial Cauchy 
surface. 

ciently far into the future along the hypersurface slicing (increasing T), we should, 
if the strong gravitational fields which give rise to the causality violation are 
“localized” in space, come at last to a region of space-time where the light ray trajec- 
tories have the familiar property of intersecting a spacelike hypersurface once and 
only once. This region I have denoted with the letter "B" in the definition of “finitely 
vicious.” Condition (iii) in this definition has been stated so as to allow the possibility 
that a generator of H+(S) is closed or almost closed; it is possible that a generator of 
H+(S) could intersect the region B several times. However, such a generator must 
leave B, enter the strong field region and reenter B; it cannot close or almost close 
entirely in B. The portions of the hypersurfaces in B have many of the properties 
of Cauchy surfaces. (Condition (iii) focuses attention on those generators of H+(S) 
which end on S(Q-,), the future boundary of the region B, because it is possible for 
null geodesics to enter H+(S) as generators as the geodesics move into the past. 
However, Lemma 3 assures us that a generator of H+(S) will never leave H+(S) 
in the past direction; if a null geodesic is a generator of N+(S) when it hits S(T~), it 
will be a generator of H+(S) when it hits S(7r), and when it hits any hypersurface 
S(T) in between.) 

We want to consider at present only those space-times in which the causality 
violating region is “localized in space,” so we must find some way of making “locali- 
zation in space” precise. One way of accomplishing this is to require H+(S) 0 S(7) 
to be compact since H+(S) is the boundary between the acausal region and the causal 
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region. The remainder of condition (ii) is devoted to making certain that the word 
“space” has a meaning. 

If a time machine were manufactured in our universe, our space-time would 
probably be finitely vicious. For it should be possible to find a sequence of hyper- 
surfaces through the world tube of our galaxy which would be spacelike except in th: 
immediate vicinity of the time machine. The boundary between the causal and acausal 
region would begin in the strong gravitational field near the machine, and expand 
until it finally intersected the world tube of the earth, where the properties of null 
geodesics are that required by condition (iii). We would expect the boundary to 
expand in all directions into regions of the galaxy where the “local” causal behavior 
is similar to that of the earth. For a certain period, the period between 71 and TV . 
say, the boundary H+(S) would be confined within our galaxy and so S(T) n H’(S) 
would be contained within a compact set. (If H+(S) expands in all directions away 
from the strong field region, then there should be a neighborhood of H+(s) n 3-r) 
with compact closure.) Since both H+(S) and S(T) are closed. it follows that 
H*(S) n S(T) is itself compact. 

The expansion of the Cauchy horizon is an essential feature of a time machine. 
for the region of causality violation must expand to encompass the earth. This expan- 
sion also guarantees the occurrence of singularities, as shown by 

THEOREM 2. Suppose that a space-time (M, g) is jinitely riciow, and suppose that 
the area of H+(S) n S(TJ is strictly greater than the area of H+(S) n S(TJ. Then if 
the weak energy, condition and Einstein equations hold, the space-time (M, g) is ml/l 
geodesically incomplete. 

(The area of H-(S) n S(T) is defined in the same manner as black hole area: see 
[HE, p. 3181.) 

Prooj: The proof is essentially the time reverse of the proof of Hawking’s well- 
known Black Hole Area Law [HE, pp. 318-3191. Since any genrator of H+(S) which 
intersects s(T2) intersects siTI) exactly once, the area of H+(S) f7 s(T) can increase 
from s(T1) to S(TJ only if the expansion 8 of some of the generators of H*(S) is positive 
somewhere in B. This means that 0 < 0 along at least one generator y as we move into 
the past. If y were geodesically complete, then by the weak energy condition. the 
Einstein equations, and Eq. (2.1), some of the generators of H+(S) would intersect to 
the past of H+(S) n s(T2). This is impossible by Lemma 3. Thus y cannot be past 
complete: the space-time (M, g) is null geodesically incomplete. 1 

Notice that Theorem 2 provides us with information about the location of the 
singularity in a finitely vicious space-time with an expanding Cauchy horizon. A null 
generator of H+-(S) ends in a singularity somewhere between S(T~) and S = S(O). 

The concept of finite viciousness was introduced as one method of making the 
notion of “finite region” precise. One could prove that the construction of a time 
machine would generate singularities without using this concept. First note that 6’ Y- 0 
somewhere along at least one null geodesic generator of H+(S), for the region of 
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causality violation must expand to include the earth. We then infer from the proof of 
Theorem 2 that the condition 6 > 0 is a sufficient condition for the occurrence of 
singularities. 

4. COMPACT BOUNDED VICIOUS SPACE-TIMES 

Another way we can give meaning to the expression “causality violation begins 
in a finite region” is to say “causality violation begins in a region of space-time with 
compact boundary.” 

DEFINITION. A space-time (M, g) will be called compact bounded vicious (cb. 
vicious) if it contains a partial Cauchy surface S and a compact hypersurface A with 
the properties 

(i) A is the boundary of a closed set B which has nonempty intersection with 
a causality violating region. A is not required to be connected; 

(ii) A n D+(S) is nonempty, but B n Z-(S) = 0; 

(iii) if H+(S) n A is nonempty, then U n A is spacelike and connected, where 
U is some neighborhood of H+(S) n A. 

Figure 3 gives an example of a c.b. vicious space-time. The definition is straight- 
forward; only a few clarifying remarks need be made. First of all, the first part of 

H+(S) 
A is spocelike in 

o nbd of H+(S) l-l A 

A-- 

FIG. 3. A c.b. vicious space-time. Causality violation occurs somewhere inside the cone H+(S). 
A is the boundary of the cylinder; B is the entire cylindrical solid, including A. 

condition (ii) is necessary in order to avoid situations like the one depicted in Fig. 4, 
where the compactness of C gives us absolutely no restriction on the size of the 
causality violating region. The second part of condition (ii) tells us that B is located 
entirely to the future of S. We state this requirement as B n Z-(S) = m rather than 
B C J+(S) in order to include space-times like the one in Fig. 5. 

Since causality is violated in B, but int D+(S) n B # o, we know that H+(S) n B 
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is nonempty. However, in some c.b. vicious space-times it is possible to choose A 
such that N l(S) n A is empty; it is possible to do this, for example, in the Taub-NUT . 
universe, as is shown in Fig. 6. Also, the set A pictured in this figure is an example of 
a set A which is not connected. The fact that A is not required to be cpnnected con- 
stitutes a slight modification in the definition of hypersurface given in HE. where 
a hypersurface is said to be an orientable imbedded paracompact C” connected 
Hausdorff three-dimensional submanifold of M without boundary [HE, pp. 14, 441. 
But the hypersurface A possesses all of the other properties listed in the preceding 
sentence. 

If the region where causality violation begins is “localized’‘-say it is confined to 
a small region in our galaxy-it should be possible to find an A sufficiently large so that 
A is spacelike in a neighborhood U of H+(S) n A. The justification of this possibility 

3 
FIG. 4. A set C which has all the properties of the set B in a c.b. vicious space-time except (ii). 

Causality is violated everywhere in J+(S) - d+(S); everywhere inside the cone forming H%S). 

FIG. 5. A c.b. vicious space-time in which B n 1-G) = 4, but B (T J+(S). Except for the cuts and 
identifications, the space-time is Minkowskian. The ellipse is the set A. B is the region enclosed by 
A. By Theorem 3, the set B contains singularities. We cannot eliminate a priori the possibility that a 
singularity will “shield” some portion U from a causal curve with past endpoints on S; that is, 
lInJ+(S) = 4, but CJCB. 

jgj/IO8/1-2 
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has already been given in the discussion of finitely vicious space-times. U n A is 
required to be connected in order to avoid “A’s” like that pictured in Fig. 7. 

The reader may wonder why the boundary of B was the set required to be compact 
rather than B itself. In other words, why not define a “compact vicious” space-time 
rather than a “compact bounded vicious” space-time? The answer to this question 
is simple. It will be shown in the next theorem that B cannot be compact in a physically 
realistic space-time. This fact makes it difficult to prove the occurrence of incomplete 
causal geodesics in B, for it is possible that the noncompactness of B results from 
causal curves in B “going off to infinity” rather than terminating in singularities. 

FIG. 6. The Tat&NUT universe, a c.b. vicious space-time. CTL occur to the future of H+(S). 

\ cut out 

‘S 

FIG. 7. A set “A” which has all the properties of the set A in a c.b. vicious space-time except 
U n “A” is not spacelike and connected in a neighborhood U of H+(S) n “A”. 
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In the following theorem, we shall eliminate this possibility by making use of the 
property of int I’%(S) given by Lemma 5. To each point p E int fil(S), there is a time- 
like geodesic from Stop of maximal length. We shall say that the part of B in int fi (S) 

is$nite if there is an upper bound to the lengths of causal curves from S to points 
in [int fi-t(S)] n B. We can express this in the notation of HE by definining 4 p, cl) 
for points p, q E M to be zero if 4 $ P(p) and otherwise to be the least upper bound 
of the lengths of future-directed piecewise non-spacelike curves from p to r/. For 
sets S and U, we define d(‘S, U) to be the least upper bound of u’c p, q), p ES. q t 1,’ 
[HE-p. 2151. Thus [int b’(S)] n B is finite if and only if cf(S, [int B.(S)] n B) is 

finite; it is finite if no causal curve from S can remain in [int Zji(S)] n B forever. WC 
can now prove that any physically realistic finite c.b. vicious space-time is singular. 

THEOREM 3. If’ the ubiquitous energy condition and the Einsteiw equations hold OII 
the set B of’ a c.b. vicious space-time, then B is noncompact. Furthertllorr. if’ 
rt(S. [int fit(S)] n B) is finite, then the space-time is timelike geodesical!l, incomplete: 
there must be ati incomplete timelike geodesic in B. 

Scholium. The above theorem is still true if we replace the assumption that the 
ubiquitous energy condition holds on B with two much weaker assumptions (I) 
the weak energy condition, and (2) the assumption that there is at least 01~’ point 
(1 E Ha+-(S) n B such that KaKbK~,R,~,,,c,K,.~ $7’ 0 at q (K” is the tangent vector to a 
generator of H’(S) through q). Thus B will be noncompact if at least one generator 
of H-(S) in B feels tidal force at least one point in its history in B. (Condition (2) 
can be replaced by the generic condition.) 

We will need the following two propositions in the proof of Theorem 3. 

PROPOSITION 2. Let S be a partial Cauchlv surjbce. and let K be a compact WI II IlicIt 

is contained in int 13 -(S) u S. Then J-(K) n S is compact. 

Prooj: Since the open sets I-(p). p E int Zj+(‘S), cover [int I?‘(S)] u S. and since 
K is compact, there are a finite number of points pit int Do+ such that 
KC ui IP(‘p;). Since I-( pi) C Jm( pi), we have K C ui J-( pi). Thus J-(K) C (J, J ( IJ]). 

which gives 

Jo n SC J (I\) n J-(S) C [v Jp(pi)] n J!(S) =- u [J(p,) n J’(S)]. 
l 

By Lemma 7. ./ ( p,) n J+(S) is compact, so vi [J-( p,) n J’(S)] is compact. Nob. 

since by definition S is closed, {l,Ji [J-( p,‘) n J’(S)]] n S is compact. But 

J (K) n S = J-(K) n S n SC \u [J-(pi) n J*(S)]; n s 

which implies J-(K) n S is contained in a compact set. Thus J-(K) n S is compact. a 

PROPOSITION 3. Let S be a partial Cauch~~ swface. !f H-is) is nonemptj., therr 
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any generator of H+(S) which is totally past imprisoned inside a compact set B is 
geodesically complete in the past direction. 

The proof, like the proposition, is an obvious generalization of Lemma 8.5.5 
of [HE, pages 295-2971. However, it should be noted that the HE proof of Lemma 
8.5.5 contains a few algebraic errors; see my Ph.D. thesis for details [IO]. 

Proof of Theorem 3. Suppose that B is compact. Since the causality condition is 
violated in B and B n D+(S) # 0, H+(S) must be nonempty, with some generators 
of H+(S) intersecting A in the past direction unless H+(S) is entirely contained in B. 
If H+(S) C B, then H+(S) is compact since H+(S) is closed and B is compact. If 
H+(S) n A # 0, then any generator y of H+(S) which once enters B can never leave 
B. For if y did leave B it would have to intersect A at least once more. But this is 
impossible since A n U is spacelike and connected in some neighborhood U 
of H+(S) n A, and the initial intersection of the generator y with A defines the future 
side of the spacelike region of A around H+(S) n A as facing outward from int B. 
Thus if the generator y were to leave B, it would have to be future directed upon 
leaving B; this cannot occur since the space-time is time orientable. 

By Proposition 3 the generators of H+(S) which are totally past imprisoned in B 
are geodesically complete in the past direction. Consider the expansion 0 of the 
tangent vectors a/ax to the null geodesic generators of H+(S) n B. Suppose that 6’ > 0 
at some point p on a generator y of H+(S) n B. Then by the ubiquitous (or weak) 
energy condition, the Einstein equations, and Eq. (2.1) some of the generators of 
H+(S) would intersect to the past of p. This is impossible by Lemma 3. Therefore, 
0 < 0 on H+(S) n B. 

Now consider the family of differentiable maps 

pz : H+(S) n B + H+(S) n B 

defined by taking a point q E H+(S) n B a distance z to the past along the null geodesic 
generator through q, where z is the proper distance in the metric g& . The positive 
definite metric gib is defined by introducing a future-directed vector field V which is 
geodesic in a neighborhood U of H+(S) n B with compact closure. Then g’(X, Y) = 
g(X, Y) + 2g(X, V) g(Y, V). Let dA be the area measured in the metric gAb of a small 
element of H+(S) n B. Under the map pZ , 

(d/dz) dA = -0 dA. 

Now since H+(S) n B is compact, the integral 

s 
dA 

H+kS)nB 

must be finite. Since d/dz(dA) > 0, and since z is not bounded above, this is possible 
only if every geodesic generator y of H+(S) n B is a closed null geodesic which is 
entirely contained in B, for in this case z would be cyclic. Furthermore, it is possible 
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for L to be cyclic only if % -= 0 on H,(S) A B. But by Eq. (2.1), % L 0 on H l.(S) n B 
only if -R,,&aKti - 20~ x 0 on H+(S) n B. Using the Einstein equations, together 
with either the ubiquitous energy condition or the weak energy condition and the 
generic condition, we see that this is impossible. (The Einstein equations and the 
ubiquitous energy condition imply RnbKUKh :. 0 everywhere on H+(S) n B. The 
Einstein equations, the weak energy condition, and the generic condition (or con- 
dition (2) of the Scholium to Theorem 3) imply that R,,KaKh + 20~ > 0 at least one 
point on some y.) We have a contradiction and thus H+(S) n B must be noncompact. 
This implies that B is also noncompact, since H-‘(S) is closed. 

Furthermore, since B+(S) is closed, D+(S) n B is noncompact. For suppose it were 
compact. Then H’(S) n B would be a closed subset of n;(S) n B, hence compact, 
in contradiction to the above result. Now assume H-!(S) n A I (r:. Since A n U 
is spacelike and connected in some neighborhood U of H’(S) n A, there is a neigh- 
borhood W C U of H’(S) n A such that I-(H’(S) n A) n WC int B. (That is. any 
timelike curve with future endpoint on H+(S) n A immediately enters int B as it 
moves into the past, and remains in int B for some proper time at least.) 

Now let V be a neighborhood of H k(S) n A contained in U. Then A C.n 
is compact, since it is a closed subset of the compact set A. We must have 

f-(H-(S) n B) n ,1 C A - V n A, since if this were I?O/ true, there would be a past- 
directed timelike curve from int B which intersects A -- c’ on Ieauing int Z?. But 
V n A is spacelike and past-directed timelike curves can intersect V n A only upon 
entering int B. since the space-time is time orientable, and A is orientable. Further- 
more. we have 

I (‘H-t(S) n B) C A n int D-l(S) u S (4.1) 

since I-( Hi+) ~ /Z(S) C int D+(s) u S and in addition A n Z-(S) == .~j. Thus 

/-(H+(S) n B) n A C A - V n A n [int ii+(S) U S]. 

Define A - V n A n [int r?-+-(S) u S] =- K. Note that K is compact, since A - V n A 
consists of disjoint sets, some in int a+(s) u S, and the others not. (Recall that 
A -- V n A n H-(S) == ? .) Thus by Proposition 2, J-(K) n S is compact. 

Since B n I-(S) :m: LI!, any timelike curve drom B which intersects S must intersect 
A. Thus 

I--( H’(S) n B) n SC I-([I-(H t (S) n B)] n A) n S. (4.3) 

By (4.2), the set on the RHS of (4.3) is contained in Z-(K) n S. Furthermore, 

I-(K) n S CJ-onS L 

so we have, finally 

I-(w(S) n B) n S C L. 
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By a similar argument I-(int D+(S) n B) n SC L. Combining these results, we can 
conclude that 1-(6+(S) n B) n S is contained within a compact set L. (If 
H+(S) n A = a, we set K = A n [int I?+(S) u S] and L = J-(K) n S.) 

Now write d(S, [int D+(S)] n B) = a. Suppose the space-time (M, g) is timelike 
geodesically complete. Let /-!I: L x [0, ] 01 -+ M be the differentiable map which takes 
a point p E L a distance s E [0, a] up the future-directed geodesic through p orthogonal 
to L. Then /3(L x [0, a]) is compact, and it contains the set int D+(S) n B since by 
Lemma 5, there is to each point q E int B+(S) n B a future-directed geodesic y 
orthogonal to S of maximal length from S to q, and by assumption, y has length 
less than or equal to (Y. Furthermore, since I-(D+(S) n B) n S C L, y intersects S 
in L. Thus 

D+(S) n B = D+(S) n B C /3(L x [0, a]) 

and hence D+(S) n B is compact. But we have already shown that D+(S) n B 
is noncompact. We have a contradiction, so (il4, g) cannot be timelike geodesically 
complete; there must be an incomplete timelike geodesic in B. 1 

5. SINGULARITIES, CTL, AND TOPOLOGY CHANGE 

Besides its intrinsic interest, Theorem 3 has a number of important applications, 
most notably to the question of topology change. By Lemma 6, topology change can 
occur only if a Cauchy horizon forms. However, this Cauchy horizon could be due 
either to the formation of singularities or to causality violation (or both). Many 
workers have discussed the causal case [II, 22, 231, but whether or not causality 
violation could give rise to nonsingular topology change has up to now been an open 
question. We can use Theorem 3 to show singularities must accompany topology 
change in a physically realistic space-time, whether or not causality violation occurs. 

To show this for closed universes we will require a lemma due to Geroch [II, 221. 

LEMMA 12. Let B be a compact subset of a space-time such that the boundary of B 
is the disjoint union of two compact spacelike 3-manifolds, S and S’. Suppose that the 
causality condition holds on B. Then S and S’ are dfleomorphic, andfurther B is topo- 
logically S x [0, I]. 

We first use Theorem 3 to show that if B is compact, then, in a physically realistic 
space-time, topology change cannot occur at a/I. 

THEOREM 4. Let B be a compact subset of a space-time such that the boundary 
of B is the disjoint union of two compact spacelike 3-manifolds, S and S’. I f  

(1) the weak energy condition and the Einstein equations hold on B; 

(2) KaKbK~,R,~,,~,Kf~ # 0 at at least one point p E B on every null geodesic which 
is totally past-imprisoned in B. 

Then S and s’ are diffeomorphic, and further B is topologically S x [0, 11. 
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Comment. Since we are using the notation of HE, both S and S’ are connected. 
The theorem is still true even if one (or both) is not connected, but the proof is a bit 
more complex than the one given here. (Condition (2) could be replaced by: (3) the 
generic condition holds on B.) 

Proqf: Since S and S’ are spacelike and orientable, and the space-time is time 
orientable, any causal curve from S into B can intersect S again only after first leaving 
B through S’. Similarly for S’. Thus we can attach B to a space-time (M, g’) in which 
S and S’ are acausal and B n I-(S) = D. If S and S’ are not diffeomorphic, then by 
Lemma 12, causality violation occurs in B. The space-time (M’, g’) is c.b. vicious. 
with B in the definition of c.b. vicious space-time chosen to equal the B of the present 
theorem, and A =m S u S’. Since S C d+(S), condition (ii) holds, S is a partial Cauchy 
surface since it is a 3-D acausal spacelike manifold without boundary. Since S’ is 
connected, if H-+(S) n A = H+(S) n S’ is nonempty, then S’ n U is obviously space- 
like and connected in some neighborhood U of H+(S) n A. Conditions (I) and (2) 
are the same as those in the Scholium to Theorem 3, so the conclusions to Theorem 3 
hold here. (Note that any generator of H+(S) which intersects B is totally past- 
imprisoned in B; in fact, such a generator is totally,firture imprisoned in B.) Thus B 
must be noncompact, contrary to assumption. Hence. S and S’ are diffeomorphic. 
and further B is topologically S x [0, 11. 1 

We can state Theorem 4 in a somewhat different form. If topology change c/oes 
occur. then B is not compact and contains a singularity if B is finite. 

THEOREM 5. Let B be a four-dimensional region qf a space-time such that the 
boundary qf B is the disjoint union qf two compact partial Cauchy surfaces, S and S’. 
Suppose that 

( I) the weak energy condition and the Einstein equations hold on the space-time: 

(2) the generic condition holds on the space-time: 

(3) d(S. [int D+(S)] n B) isjnite; 

(4) S and S’ are not dl@eomorphic. 

Then the space-time is timelike geodesicall,v incomplete and B is not compact. 

The proof is similar to that of Theorem 4, and so is omitted. 1 

We can prove a theorem analogous to Theorem 4 for open universes, provided we 
assume the possible topology change to be localized in a compact region. Following 
Geroch [22, pp. 51-531 we define a 3-manifold S to be externally Euclidean if there 
exists a connected compact set C of S such that S - C is diffeomorphically S2 . R. 
That is, outside of the region C, S is identical with ordinary Euclidean space with a 
3-ball removed. Let A4 be a four-dimensional subset of space-time whose boundary 
is the disjoint union of two externally Euclidean spacelike 3-manifolds S and S’. 
Suppose that there exists a connected compact set K of M such that M - K is diffeo- 
morphic to S* ‘< R x [0, I], where for each fixed number 01 E [0, 11 the submanifold 
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S2 x R of M is spacelike and for each fixed point p of S2 x R the line [0, I] of M 
is timelike. Then M will be called externally Lorentzian. K may be described as a 
timelike world tube between S and S’ in which any “topology change” must take place. 
Analogous to Lemma 12, we have 

LEMMA 13 (Geroch [22 p. 551). Let M be an externally Lorentzian portion of 
space-time, the boundary of M being the disjoint union of two spacelike externally 
Euclidean 3-manifolds, S and S’. Suppose M has no closed timelike curves. Then S 
and S’ are dl@eomorphic, and M is dl@eomorphically S x [0, 11. 

We can strengthen this result. 

THEOREM 6. Let M be an externally Lorentzian portion of space-time, the boundary 
of M being the disjoint union of two spacelike externally Euclidean 3-manifolds, S 
and S’. If S is a partial Cauchy surface for the entire space-time, and a Cauchy surface 
for M - K, and in addition we assume 

(1) the weak energy condition and the Einstein equations hold on M; 

(2) the generic condition holds on the space-time. 

Then S and S’ are d@eomorphic, and S is a Cauchy surface for M. 

(The Cauchy surface condition makes certain that the breakdown in prediction is 
restricted entirely to K; M - KC int D+(S).) 

Proof. If the conclusion does not hold, then causality is violated in K. We now 
proceed as in Theorem 4, showing that M can be regarded as part of a c.b. vicious 
space-time. Choose B = K and A = 8K. (A will have to be smoothed out at 8K n S 
and 8K n S’, to make sure that A is a C” manifold, but this is a minor technicality.) 
The remainder of the proof is very similar to that of Theorem 4, and will 
omitted. 1 

6. CTL AND COMPACT SPACE-TIMES 

Another connection between the concepts of compactness and causality violation 
is provided by compact space-times. 

LEMMA 14. (Geroch [ll]; HE [p. 1891). If(M, g) is compact, then the chronology 
condition is violated in the space-time. 1 

The proof is easy. We simply note that M can be covered by open sets of the form 
I+(q) with q E M and recall that the chronology condition holds at q only if q is not 
in I+(q). Thus M can be covered by afinite number of sets I+(q) only if the chronology 
condition is violated in ‘M. 

The important thing to notice about this proof is that it is entirely topological in 
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nature: there is no reference to the dynamics of space-time-there is no reference to 
Einstein’s equations. If one uses Einstein’s equations, we can prove a stronger theorem 
than Lemma 14; we can prove that in a generic, compact space-time, the chronology 
condition is violated at euery point. 

DEFINITION. A space-time (M, g) will be called tot&y LGYOUS if I-(q) n i-(q) -- M 
for some q E M. 

Notice that if P(q) n I-(q) = M is true for one q E M, it will be true for all q c M 
since the choronoly violating set, denoted by V, is the disjoint union of open sets 
of the form P(q) n I-(q). Thus if (M, g) is totally vicious, then every point in ,iM 
can be connected to every other point by both a future-directed and a past-directed 
timelike curve. The causality violation is total. 

THEOREM 7. /f iM, g) is compact, then CM, g) is totally vicious provided theJoNowing 
conditions hold 

( I) the Einstein equations and the weak energy condition. 

(2) the generic condition. 

Proof. By Lemma 14, (M, g) violates the chronology condition, so there is a 
point cl e M for which I+(q) n I-(q) # O. If (M, g) were not totally vicious, the set 
t’(q) u f-(q) would be nonempty. Suppose f’(q) f G Now j’(q) is generated by 
null geodesic segments which have no past endpoints. For a generator of f~+(q) can 
have an endpoint only at q, and q cannot be an endpoint without violating the 
achronolity of I-Yq) (since q < q). We can now argue as in Proposition 3 to show that 
all generators of f+(q) are geodesically complete in the past direction. But this contra- 
dicts conditions (1) and (2) as an argument similar to the one found in the proof of 
Theorem 3 will show. If f+(q) # @, we can obtain a contradiction in the same way. 
Thus i’(q) u j-(q) must be empty, which means that (M, g) is totally vicious. m 

7. CAUSALITY VIOLATION AND THE HAWKINGPENROSE-GEROCH 
SINGULARITY THEOREMS 

Besides the Geroch Topology Change Theorems, there is another important class 
of theorems in General Relativity which use the causality condition: the Hawking- 
Penrose-Geroch Singularity Theorems. In an earlier section of this paper, I showed 
the causality condition to the nonessential in the first class of theorems; in this section, 
I shall argue that the causality condition is an unnecessary assumption in the singu- 
larity theorems. More precisely, 1 shall generalize the two most important singularity 
theorems, showing that singularities can be prevented by causality violation on/~ 
if the causality violation begins at “infinity,” an unlikely possibility. 

As the first step in the generalization, recall the two most important singularity 
theorems. 
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HAWKING-PENROSE THEOREM [HE, p. 2661. Space-time (M, g) is not timelike 
and null geodesically complete if 

(1) RabKaKb 3 0 for every non-spacelike vector Ka (this can be inferred from 
the strong energy condition and the Einstein equations); 

(2) the generic condition is satisjied; 

(3) the chronology condition holds on M; 

(4) there exists at least one of the following: 

(i) a compact achronal set, without edge, 

(ii) a closed trapped surface, 

(iii) a point p such that on every past (or every future) null geodesic from 
p the divergence 8 of the null geodesics from p becomes negative (i.e., the null geodesics 
from p are focussed by the matter or curvature and start to reconverge). 

PENROSE’S THEOREM [HE, p. 2631. Space-time cannot be nuNgeodesically complete 

if 

(1) R,,KaKb 3 0 for all null vectors Ka (this can be inferredfrom the weak energy 
condition and the Einstein equations). 

(2) there is a noncompact Cauchy surface in M; 

(3) there is a closed trapped surface in M. 

(For cosmological applications, condition (3) in Penrose’s theorem can be replaced 
by condition 4(iii) of the Hawking-Penrose theorem; in open universes, we need only 
the weak energy condition to infer the existence of singularities.) 

The generalization of the above theorems will be based on the following two defi- 
nitions. 

DEFINITION. A space-time (M, g) is said to be asymptotically deterministic if 

(i) (M, g) contains a partial Cauchy surface S such that 

(ii) either N(S) = H+(S) u H-(S) is empty, or, if not, then 

liz [inf T,,KQK6] > 0 

on at least one of the null geodesic generators y(s) of H(S), where a is the past limit of 
the affine parameter along y if y E H+(S), and the future limit if y E H-(S). (K” is 
the tangent vector to y.) 

DEFINITION. The matter tensor will be said to be past stochastic along a causal 
geodesic segment y if there exist numbers a > 0, b > 0, and an integral number c of 
disjoint affine parameter intervals (sl , s,), (sg , s&..., (si , s$+&... along y, each interval 
satisfying 1 sj - sj+r 1 > b (and sj > ++I for all j) with TabKaKb > a at every point 
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in every interval. (K” is the tangent vector to y.) Furthermore, c is finite if y has a 
past endpoint or is past incomplete, and infinite if y is past complete. Future stochastic 
matter tensors are defined similarly. 

These detinitions are based on the following physical reasoning. Ifcausality violation 
occurs in a space-time with a partial Cauchy surface S, then H(S) must be nonempty. 
For the sake of argument, suppose the causality violation occurs to the future of 
S, giving H’(S) 7’: i‘ . If the formation of a Cauchy horizon is due to causality 
violation, then we would expect that the region where H-(S), and hence the causality 
violation, begins would contain matter. It requires nonzero gravitational fields to 
“tip over the light cones” sufficiently far to give causality violation, and it seems 
unlikely that these fields would occur in empty space, for nonzero gravitational fields 
will give rise to matter via pair creation. (There are exceptions to this; for example. 
the Taub-NUT universe and the modified Minkowski space pictured in Fig. 5, but 
in these cases there are singularities on the Cauchy horizon, and hence H+-(S) is not 
due entirely to causality violation. Furthermore, in the actual universe, particle 
creation would be expected to occur around such singularities.) 

The region where H+(S) “begins” is an open set of the space-time which contains 
the past inextendible portions of the generators of H.(S).. In asymptotically deter- 
ministic space-times, this region is nonempty in the sense that a certain component 
of the matter tensor as measured in a pseudo-orthonormal frame parallel propagated 
into the past along at least one of the generators of W(S) does not have a vanishing 
lower bound. It is possible, of course, that the particular component we have selected 
could vanish as the afhne parameter approached its past limit without all components 
vanishing. However, physical considerations show this to be unlikely. Suppose, for 
example. that the matter can be represented as a perfect fluid. with matter tensor 
[HE, p. 701 

To, = (p L P) K, v,, -~'~ p&l, . 
Thus 

T,,bKaK” = (p -- p)( V,,IY~)~ 

which can vanish s -+ a if 

case I : p -* 0 and p --, 0 (thus 7,,, --, 0). 

case2: p+ -p, with p H 0, p H 0. 

case 3: ( VJP) 4 0, 

(or both 2 and 3). Case 2 cannot occur if we impose the strong and weak energy 
condition on the space-time. As for case 3, pick a point b on y(s) with V,,K” -#. 0. 
Then the frequency shift which a photon traveling along y(s) undergoes is given by 
v41 

b'h ,, l’,.K” - --; __~ 
11.. .~,K” 

where the frequency is measured by observers moving with the fluid. Thus if V’,.K’ + 0 
as s + a a photon would suffer an infinite blue shift as it moved from a to b: a space- 
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time which allowed this type of behavior would be unstable, because a photon from 
a would arrive at b with infinite energy. {See Ellis and King [25, p. 1541 for a detailed 
discussion of this type of instability.) Note that in asymptotically deterministic space- 
times, the limit 

lim inf TabKaKb (7.1) s-a 

is not required to exist; it is merely required that (7.1) be greater than zero. 
However, it is possible to have TabKaKb + 0 as s --f a while (7.1) equals zero, for 

it is conceivable that TabKaKb could “fluctuate” as s -+ a, with TabKaKb = 0 at an 
infinite number of points if a = - co. Even if this occurred, we would still expect 
that the matter tensor would be at least stochastic along at least one generator y(s) 
of H+(S) unless T,bKaKb approaches zero in some average sense as s --f a; for example, 
if y(s) intersected a proton every so often, then the matter tensor would be past 
stochastic along y(s). Note that were y(s) past complete, it would be possible to have 

lim Ci”=l I ‘i - ‘i~i = 0 
N-00 1 s1 - sN+l / 

so that the nonzero regions are of zero measure in the entire history of y(s), and still 
have the matter tensor past stochastic along y(s). 

In summary, then, it seems very reasonable to assume that a space-time in which 
the Cauchy horizon is due to causality violation is asymptotically deterministic, 
or at least it has a generator of H(S) along which the matter tensor is past (future) 
stochastic as the generator of H+(S) (H-(S)) approaches its past (future) affine para- 
meter limit. With this assumption, we can eliminate the causality condition from 
Penrose’s theorem and the Hawking-Penrose theorem. 

THEOREM 8. (Generalized Penrose’s Theorem). Space-time (M, g) cannot be 
null geodesically complete if 

(1) R,,KaKb > 0 for all null vectors Ka; 

(2) there is a closed trapped surface in M; 

(3) the space-time is asymptotically deterministic, and the Einstein equations hold; 

(4) the partial Cauchy surface defined by (3) is noncompact. 

Conditions (3) and (4) can be replaced by: There exists a noncompact partial 
Cauchy surface S with the property 

(3’) if H(S) is nonempty, then there is at least one generator y of H+(S) (or 
H-(S)) along which the matter tensor is past (future) stochastic as y approaches its 
past (future) affine parameter limit. Further, the Einstein equations hold. 

Proof. If H(S) is empty, then S is a noncompact Cauchy surface for (M, g); by 
Penrose’s theorem, the space-time is null geodesically incomplete. If H(S) is nonempty, 
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for all partial Cauchy surfaces S, there must exist a partial Cauchy surface S’ and a 
generator y(s) of H--(S) (say) along which 

If y(.r) were future complete, then by the Einstein equations, we have along y(s) 

(7.2) 

where H(s) ~(RahKQKh + 2~~). By Lemma 9, condition (l), and Eq. (2.3). y(s) 
must have an infinite number of conjugate points, since zeros of (2.3) correspond to 
conjugate points of y. But this is impossible because of Lemma 11 and the achonality 
of H-(S-j. Thus y(s) must be future incomplete. (Were y(s) in H+(S) rather than in 
H-(S) we could proceed in the same way to deduce the past incompleteness of y.) 

If condition (3’) rather than (3) holds, then Eq. (7.2) still holds, and the argument 
proceeds as before. In all cases, the space-time is null incomplete, since y(s) is a portion 
of a null geodesic. 1 

THEOREM 9 (Generalized Hawking-Penrose Theorem). Space-time (M. g) is 
not timelike and null geodesically complete [f 

( 1) R,,JPKb 13 0,for every non-spacelike vector K”; 

(2) the generic condition is satisjed; 

(3) there exists at least ohe of the,foIlowing: 

(i) a compact achronal set without edge. 

(ii) a closed trapped surface, 

(iii) a point p such that on every past (or every future) null geodesic,from 
p the dil’ergence 6 ?f the null geodesics,from p becomes negative, 

(4) the space-time is asymptotically deterministic, and the Einstein equations hold. 

Condition (4) can be replaced by condition (3’) of Theorem 8. The proof of 
Theorem 9 is similar to the proof of Theorem 8, and so will be omitted. m 

There is additional evidence that H(S) which arises from causality violation can be 
nonsingular only if it begins in empty space. 

DEFINITION. The matter tensor will be said to be future vanishing along a future 
complete causal geodesic segment y(s) if there are no numbers sI , s2 (s? ID s,) in any 
affine parameter interval of the form [sO , + co) such that s, :- s,, and 

(7.3) 

where K” is the tangent to y(s). Past vanishing matter tensors are defined analogously. 
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PROPOSITION 4. Let S be a partial Cauchy surface. Then the matter tensor must 
be future vanishing along every future complete generator of H-(S), provided the weak 
energy condition and the Einstein equations hold. 

Proof. Suppose that y(s) is a future complete generator of H-(S) along which 
Tab is not future vanishing. Then there are affine parameter values s, < s1 < sZ 
such that (7.3) holds. By the Einstein equations, the weak energy condition, Eq. (2.3) 
and Proposition 1, y(s) must have a pair of conjugate points, since zeros of (2.3) 
correspond to conjugate points of y(s). But this is impossible because of Lemma 11 
and the achronality of H-(S). Thus Tab must be future vanishing along y(s). (If 
“future” is replaced by “past” and “H-(S)” is replaced by “H+(S)” in Proposition 4, 
the resulting statement is also true.) 1 

Thus there can be no “patches” of matter near the upper bound of the affine para- 
meter of a future complete generator y(s) of H-(S), for (7.3) would be expected to 
hold in this case. Note that requiring the matter tensor to be not future vanishing along 
a future complete null geodesic segment y(s) is a much weaker restriction on the tensor 
than requiring it to be future stochastic along the segment; if we have T,,,KaKb 3 a 
on one affine parameter interval ( 5% - s1 [ > b, the matter tensor will not be future 
vanishing, provided the interval is sufficiently near s = + co. If y(s) intersects one 
proton near infinity, Tab will not be future vanishing. However, either requirement 
imposed on y(s) would make it impossible for y(s) to be a generator on H-(S), since 

in either case y(s) would have a pair of conjugate points. 
Not only must the matter vanish as s --j + co along a future complete generator 

of H-(S); we can also show that the tidal force components of the Weyl tensor cannot 
approach a nonzero limit as s -+ + co. 

PROPOSITION 5. Let y be a future complete null geodesic segment with tangent 
vector Ka and a$ine parameter s. Suppose that there exists a parallel propagated 
pseudo-orthonormal frame with E, = K in which some components of the tensor 
KcKd&Cblcdre& satisfy 

lim inf [ KcKdK&b~ed[rK~~ j # 0. (7.4) 3++m 

Then if the weak energy condition and the Einstein equations, y(s) cannot be a 
generator of H-(S), where S is a partial Cauchy surface. (There is a similar proposition 
for H+(S).) 

Proof. Suppose on the contrary that y(s) is a generator of H-(S). If the limit (7.4) 
is to be nonzero, then there must be a value s,, of the affine parameter for which some 
component of the tensor KcKaK&bjcd[eKfl is nonzero for all s E (so, + co). Now in 
a pseudo-orthonormal frame, this implies that some component of CmcdnKCKd 
is nonzero in the same interval [HE, p. 1011. 

Let h,, be the component of Cmdhn which is nonzero along y(s) (and satisfies 
lim inf,,,, [ h,, ( + 0; that is, 1 h,, [ > c > 0 for all s E (so, +co)). Now Eq. (2.2) 

(dlds) o,,, = --Cmdna - k,,, = h,, - eo,, (2.2) 
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tells us h,, gives rise to a shear unln of a geodesic congruence about y(s). This equation 
is a linear, first-order ordinary differential equation which is easily integrated, giving 

where A,,L, is a constant (the solution can be found in any elementary book on ordinary 
differential equations; for example, Hildebrand [26, p. 71). 

We want to prove that under the above assumptions y(s) has a pair of conjugate 
points between s0 and s = + co; we will assume that there are no conjugate points 
in (s,, , + co) and derive a contradiction. If there are no conjugate points in (s(, , t- x ). 
then 0 > 0 in some interval (sl , $ co), s1 3 s,, , by the weak energy condition the 
Einstein equations, and Eq. (2.1). Thus the function 

is monotone increasing. Furthermore, f(s) must diverge as s ---+ I- w. since if it 
converged (a monotone function must either diverge or converge: it cannot merely 
not have a limit). we would have 

(7.5) 

But 

which implies that there exists an affine parameter se > s1 for which / (T,, / .A 0 
for all s E (sZ , T cc) and further lim,s,+, inf / omn i > 0 (in fact, lim,,,, inf 1 u’nrn ’ 
+ co). Using this together with the weak energy condition, we find that lim,+,,, .I 
inf H(S) > 0, where H(s) = i(RabKaKb + 20~) = fr(RahKaKb -C omnumn). Thus 
lim s-> i-u s2H(s) = + co, which by Lemma 8 implies that all solutions to (2.3) have 
an infinite number of zeros, hence conjugate points, in (s, . i- co), contrary to 
assumntion. 
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Therefore, we must have lims++mf(.s) = + 03. Write 

From Eq. (7.5) we can obtain 

= c 1 K / - ) A;‘, 1 cffs). 

Using 1’Hopital’s rule, we get 

hi K = lim 
.fzlf(s’) ds’ _ lim (d/ds) sIl efcs’) ds 

s-m ef’s’ - ,$-cc (d/ds) ef(@ 

= lim 
ef’s’ 

s-m efts’f’(s) 

By assumption B > 0. By Eq. (2.1), and the weak energy condition, 8 is monotone 
decreasing {i.e., dO/ds < 0). Thus lim,,, I/@ must either exist or diverge to + co. 
Therefore, 

lim 1 umlz s+a 1 2 c hi K - / AL, / li+z e-f(s) 

since f(s) diverges, the second term vanishes. The first term is bounded below by some 
positive number since 0 < co. Hence limsem / a,, 1 > 0, and this implies 
J” H(s) ds > J” oz ds = + co. By Lemma 9 and Eq. (2.3), this means an infinite 
number of conjugate points in (sO + co)- Thus whether or not f(s) diverges, y(s) 
must have an infinite number of conjugate points; this contradicts the assumption 
that it has no conjugate points. Thus there must be a pair of conjugate points on y(s), 
which would be impossible if y(s) were a generator of H-(S), by Lemma 11, and the 
achronality of H-(s). We conclude (finally!) that the y(s) cannot be a generator of 
=w I 

Proposition 5 does not claim that the entire Weyl tensor must vanish as s + + co; 
first of all, it refers only to the tidal force components, and second, it does not eliminate 
the possibility that CnaJn4 could fluctuate about zero, Cman4 could be alternately 
positive and negative as s -j + co; for there is no Weyl tensor analog of the weak 
energy condition to prevent this behavior. However, if Weyl tensor did fluctuate in 
this manner, we would expect to see some matter present, because a varying gravi- 
tational field should give rise to particle creation, not much, to be sure, but by Propo- 
sition 4, we do not need much to prevent a nonsingular I?(S). Furthermore, it seems 
unlikely that the tidal force components of the Weyl tensor would vanish in all 
pseudo-orthonormal frames with E, = K without the entire tensor vanishing also. 
Since the curvature tensor is determined by the Ricci tensor (or matter tensor) and 
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the Weyl tensor, the theorems and propositions proved in this section collectively 
strongly suggest that H(S) can be generated by portions of complete geodesics only 
if the curvature vanishes in the region where H(S) begins. As argued earlier, this 
seems very unlikely if H(S) arises from a violation of the causality condition, since 
in general CTL would occur only if curvature were present to “tip over the light 
cones.” 

However, violation of the causality condition is not the only pathology which 
could give rise to a Cauchy horizon; for example, H(s) could be due to singularities 
which arise at “infinity,” as in the Reissner-Nordstrom solution (Fig. 8) and the 

I \r=O singularity 

FIG. 8. The Reissner-Nordstriim solution, a space-time in which H(S) begins at intiity 

Kerr solution. But the Cauchy horizon in the Reissner-Nordstrom solution is thought 
to be unstable [HE, p. 161; Simpson and Penrose [27]). In fact, the generic condition 
is not satisfied on any null geodesic y(s) such that a segment of y(s) is a generator of 
H(S). Thus what the theorems and propositions of this section probably show is 
that H(S) is generated at least in part by incomplete null geodesics, whether or not 
causality violation occurs. (Unless S is a “bad” partial Cauchy surface in empty space. 
as discussed in Ref. [lo].) 

There is another singularity theorem, due to Hawking. which does not need a 
causality assumption. 

HAWKING’S THEOREM [HE, p. 2721. Sparetime is nor finrefike geodesica& rom- 
plete (f 

(1) RabKaKb > 0,for every non-spacelike vector K”; 

(2,) there exists a compact spacelike three-surface S (without edge); 

(3) the unit normals to S are everywhere converging (‘or everywhere diverging) 
Oil s. 

j9j/IO8/1-3 
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The problem with this theorem is that condition (3) is much too strong; the space- 
time must be contracting (or expanding) everywhere. It is possible to generalize this 
theorem to arbitrary initial data in a closed universe in the following sense. Suppose 
a closed universe contracts (not necessarily everywhere), causality violation occurs 
in the regions of high density, and then the universe reexpands. We can show that, 
provided the causality violation begins in a finite region, the “bounce” must be 
accompanied by singularities. 

THEOREM 10. Let B be a four-dimensional region of a space-time such that the 
boundary of B is the disjoint union of two compact partial Cat&y surfaces, S and S’. 
Suppose that 

(1) R,JPKb b 0 for every null vector Ka; 

(2) the generic condition holds; 

(3) d(S, [int D+(S)] n B) isJinite; 

(4) the causality condition is violated in B. 

Then the space-time is timelike geodesically incomplete. 

(The proof is similar to that of Theorem 5, and so will be omitted.) 1 

It was tacitly assumed above that if causality violation arises from regular initial 
data, then it is possible to find a partial Cauchy surface S whose Cauchy horizon lies 
on the boundary of a chronology-violating set V, at least in the region where the 
causality violation begins. That is, it was assumed that l+(V) n H+(S) was not empty 
and contained a geodesic segment of nonzero affine parameter length. However, 
finding such a partial Cauchy surface might be difficult. Therefore, I shall restate 
here some of the theorems, propositions, and definitions given above in a form which 
does not depend on the existence of H(S), but only on the structure of l+(V). The 
physical justifications for the theorems propositions, etc., are the same as those 
for their analogs given above. For example, we would expect matter to be present in 
the region where causality violation begins. This suggests the following analog to 
“asymptotically deterministic” 

DEFINITION. A space-time (M, g) is said to be asymptotically causal if there is no 
point p for which I+(p) = M and each point q such that I+(q) n I-(q) f IZI , we have 

1~2 [inf T,,K”K”] > 0 (7.6) 

on at least one of the null geodesic generators y(s) of f+(q), where a is the past limit 
of the afhne parameter along y. We then have 

THEOREM 11. Suppose that a space-time (M, g) has a point q such that I+(q) n 
I-(q) # o, but I+(q) # M. Then (M, g) is not null geodesically complete, provided 
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(1) the Einstein equations hold; 

(2) the weak energy condition holds; 

(3) at least one of the following holds: 

(a) (M, g) is asymptotically causal, 

(b) the mutter tensor is past stochastic along at least one of the generators 
of 1 k(q). 

Proof. Since Z!-(q) + M, i+(q) is nonempty. Further, f+(q) is achronal and is 
generated by null geodesic segments which have no past endpoints since q E Z+(q) n 
Z-(q) = int[Z+(q) n Z-(q)]. If condition (3a) holds, then along at least one of these 
segments, y(s). the matter tensor must satisfy (7.6). If y(s) were past complete, then by 
(1) and (2) we would have along y(s) 

(7.7) 

where H(s) = $(R,,KUKb + 20~). By Lemma 9, conditions (l), (2), and Eq. (2.3), 
y(s) must have an infinite number of conjugate points since zeros of (2.3) correspond 
to conjugate points of y(s). But this is impossible because of Lemma 11 and the 
achronality of f+(q). Thus y(s) must be past incomplete. 

If condition (3b) holds, then Eq. (7.7) still holds, and the argument proceeds as 
before. 1 

Theorem 9, the Generalized Hawking-Penrose Theorem, has an obvious analog. 
Conditions (4) and (4’) of this theorem are respectively replaced by conditions (5) 
and (5’). 

(5) If (M, g) does not satisfy the chronology condition, then (M, g) is asymp- 
totically causal and the Einstein equations hold. 

(5’) If (M, g) has a point y for which Z+(q) n Z-(q) is nonempty, then Z-(q) .c- M, 
and there is at least one generator y of Z+(q) along which the matter tensor is past 
stochastic as y approaches its past affine parameter limit. Further, the Einstein 
equations hold. 

The proof of this analog to Theorem 9 is omitted since it is essentially the same 
as the proof of Theorem 9. m 

PROPOSITION 6. (analogous to Proposition 4). Suppose there is a q E M such 
that Z+(q) n Z-(q) is nonempty and Z-(q) # M. Then the matter tensor must be ,fiture 
vanishing along every jurture complete generator of Z-(q), provided the weak energjs 
condition and the Einstein equations hold. (Note that no generator of f-~(q) has a ,future 
endpoint.) 1 

The analog to Proposition 5 is obtained by replacing “a partial Cauchy surface S” 
with “a point 4 E M such that Z+(q) n I-(r/) # 3 and Z-(q) # M,” and L‘H-(.~)” 
with “Z-(q).” 



34 FRANK J. TIPLER 

8. CONCLUSION 

The main purpose of this paper is to answer the question: “Is it possible to construct 
a time machine?” If by this we mean: “Is it possible to evolve CTL from regular 
initial data everywhere using known materials?,” then the answer is almost certainly 

No! 

The import of the singularity theorems proved herein is this: CTL cannot in general 
arise in finite regions from regular initial data without some matter first passing 
through such extreme conditions that we cannot trust our knowledge of material 
behavior. The singularity theorems can be believed unless the weak energy condition 
is violated or the manifold picture of space-time breaks down. Most proposals [28] 
for the former would first require the matter to reach a density of 1O54 g/cm3, and the 
latter is not expected to occur until the matter density becomes log4 g/cm3. These 
numbers are respectively 40 and 80 orders of magnitude above the most extreme 
matter densities with which we are familiar (nuclear densities, and it’s debatable how 
familiar we are with nuclear matter). Clearly, matter at these densities must be 
considered “unknown material.” 

Nevertheless, this result does not preclude the existence of CTL which arise from 
regular initial data; it is quite possible that the singularity on H+(S) is restricted to a 
very small region of space-time, with most of the matter forming the time machine 
avoiding the singularity. Indeed, a singularity is the future end of the event horizon 
when a black hole evaporates [5,29], and most of the matter in the universe avoids 
this singularity. 

Furthermore, Hawking has argued [29] that what comes out of the singularity is 
completely random; he contends that, assuming global causality, the singularity emits 
with equal probability every configuration of particles compatible with such external 
constrants as energy and angular momentum conservation. However, it seems to me 
that if what comes out of a singularity is to be truly completely random, we should 
allow for the possibility that CTL could “come out of” a singularity. That is, we 
should extend Hawking’s “Randomicity Principle” beyond the limited domain of 
particle emission and say that vitually any metric compatible with various external 
constraints such as those listed above could arise from a singularity. Among these 
metrics will be metrics containing CTL. Thus it is possible that CTL occur in the 
regions of space-time containing black hole explosions. But conversely, CTL, if they 
do occur, almost certainly must be associated with singularities, those “points” at 
which our knowledge of physics breaks down. 

“The demonstration that no possible combination of known substances, known 
forms of machinery, and known forms of force can be united in a practicable machine 
by which men shall [travel back in time], seems to the writer as complete as it is 
possible for the demonstration of any physical fact to be.“’ 

1 The sentence in quotes is a slight modification of the conclusion of Newcomb’s classic paper 
[30] proving the impossibility of heavier-than-air flying machines. 
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