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Abstract

As the number of solutions to the Einstein equations with realistic matter sources
that admit closed time-like curves (CTC’s) has grown drastically, it has provoked
some authors [10] to call for a physical interpretation of these seemingly exotic curves
that could possibly allow for causality violations. A first step in drafting a physical
interpretation would be to understand how CTC’s are created because the recent
work of [16] has suggested that, to follow a CTC, observers must counter-rotate with
the rotating matter, contrary to the currently accepted explanation that it is due
to inertial frame dragging that CTC’s are created. The exact link between inertial
frame dragging and CTC’s is investigated by simulating particle geodesics and the
precession of gyroscopes along CTC’s and backward in time oriented circular orbits
in the van Stockum metric, known to have CTC’s that could be traversal, so the van
Stockum cylinder could be exploited as a time machine. This study of gyroscope
precession, in the van Stockum metric, supports the theory that CTC’s are produced
by inertial frame dragging due to rotating spacetime metrics.
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Chapter 1

Introduction

The possibility of traveling back in time has always captured the imagination and
is a common plot device in science fiction. While such possibilities appear fanciful,
Einstein’s equations and the mathematics of general relativity do allow warping of
spacetime that result in paths that a timelike observer (an observer that has mass
and never locally exceeds the speed of light) could follow and visit certain events in
the past.

1.1 Motivation in Brief

There are now a number of solutions to the Einstein equations with realistic matter
sources that exhibit this possibly causality violating behavior [10] via the creation of
what are called closed timelike curves (CTC’s). The question becomes are CTC’s just
pathological mathematics or are they real physical phenomenon and therefore require
the development of a physical interpretation as to their implications? Several authors,
in particular [10] and [15], have taken this latter position and have argued that a more
satisfying physical interpretation is needed. Aside from their properties, a current
unsettled question is what is it that creates CTC’s in the first place. The status quo
is that inertial frame dragging, a phenomenon caused by rotating spacetimes, is what
creates CTC’s [16] [4]. However, the recent work of [16] has challenged this established
view. As inertial frame dragging is a source of gyroscope precession, its relationship
with the generation of CTC’s could, conceivably, be quantified by simulating how
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spin orientations precess along CTC’s or in regions of backward time travel.

1.2 The Story of Closed Time-like Curves

Curious temporal behavior associated with CTC’s has been objected to on the grounds
that such behavior is due to periodicity imposed in particular coordinates [8] [4], or
due to exotic or simply injudicious choices of topology [2] [4] (wormhole geometries
would fall into this category). In short, causality violating behavior is discounted
on the belief that it is due to pathological mathematics and unphysical geometries
(geometries that no realistic matter sources could create) rather than any real physics
of general relativity, as mentioned in Sec 1.1.

Despite these objections, there is a growing number of solutions to the Einstein
equations with realistic matter sources that create regions in spacetime that allow for
the possibility of causality violations, for example, a particle being able to meet itself
at the same spatial coordinates with no coordinate time having elapsed, or being able
to visit any point in its past (more discussion on the interpretation of CTC’s will be
presented in Chap 2.7). The Kerr solution for a rotating, spherically symmetric mass
(a rotating black hole or star) was found to exhibit CTC’s by Carter in [9]. However,
the ability for terrestrial observers to ever witness such exotic behavior is objected
because the CTC’s loop through the interior and so the actual body, say the star,
is expected to block observers from accessing them [9], and furthermore, this region
is inside an event horizon and so observers outside the horizon would never be able
to observe them [2]. The Kerr solution is expected to be the unique final state of
gravitational collapse [2], and so the metric is entirely physical. The fact that CTC’s
exist in the solution makes it plausible that realistic matter sources could generate
traversible CTC’s, but, for the reasons just listed, it is unlikely that a Kerr black hole
can be exploited and used as a time machine.

Another physical metric that exhibits CTC’s is the van Stockum metric which is
the solution of an infinitely long rotating cylinder of dust [3]. What makes the van
Stockum solution important in the study of CTC’s is that it is a physical solution,
having non-exotic matter and topology. In this metric, CTC’s emerge in the exterior
vacuum region (discovered by Tipler in [2], incredibly many years after van Stockum’s
original discovery) not hidden behind horizons, implying that an observer could use
it as a time machine if they were the correct distance away, in a causality violating
region. The van Stockum metric is not without objection, namely that the geometry
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is not asymptotically Minkowskian, as will be further discussed in Chap 4.2, and
that it is of infinite mass. However, Tipler, in [2], argues that the infinite cylinder in
Newtonian gravitation also does not vanish at infinity and, yet, it is a perfectly fine
approximation for near a long finite cylinder.

More recently, Bonnor has observed how the library of solutions with CTC’s and
realistic “mundane” matter sources has been steadily growing, himself showing that
the geometry of a mass-less rotating rod exhibits CTC’s and arguing that the addition
of mass would not eliminate them. It is Bonnor, in particular, who has called for a
realistic physical interpretation of CTC’s [10]. See [10] also for a collection of the
literature for solutions with CTC’s.

1.3 Overview

Bonnor’s appeal for a physical interpretation is, in part, what motivates this numerical
study of CTC’s, although we do not attempt to provide an overarching physical
interpretation for CTC’s. What this paper is motivated by is the claim of Slobodov
and others that “CTC’s are produced by the frame dragging effect of the rotating
matter” [4], while Andréka et. al., in [16], have claimed this is not the entire story. So
what is needed is the development of methods to better understand this link between
inertial frame dragging and the more exotic behavior of CTC’s, and what role frame
dragging actually plays in their creation. As Carter comments [9], the acceptability
of Einstein’s theory hinges on its predictions and so exploring the physical nature of
CTC’s could potentially point to needed revisions or inconsistencies in the theory.

Chap 2 is a basic introduction to the theory of relativity that, broadly, includes
discussion of the needed notation, conventions and geometric ideas. In addition,
the idea of causality is discussed, the basic equations of motion are introduced and
the phenomenon of inertial frame dragging, CTC’s and their hypothesized link is
discussed. Chap 3 considers the precession of gyroscopes in more depth, specifically
for the Schwarzschild geometry. The spacetime geometries specific to this paper are
presented in Chap 4 and the numerical methods are discussed in Chap 5. Finally,
results are presented in Chap 6.
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Chapter 2

Overview of the Theory of General
Relativity

In short, Einstein’s theory of general relativity is a geometrical theory that describes
gravity as the result of curvature in four dimensional spacetime. This curvature
is mathematically described by the metric tensor which is directly related, via the
Einstein equations, to the stress-energy (mass, momentum density, pressures and
shears) of a source.

Flat space is a solution to the Einstein equations when there are no matter sources,
but the addition of matter gives more nontrivial geometries which create relative
accelerations between geodesics which is said to be the result of gravity. So, matter
is what curves spacetime: it is what endows spacetime with geometry that deviates
from flat space, hence curving it. Just as the geometry of an apple constrains how
ants can move about on its surface, the local geometry, flat or curved, of spacetime
and the mathematics of differential geometry constrain the way in which particles
and observers can move [12]. The most important type of motion (because of its
simplicity) is geodesic motion: motion where the observer is freely falling, under the
influence of no forces, so the instructions for particle motion are entirely due to the
curvature of spacetime. Therefore, calculating geodesics is a primary technique to
explore the behavior of a particular geometry.

In this chapter, I introduce the necessary mathematics of tensors needed to un-
derstand spacetime geometry. For more full discussion see [1], [11], [12].
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2.1 Coordinates, Vectors, Conventions and Nota-

tion

In a particular coordinate system, any point in space can be located by a set of
numbers, each called a coordinate. For example, in Cartesian coordinates, in four
dimensional spacetime, any point can be specified by the coordinates t, x, y, z. A
common and powerful notation to write this in is:

xµ =











t
x
y
z











, (2.1)

where µ ∈ {0, 1, 2, 3}, so Eq 2.1 is a convenient way to write x0 = t, x1 = x, x2 = y
and x3 = z. The four vector x 1 has components xµ, and so is called a contravariant
vector because the µ is in the upper position. There is no difference between con-
travariant vectors and the vectors encountered in normal introductory physics, but
the notation will prove both convenient and powerful.

Given a coordinate system, such as Eq 2.1, a vector can be written in terms of a
coordinate basis where the coordinate basis vectors are:

eµ =
∂

∂xµ
= ∂µ, (2.2)

or the directional derivative along the particular coordinate basis component. For
example, e0 = (1, 0, 0, 0), and so on. It should be noted that here µ does not denote
a µ’th component, but the µ’th basis vector.

An important convention in general relativity is the Einstein summation conven-
tion in which repeated upper and lower indices are summed over the range of the
indices:

xµxµ = x0x0 + x1x1 + x2x2 + x3x3. (2.3)

Following this convention, the four vector x can be conveniently written in terms of
its coordinate basis as

x = xµeµ. (2.4)

1boldface will always denote four vectors and the usual spatial vectors will be denoted ~x
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2.2 The Metric Tensor and Spacetime Geometry

The metric tensor is a mathematical object that describes the curvature of a space-
time. Intuitively, it extends the idea of distance in 3 dimensional Euclidean geometry
to abstract multi-dimensional space, and generalizes many familiar ideas.

2.2.1 The metric tensor and covariant tensors

The metric is a second rank, having 42 = 16 components, symmetric tensor, an
object that preserves the linear relations between two vectors in any basis. It can be
represented as a 4×4 matrix. The metric summarizes the geometry and curvature of
spacetime and is represented as gµν where the two indices range from 0 to 3, unless
otherwise specified.

xµ is called a covariant vector (the index is in the co or low position) and is related
to its corresponding contravariant form via the metric, as

xµ = gµνx
ν , (2.5)

where the summation convention is implied. This is also called lowering an index,
raising an index follows a similar construction. Note here the metric is written in its
covariant form. The contravariant and covariant forms of the metric are related as

gµαg
αν = gνµ = δνµ, (2.6)

following the raising and lowering index rules, where δ is the Kronecker delta, and so
the two forms are inverses.

With the metric g, the dot product between the two four vectors v and w is

v · w = gµνv
µwν, (2.7)

and the angle θ between them is defined as

cos θ =
vaw

a

|vbvb|1/2|wcwc|1/2
. (2.8)
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2.2.2 The geometry of flat space

The metric tensor summarizes all the information about the curvature of a space, as
can be seen in flat space. The line element of a space describes the geometry of that
space: it specifies how distance is measured. In 3-dimensional Euclidean space, the
line element is just the Pythagorean theorem

ds2 = dx2 + dy2 + dz2. (2.9)

However, when the dimension of time is added, becoming 4 dimensional Minkowski
spacetime, the line element takes the form

ds2 = −dt2 + dx2 + dy2 + dz2, (2.10)

where Eq 2.10 has been written in geometrized units in which the speed of light c is
set equal to unity. Throughout this paper,unless otherwise stated, units are chosen
such that the speed of light c and the gravitational constant G are both set equal to
unity. The general form for a line element takes the form

ds2 = gµνdx
µdxν , (2.11)

where the Einstein summation convention is assumed and gµν is the metric tensor.
The components of the metric tensor for Eq 2.10 is, therefore,

gµν = ηµν =











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











. (2.12)

where η is adopted to specifically refer to flat space. The metric tensor is connected to
geometry because it is obtained directly from the line element, as shown. To further
motivate this geometric interpretation, if the three dimensional identity matrix is
used in Eq 2.11, then the Pythagorean theorem is recovered.

Coordinate and orthonormal basis

From the definition of the coordinate basis vectors in Eq 2.2 we can write the in-
finitesimal displacement vector in a coordinate basis as,

ds = dxµeµ (2.13)
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which implies
ds2 = ds · ds = eµ · eνdxµdxν , (2.14)

and, from comparison with Eq 2.11, conclude that [14]

eµ · eν = gµν (2.15)

which, therefore, is true for a coordinate basis. The definition of an orthonormal basis
eµ̂ is

eµ̂ · eν̂ = ηµ̂ν̂ . (2.16)

However, the two bases are similar when their components are written explicitly. The
coordinate components of the coordinate basis are, as mentioned before,

(eµ)
ν = δνµ, (2.17)

and the orthonormal components of the orthonormal basis are

(eµ̂)
ν̂ = δν̂µ̂. (2.18)

The bases can be “mixed” to calculate, for example, the orthonormal components of
the coordinate basis[1]

(eµ)
ν̂ (2.19)

and so on.

What is important about an orthonormal basis and the other mixed bases is that
they allow for a way to perform calculations with respect to a local inertial frame
(the choice of which basis is guided by convenience) which corresponds to the actual
physical quantity that would be measured by a local observer. An explicit use of this
is in Sec. 2.5 to reveal a rather bizarre phenomenon associated with the geometries
of rotating bodies.

2.2.3 Light cones: the notion of causality

As Minkowski geometry is pseudo-Euclidean, straight (in the Euclidean sense) lines
can be drawn to represent distances (although the magnitudes are not represented
by the length of the lines because the geometry is not Euclidean) and so Eq 2.10 can
be written as displacements in Cartesian coordinates:

(∆s)2 = −(∆t)2 + (∆x)2 + (∆y)2 + (∆z)2. (2.20)
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Time is a fundamentally different kind of coordinate than space, represented by the
negative on the g00 component of the metric tensor. It is important to differentiate
between timelike types of distances (squared lengths that are negative) and spacelike
types of distances (squared lengths that are positive). An inspection of Eq 2.20
suggests the distinctions can be written as three cases[1]:

Spacelike separated (∆s)2 > 0.

Null separated (∆s)2 = 0.

Timelike separated (∆s)2 < 0.

The null separated distances are the lines that light rays travel along. Starting at
an event P and drawing all outgoing null rays and all incoming possible light rays,
forms a cone in Cartesian coordinates, as shown in Fig 2.1. These light cones are
what determine our notion of causality: causal events must be timelike separated and
for an event to cause another, say P causes A, then A must be in the future light
cone of P . However, as mentioned, spacetime can be curved in such a way that a
particle could travel into its past, and yet have its four velocity remain timelike, always
pointing in the direction of the forward lightcone which would satisfy the conditions
of the discussion in this section. This is where violations of causality could become
a problem and where CTC’s complicate our notion of causality. More discussion of
CTC’s and light cones is in Sec 2.7.

2.3 Equations of Motion in Curved Spacetime

In order to plot both particle trajectories and calculate the orientations of gyroscopes
in curved spacetime, we will need the basic equations of motion for timelike freely-
falling particles. The importance of the freely falling condition is that the equations
are then entirely dependent on the metric tensor and the geometry of spacetime,
taking their simplest form.
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t

x

y

uµ

A

B

C

P

Figure 2.1: Light cone in flat space drawn at event P . A lies within the the forward light
cone of P and so (∆sPA)2 < 0 and P can be a cause of event A. Likewise,
(∆sPC)2 < 0 and C lies in the past of P and so can be a cause of P . (∆sPB)2 >
0 and so P and B are spacelike separated. The orderings of spacelike separated
events can be changed by a Lorentz transformation, or moving to a different
frame. In the frame of the figure, P comes before B, but in a different frame
B could very well come before P . This does not violate causality because
if they are spacelike separated they cannot be causal. There is no Lorentz
transformation that reverses the ordering of C, P and A. This appeals to our
notion of causality: if an event causes another, it should be true in all frames.

2.3.1 The geodesic equation

One of the most effective general ways to probe the behavior of an abstract spacetime
is to study the motion of test particles, particles that have such small mass that they
do not perceptibly affect the spacetime curvature around them with their own mass.
We now consider the equation of motion for such a particle. All timelike particles
have their own internal ‘clock’ and proper time. An infinitesimal duration of proper
time, dτ , is defined as

−dτ 2 = ds2 = gµνdx
µdxν . (2.21)

This definition is motivated by the distinction between spatial and temporal compo-
nents: if the right hand side of Eq 2.21 is negative then the squared distance ds2 is
negative and, to avoid any discussion of complex numbers, negative squared distances
are called timelike and are parametrized by τ instead. Proper time is an invariant
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because it is related to ds2 which is independent of coordinate systems. Therefore, it
is a suitable parameter to parametrize a timelike path in spacetime as any observer
can read a particle’s own “watch”. A particle’s 4-velocity can now be defined as

uµ =
dxµ

dτ
, (2.22)

or the tangent to the world line, xµ(τ), parametrized by proper time τ .

The Lagrangian generalized to curved spacetime is written [11]

L = gµν ẋ
µẋν , (2.23)

where a dot represents a derivative with respect to an arbitrary parameter and for
clarity it is assumed we are always talking about timelike world lines and so, unless
otherwise stated, a dot is a derivative with respect to proper time, τ . The geodesic
equation, the equation of motion we seek, is derived from this “Lagrangian” and the
techniques of Lagrangian mechanics. Recalling the Euler-Lagrange equations

d

dτ

(

∂L
∂ẋµ

)

− ∂L
∂xµ

= 0, (2.24)

we insert Eq 2.23, which yields the equation of motion, the geodesic equation:

d2xµ

dτ 2
= −Γµαβ

dxα

dτ

dxβ

dτ
, (2.25)

where Γµαβ are called the connection coefficients. They can be expressed as derivatives
of the metric, or

Γαβγ =
1

2
gαδ

(

∂gδβ
∂xγ

+
∂gδγ
∂xβ

− ∂gβγ
∂xδ

)

. (2.26)

If all the Γ’s are zero, as they would be in flat space in Cartesian coordinates 2.10,
Eq 2.25 is simply the law of inertia [1], so it is certainly the equation of motion
expected. Eq 2.25 is a system of four coupled second order differential equations that
governs how the coordinate position of a test particle will change with proper time (
xµ(τ)). This geodesic equation can then be used to plot the particle trajectories; it
is this equation that will be integrated to plot numerical simulations of test particle
trajectories.

Dividing through by proper time in Eq 2.21, shows that, for timelike particles
(particles parametrized by proper time), the four velocities must obey the following
normalization:

u · u = gµνu
µuν = −1. (2.27)
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This also justifies the definition of the Lagrangian Eq 2.23 because it is a constant
term related to the positions, from the metric, and the squares of velocities which is
loosely analogous to potential and kinetic energies. However, for light rays proper
time does not advance (dτ = 0) and so light rays (null lines) are parametrized by an
affine parameter λ such that the similar equation

u · u = gµν
dxµ

dλ

dxν

dλ
= 0, (2.28)

is true. Null lines are not calculated in this paper, but it is essential to see that,
although parametrized and normalized differently, null lines follow Eq 2.25 and so
they too are deflected by spacetime curvature. Therefore, light cones, which form
the causal structure of a spacetime, can be distorted by non-flat geometries. It is
this distortion, in particular ways, which can lead to regions of causality violation as
discussed in Chap 2.7.

2.3.2 The Gyroscope Equation

A goal of this paper is to quantify the inertial frame dragging of a spacetime exhibiting
CTC’s. Inertial frame dragging causes gyroscopes to precess and also makes particles
with initial zero angular momentum acquire some. In order to perform numerical
simulations of the effect of inertial frame dragging, the mathematics governing the
motion of spins in curved spacetime is discussed here.

As the geodesic equation determines the equation of motion for test particles, the
gyroscope equation governs the orientation of spins for test gyros. The spin of a
gyroscope is described by the four vector sα. The spin four vector must be a spatial
vector in the local inertial frame of an observer, meaning sα = (0, ~s), and so s ·u = 0
at all points along a particle’s world line because u is always timelike. Accordingly,
because it is a spatial four vector, the magnitude of the spin,

√
s · s , is a positive

constant, denoted s∗, taken to be 1 in this paper. It is no surprise, as the spin of a
gyroscope must be parallel transported2 along with the four velocity [11], that the
gyroscope equation takes the similar form:

dsα

dτ
+ Γαβγs

βuγ = 0, (2.29)

2In Eq 2.25, the four velocity vectors are said to be parallel transported along the particle’s world
line by the connection coefficients.
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t

x y

sµ(τ )xµ(τ )

uµ(τ )

Figure 2.2: A summary of the coordinates and vectors. uµ is tangent to the world line
parametrized by τ and is plotted in the coordinates xµ. Note that uµ is drawn
perpendicular to sµ to reflect the condition s · u = 0.

where uα(τ) is the timelike four velocity of the gyroscope. This equation can also be
derived, more directly, from the definition of the spin four vector: because s · u = 0,
then

d

dτ
(s · u) = 0, (2.30)

and by using the geodesic equation and working out the necessary derivatives, the
gyroscope equation can be derived. The spin of the gyroscope remains fixed in a local
inertial frame where the metric becomes Eq 2.10, and this can be seen because all the
Γ’s would vanish because all the derivatives are trivial, as flat space has no coordinate
dependence.

The list of four vectors involved has grown, and so a summary of the various
vectors is provided in Fig 2.2, for convenience.

2.4 Geodetic Precession

An explicit example of geodetic precession will be provided in Chap 3.1.2 for the
Schwarzschild geometry, but the idea will be presented here. Geodetic precession is
the precession of a gyroscope that a particle carries with it, as it orbits about a massive
body, with respect to a gyroscope orientated in a locally flat coordinate system of an
instantaneously co-moving observer. From Eq 2.29, the spin of the gyroscope that
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∆φ

t = 0

t = P

t = t∗

sαg (t∗)

sαa (0)

sαg (0)

sαa (t∗)

sαg (P )

sαa (P )

Figure 2.3: Consider a gyroscope, denoted observer g, in orbit about a black hole, in the
Schwarzschild geometry. Another observer, denoted a, remains stationary in a
local inertial frame. At t = 0, the observers have their gyroscopes orientated in
the same radial direction , along a radial line drawn from the singularity in the
equatorial plane. As a does not travel along a geodesic because straight lines
are not geodesics in the Schwarzschild geometry, its spin vector is not Fermi-
Walker transported while observer g’s spin vector is. After observer g returns
in a time of one orbital period (2π/Ω), observer g and a will both measure a
precession angle ∆φ due to this difference in transport. An arbitrary time t∗
is also shown.

the orbiting particle carries with it is Fermi-Walker transported3 while the co-moving
particle’s spin is not. This phenomenon is further described in Fig 2.3.

2.5 Inertial Frame Dragging

General relativity predicts that the inertial frames of special relativity are “dragged”
in the vicinity of a rotating body [1] and this causes an additional precessional effect.
The general stationary axisymmetric metric of a massive body rotating about its axis

3As gyroscopes can define the orthonormal tetrad of basis vectors that a particle carries with it,
the only “rotation” is a result of the variance of the basis as it is transported through curved space.
This is the definition of Fermi-Walker transport.
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of symmetry takes the form [13]:

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ2(dx2)2 + e2µ3(dx3)2, (2.31)

where t and φ are the temporal and azimuthal angle about the axis of symmetry,
respectively; x2 and x3 are the remaining spacial coordinates (they will turn out to
be r and z in the van Stockum rotating cylinder case) and ω, ν, ψ, µ2, and µ3 are
functions of x2 and x3 only (a result of the assumptions of axial symmetry and the
stationary nature).

To demonstrate the dragging of inertial frames we first consider an arbitrary point
in spacetime where a particle has the four velocity

uµ =











ut

utΩ
utv2

utv3











, (2.32)

where u1 = dφ/dτ = utdφ/dt = utΩ from the chain rule with u2 and u3 following
a similar construction with v2 and v3 the spatial velocities. By enforcing time-like
normalization u · u = −1, ut can be found to be

ut =
e−ν√
1 − v2

, (2.33)

where
v2 = e2ψ−2ν(Ω − ω)2 + e2µ2−2ν(v2)

2 + e2µ3−2ν(v3)
2. (2.34)

Now, in order order to find the four velocity components uβ̂ in a local inertial frame
we must find the orthonormal components (eα)

β̂ of the coordinate basis vectors, and
then calculate the orthonormal four velocity components by [1]

uβ̂ = uα(eα)
β̂. (2.35)

To find the needed components of the coordinate basis we begin with the arbitrary
choice eφ = Aeφ̂ and

eφ · eφ = A2eφ̂ · eφ̂ = A2, (2.36)

where the last equality follows from Eq 2.16, and this expression implies A = eψ

which determines the orthonormal components of the φ basis vector. Now assume
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that et = Bet̂ + Ceφ̂, and so the coordinate time basis vector is assumed to be a
linear combination of the orthonormal azimuthal and time basis vectors. Follow the
same process and use the orthogonality of ηµν . From this procedure, the orthonormal
components of the coordinate basis are found to be

(et)
α̂ =











eν

−ωeψ
0
0











, (eφ)
α̂ =











0
eψ

0
0











, (e2)
α̂ =











0
0
eµ2

0











, (e3)
α̂ =











0
0
0
eµ3











. (2.37)

From Eq 2.37 and Eq 2.35,we can calculate the azimuthal component of the particle’s
four velocity in the local inertial frame to be

uφ̂ =
eψ−ν√
1 − v2

(Ω − ω). (2.38)

The other components are straightforward to find, but it is this component that
illustrates the effect of inertial frame dragging. A particle that is at rest in a local
inertial frame, where uφ̂ = u2 = u3 = 0, will acquire a non-zero coordinate angular
velocity Ω, from Eq 2.38, in the same direction of the matter source’s rotation (Ω = ω).
Hence, even though a particle is at rest in a local inertial frame, it acquires an angular
velocity because the inertial frame is dragged by rotation.

This discussion is based on the presentation in [13], but takes a more direct route,

opting to instead find the orthonormal components (eα)
β̂ of the coordinate basis vec-

tors (relatively easy) rather than both the covariant and contravariant coordinate
components of the orthonormal basis vectors (a bit more tedious). For further dis-
cussion and the proof of Eq 2.31, see [13].

Effect on test spins

Now, turning to the effect of this rotation on test spins, why does inertial frame
dragging cause gyroscopes to precess? Explicitly showing the effect of rotation on
test spins analytically, via Eq 2.29, even for a simple rotating metric provides little
illumination of the behavior. In lieu of a derivation of this behavior, I provide an
argument from fluid mechanics to describe the expected behavior and how inertial
frame dragging actually influences spin in Fig 2.4 (this argument is found in [12] and
is attributed to Schiff, and turns out to be accurate for spacetime).
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Figure 2.4: Consider a spinning sphere with angular momentum ~J in a viscous fluid. The
rotation of the sphere creates currents in the fluid and the fluid is “dragged”
by the motion of the sphere. The currents are denoted by curved arrows where
longer arrows are stronger currents. Visualizing the spin vectors as little rods
it can be seen that along the axis of rotation the sµa vector is dragged in
the direction of the rotating body, but the vector in the equatorial plane, sµb ,
rotates opposite the rotating body because the stronger currents are closer to
the rotating body and so the tip is dragged less and the net effect is rotation
in the opposite direction. The dragged spin vectors are denoted by bars.
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2.5.1 Frames of reference

There are actually three frames involved in the discussion of precession: the frame
composed of the orthonormal tetrad carried by an observer with arbitrary acceler-
ation (eα′) which is Fermi-Walker transported, the local coordinate system of the
accelerated observer (eα̂) which is not Fermi-Walker transported and the frame in
which the distant stars are at rest [12]. For discussions unconcerned with rotation in
spacetime, the distinctions can be a little pedantic, but as our discussion will be heav-
ily focused on the precession, orientation of gyroscopes the distinctions are essential
to understand.

There are three conditions that are imposed on the tetrad. The first two are that
they must remain orthonormal and constitute a rest frame for the observer [12]. Both
the tetrad and the local inertial coordinates satisfy these conditions as both eµ′ · eν′
and eµ̂ · eν̂ are equivalent to ηµν (remain orthonormal) and they are both rest frames
(although the local inertial frame is only for a single instant). The third condition
is why the distinction becomes relevant: the orthonormal tetrad that an observer
carries with them is non-rotating, by definition. The very concept of what defines
“nonrotating” is actually not trivial, but can be interpreted in the intuitive sense as
non-rotation of the three spacial vectors (see [12] for more complete description). The
tetrad cannot rotate, but the local inertial frames can (and actually do as described
in Chap 2.5), and it is with respect to these two frames that precession is considered.
Furthermore, consider an observer returning to a particular spacial coordinate (in a
circular orbit for instance), the spin vector of a gyroscope that the observer carried
with them was Fermi-Walker transported along the orbit, but the orientation of a
gyroscope in a local inertial comoving frame was not Fermi-Walker transported, so
when the observer returns there is no reason to expect the two spins to agree (in fact
they, in general, will not which will be demonstrated in 3.1.2). Therefore, we see this
distinction is crucial for interpretations of precession: precession is the discrepancy
measured between the spin vector the gyroscope carries with it and the instantaneous
local inertial comoving frame of another observer “flying overhead” at that instant.
This comoving frame is related by a Lorentz boost to the frame in which distant stars
are at rest which is why it is claimed the gyro will precess with respect to distant
stars [1].
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2.6 The Einstein Field Equations and the Stress-

energy Tensor

The full theory and formalism of stress-energy will not be introduced, but the ne-
cessities needed to understand just what it means for a geometry to solve Einstein’s
equations or if a geometry has physical matter sources will be discussed.

Before introducing the Einstein equations, consider the definition for the covariant
derivative of a vector [1],

∇vβα = ∇αv
β =

∂vβ

∂xα
+ Γβαγv

γ. (2.39)

In brief, this definition is motivated by the fact that a derivative of a vector involves
the difference of vectors at two nearby points, then taking the limit of the separation
to 0. However, the two vectors “live” in different tangent spaces and so they cannot be
directly subtracted in an arbitrarily curved space; they must be transported correctly
from one point to the other first which the Γ’s in Eq 2.39 guarantee [1], by encoding all
the information about the variation of the bases. So in addition to the derivative term
in Eq 2.39, the connection coefficients make an expected appearance. In summary,
Eq 2.39 defines the correct derivative of a vector.

Riemann curvature

Gravity vanishes in local inertial freely-falling frames and so there is no way for such
observers to feel the effects of gravity. Thus, the only way to measure the gravity
created by the curvature of spacetime is to measure the relative accelerations of test
particles [12]. In flat space, nearby freely-falling particles do not accelerate relative
to each other because the Γ’s in Eq 2.25 vanish, and so this would constitute a test
that would verify that the spacetime is flat. But how does one actually calculate
relative accelerations when the curvature is non-trivial? Following the idea that
curvature must directly be tied to relative accelerations, we calculate the second
covariant derivative (the acceleration) of the separation vector χ between two nearby
geodesics along the four velocity u (denoted ∇u)[1]

(∇u∇uχ)α = −Rα
βγδu

βχγuδ, (2.40)

where R is a rank-four tensor called the Riemann curvature tensor which is an ex-
pression of sums and derivatives of the connection coefficients. The components can
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Figure 2.5: Summary of the components of the Stress-Energy-Momentum Tensor.

be explicitly found from working out the expressions of the covariant derivatives [1]).
The Riemann tensor provides the necessary measure of curvature.

Stress-Energy and the Einstein equations

As we would like to find a relation between matter and curvature (Eq 2.40 is the
curvature), we require an object that contains all the information about the properties
of the matter of a system: its total mass, energy, momentum and any pressures or
shear stresses. That object is the second-rank tensor known as the stress-energy tensor
T µν with components summarized in Fig 2.5. For example, the T 00 component is the
energy density and for realistic matter it must be positive. A negative energy density
requires exotic matter and is needed in many wormhole geometries.

From the Riemann curvature tensor, we define the Ricci tensor(Rµν):

Rα
µαν = Rµν , (2.41)

and the Ricci scalar R via
R = Rα

α. (2.42)

As we now have two second rank tensors, we can form a tensor equation where a
measure of curvature is on one side and a measure of matter and energy on the other:
a way to relate matter to spacetime curvature, relating matter and gravity. The
equation ends up taking the form [1]

Rαβ −
1

2
gαβR = 8πTαβ (2.43)
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which are the Einstein equations. For regions of spacetime where there is no matter
(Tαβ = 0) then we have the vacuum Einstein equations

Rαβ = 0. (2.44)

The Ricci and stress-energy tensors are both symmetric and so they constitute a set
of ten non-linear differential equations and so analytical solutions can only be hoped
for by assuming a certain degree of symmetry. This process will be described for the
two spacetime metrics considered in this paper in Chap 4.1 and Chap 4.2.

2.7 Closed Timelike Curves

In short, a CTC is any timelike closed curve in spacetime [4]. What is meant by this
is take any point in spacetime, draw a closed curve that ends back at that point and
if the four velocity is timelike at all points along the curve then it is a closed timelike
curve. The easiest way to see this is to consider an axisymmetric metric[17]

ds2 = −A(r)dt2 + 2B(r)dφdt+ C(r)dφ2 +D(r)(dr2 + dz2), (2.45)

and hold all the coordinates constant except the azimuthal coordinate and the length
squared of the azimuthal curve is s2 = C(r)4π2. If C(r) is negative then the curve
is timelike and by the periodic nature of the azimuthal coordinate and the preceding
discussion, closed. Why this is unusual is that coordinates that are periodic are
not usually able to become timelike without any rotation. A CTC would “allow
accelerated observers to return to their starting points with no coordinate time having
elapsed” [15] which we see here because t becomes constant. Other cases where other
coordinates become timelike (like in the Schwarzschild case for inside the event horizon
where the r coordinate becomes timelike) can have odd reversed temporal behavior,
but if the coordinate is not periodic (such as in the Schwarzschild case), it does not
constitute a CTC and could not be possibly exploited as a time machine or provoke
a causality violation.

The importance of geodesics in this discussion is that it is hard to verify that
non-geodesic paths (paths where the observer is not freely falling) are physical, but
geodesic paths are automatically physical[15]. For this reason, this paper is primarily
concerned with simulations of time-like geodesic paths.

As mentioned, a primary goal of this paper is to explore the physical or non-
physical mechanism by which CTC’s arise. As Andréka et. al. note [16], the standard
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Figure 2.6: (a) is a flat space light cone and (b) shows the same light cone that has been
distorted and tipped over by inertial frame dragging induced by spacetime
rotation and could be a light cone in the ergosphere of the Kerr geometry (a
region of spacetime where an observer could not remain at a constant φ even
with arbitrarily powerful rockets [1] due to the extreme frame dragging). (c)
shows an exceptionally strong region of frame dragging that has tipped the
light cones over so far that it now permits the observer to travel along a curve
of constant t and, as shown in (d), meet themselves at P with no coordinate
time having elapsed. (d) is a simple example of a CTC created by the frame
dragging of rotating matter in the expected way: the time traveler must travel
in the direction of the rotating matter, as that is the way the light cones tip.

explanation for the creation of closed timelike curves, in the literature, is that the
frame dragging effect of rotating matter drags the light cones to the extent that the
azimuthal coordinate becomes timelike, as seen in Fig 2.6. The authors mention this
would imply that the time traveler must co-rotate with the matter, but this is not
what happens in their paper; they posit that time travelers must counter-rotate with
the rotating matter of their time-machine in order to follow CTC’s. This claim casts
doubt on the claim that it is solely due to rotating matter and frame dragging that
CTC’s are created; there appears to be an unknown secondary mechanism that causes
the light cones to tip, counter-intuitively, in the other direction. If this is the case, a
possible way to probe this would be to see if it has any precessional effect.
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Chapter 3

Quantifying Gyroscope Motion in
Curved Spacetime

3.1 Gyroscope Motion in The Schwarzschild Ge-

ometry

The Schwarzschild metric describes the metric outside a massive spherical body (a
star, black hole, etc.) and is written [1]

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2), (3.1)

where the Schwarzschild coordinates

xµ =











t
r
θ
φ











, (3.2)

have been adopted.

Although the gyroscope equation, Eq 2.29, becomes incredibly complicated quickly
for non-trivial geometries, an analytical solution is tractable for the Schwarzschild
case. This provides a check on the numerical simulations and also expounds on the
method for calculating the precession of gyroscopes.
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3.1.1 The four velocity for Schwarzschild circular orbits

In order to solve the gyroscope equation, the four velocities for the gyroscopes must
be found. Following the Lagrangian formalism, we start with the Lagrangian [11]

L = gµν ẋ
µẋν (3.3)

to find the orbits, with θ = π/2 (equatorial) and r = constant (circular). The Euler-
Lagrange equations yield:

(

1 − 2M

r

)

ṫ = e,

r2φ̇ = ℓ, (3.4)

where e and ℓ are constants (energy and angular momentum, respectively) and the
time-like normalization gives

−
(

1 − 2M

r

)

ṫ2 + r2φ̇2 = −1. (3.5)

From these, the constants in Eq 3.4 can be found to be [11]

ℓ2 =
Mr2

r − 3M
, (3.6)

e =

(

1 − 2M
r

)

(

1 − 3M
r

)1/2
. (3.7)

Therefore, ṫ = u0 = (1−3M/r)−1/2 and φ̇2 = (M/r2)(r−3M)−1, and so a test body’s
four velocity is given by

uα = u0











1
0
0
Ω











, (3.8)

for circular orbits, where Ω = (M/r3)1/2.

3.1.2 Schwarzschild geodetic precession

From Eq 3.8, the orientation of gyroscopes for an orbiting test body can be found
using Eq 2.29. From s · u = 0,

st = R2Ω
(

1 − 2M

R

)

sφ (3.9)
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because sθ = 0 as it initially points in the equatorial plane and thus must remain 0
by symmetry of the equatorial plane for all time. Solving the gyroscope equation for
the remaining sr and sφ results in two coupled differential equations where one can
be substituted into the other to yield a second order equation that has the simple
harmonic oscillator form with frequency [1]

Ω̄ =
(

1 − 3M

R

)1/2

Ω. (3.10)

Choosing the initial spin orientation to be radial with the spin normalized to 1 and
writing in terms of coordinate time t (for convenience) gives:

sr(t) =
(

1 − 2M

R

)1/2

cos(Ω̄t),

sφ(t) = −
(

1 − 2M

R

)1/2 ( Ω

Ω̄R

)

sin(Ω̄t). (3.11)

With (s · s)1/2 = s∗ = 1, the initial (t = 0) spin four vector is sα(0) = (0, (1 −
2M/r)(1/2), 0, 0). An orbit is completed in coordinate time P = 2π/Ω and so to get
the δφ of geodetic precession per orbit it suffices to find the angle between sα(0) and
sα(P ). The angle θ between two vectors vµ and wν is given by Eq 2.8 and noting
that both sα(0) and sα(P ) have magnitudes of 1 we see

cos θ = grrs
r(0)sr(P ), (3.12)

where sr(P ) can be found from Eq 3.11 and so

θ = 2π
Ω̄

Ω
= 2π

(

1 − 3M

r

)1/2

. (3.13)

After one orbit, the total rotation is 2π − θ and we conclude:

∆φgeodesic = 2π

{

1 −
(

1 − 3M

r

)1/2
}

(3.14)

per orbit. See [1] and [11] for more complete discussion.

Therefore, any gyroscope in motion about a massive body will experience preces-
sion due entirely to the massive body’s curvature of spacetime and is called geodetic

precession in order to differentiate it from precession due to inertial frame dragging,
considered in the following subsection. Eq 3.14 also provides a check for a specific
case in the numerical simulations. In Sec 6.2, cos θ will be plotted against t or tau
along a circular orbit which is calculated similarly to Eq 3.12, except more points
than just one orbital period will be plotted.
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Chapter 4

The Spacetime Metrics Considered

The Kerr black hole and the van Stockum cylinder exhibit non-trivial CTC’s because
they are caused by the dragging of inertial frames [4]. CTC’s can be artificially
created by unusual choices of coordinates, but the Kerr and van Stockum spacetimes
are unique because they can’t be removed by coordinate methods. Here, we introduce
the two spacetimes: the Kerr metric and the van Stockum metric.

4.1 The geometry of the Kerr rotating black hole

In 1963, Roy Kerr discovered the line element describing the spacetime of a rotating
spherically symmetric mass with mass M and angular momentum J to be [1]

ds2 = −
(

1 − 2Mr

ρ2

)

dt2 − 4Mar sin2 θ

ρ2
dφdt+

ρ2

△dr2 + ρ2dθ2

+

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θdφ2 (4.1)

with a ≡ J/M , ρ2 ≡ r2 + a2cos2θ, and △ ≡ r2 − 2Mr + a2.
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4.1.1 The derivation of the Kerr black hole

The actual derivation of the Kerr black hole is long and algebraically complicated
and is provided in [13]. Here, merely the process will be described. Starting with the
general axisymmetric stationary metric, Eq 2.31, and by computing all the necessary
derivatives and sums of the metric, we are left to compute the necessary metric
functions that satisfy the vacuum Einstein equations, Eq 2.44 [11]. In the non-rotating
case (the Schwarzschild metric), one assumes a spherically symmetric metric and it
turns out that Eq 2.44 is sufficient to determine the geometry uniquely. However,
axisymmetry is less restrictive than spherical symmetry and so, in fact, Eq 2.44 are
not enough to uniquely determine a solution [11]. What yields the Kerr solution is
enforcing that if an observer is far enough away then the local geometry becomes flat,
or as r → ∞, gµν → ηµν . This is reasonable because if the observer is far enough
away from the black hole then its gravity should not be noticeable.

4.1.2 Kerr Circular Orbits

The procedure to find the four velocities for the Kerr circular orbits is similar to
the discussion in Chap 3.1.1 for the Schwarzschild case, but the algebra is more
complicated. The four velocities take the similar form Eq 3.8, but there are actually
two values of Ω which correspond to orbits in the direction of the black hole rotation
(co-rotating) and opposite the rotation (counter-rotating) which are given by[13]

Ω =
∓
√
Mu3

1 ∓ a
√
Mu3

, (4.2)

where u = 1/r. In this paper, only co-rotating orbits are considered.

4.2 The geometry of the van Stockum cylinder

In 1936, van Stockum attained a solution for the field of a rapidly rotating cylinder
where centrifugal forces balance the gravitational effects. The metric for such a
cylinder is expressed as [2] [3]

ds2 = H(r)(dr2 + dz2) + L(r)dφ2 + 2M(r)dφdt− F (r)dt2. (4.3)
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If ω is the angular velocity of the cylinder and a is the radius of the cylinder, then the
functions for the metric, for the parameter range in which ωa > 1/2 and the region
outside the cylinder, are

H = e−ω
2a2(r/a)−2ω2a2 ,

L =
ar sin(3β + γ)

2 sin(2β) cos(β)
,

M =
r sin(β + γ)

sin(2β)
,

F =
r sin(β − γ)

a sin(β)
, (4.4)

where

γ = (4ω2a2 − 1)1/2 ln(r/a)

β = tan−1(4ω2a2 − 1)1/2. (4.5)

4.2.1 The derivation of the van Stockum cylinder

The derivation of the van Stockum dust cylinder is similar to the Kerr solution in
Sec 4.1.1, but because van Stockum considers an infinite cylinder we cannot let the
field tend to flat space at infinity, it is not asymptotically Minkowskian, and so
an additional constraint must be imposed to uniquely determine the field and van
Stockum assumes that the stress-energy of the cylinder is that of incoherent mat-
ter, T αβ = µuαuβ, where µ is the density of particles and uα is the four-velocity of
the matter. The process that van Stockum takes is to first find the correct form
of the stress-energy for dust particles rotating with a constant angular velocity in a
co-rotating frame (the interior solution), and then matches it to the vacuum solution
(the exterior solution), using Eq 2.44.

4.2.2 Circular timelike orbits and CTC’s

Steadman, in [15], found four velocities for CTC’s and circular orbits along which
coordinate time runs backward and also circular orbits that close and along which
no coordinate time advances (the CTC’s). The metric functions in Eq 4.3 have no
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coordinate t, φ, or z dependence we can associate with each a conserved constant
which are, from the Euler-Lagrange equations, Eq 2.24,

pt = F ṫ−Mφ̇,

pφ = −Mṫ − Lφ̇,

pz = Hż. (4.6)

Steadman then considers a timelike path in the region where gφφ < 0, from Chap
2.7 discussion, this is where CTC could occur, rearranges the Eqs 4.6 and assumes
circular orbits: r̈ = 0 and ṙ = 0. He then writes the t and φ components of the four
velocity for a circular timelike orbit in the van Stockum metric, in terms of pt [15]:

ṫ =
a sin(2β + 1

2
log( r

a
) tanβ)

2a cosβ sin(β − 1
2
log( r

a
) tanβ)

pt

φ̇ = − sin(1
2
log( r

a
) tanβ))

r sin(β − 1
2
log( r

a
) tanβ)

pt (4.7)

Note that the zeros of the ṫ equation in Eq 4.7 correspond to paths where t =constant
and so are CTC’s. Likewise, radial coordinates where ṫ < 0 correspond to circular
orbits where coordinate time runs backward. These expressions provide the neces-
sary initial four velocities to plot the paths of timelike particles in exotic circular
orbits (CTC’s and causality violating) and this paper seeks to compare the preces-
sion of gyroscopes in these strange orbits to the more familiar orbits of the Kerr and
Schwarzschild geometries.

As mentioned, because it is not asymptotically flat it does not appear that the
van Stockum cylinder is realistic, but Tipler in [2] argues that the classical Newtonian
analogue also has a gravitational field that diverges and so it could hold for realistic
cylinders. In addition, there are CTC’s inside the horizon of the Kerr metric [9] and
so it is hypothesized that a sufficiently large finite cylinder could have CTC’s in the
exterior vacuum.
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Chapter 5

Numerical Methods

In this chapter, we outline the numerical methods implemented and various numerical
checks. The bulk of the numerical methods involve numerically solving the geodesic
and gyroscope equation (Eq 2.25 and Eq 2.29, respectively) with a 4th order Runge-
Kutta routine, outlined in Chap 5.1, written in C++. Example simulations and
parameters are discussed in Chap 5.2.

5.1 Fourth Order Runge-Kutta (RK4)

As Eq 2.25 is a set of four second order ordinary differential equations it can be written
as a set of eight first order equations via the identification Eq 2.22 and becomes,
explicitly writing in dependent variables:

duα(τ)

dτ
+ Γαβγ(x

µ(τ))uβ(τ)uγ(τ) = 0, (5.1)

uµ(τ) =
dxµ(τ)

dτ
. (5.2)

In addition, the initial conditions must satisfy:

u · u = gµνu
µuν = −1,

s · u = 0,√
s · s = s∗, (5.3)
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where s∗ is a constant and is set to 1. As uµ and sµ (the gyroscope equation is also
integrated and is included with Eqs 5.1 and 5.2) are parallel transported during the
integration, if the constraints are satisfied by the initial conditions they will remain
satisfied at all points along the world line.

The general form of ordinary differential equations to be integrated is

dζ

dτ
= f(ζ(τ), τ), (5.4)

where ζ is a state vector that has all the components of the position, four velocity
and the spin (12 components). We note that for the four velocity and spin vector
components the right hand side of Eq 5.4 involves the geodesic equation and gyro-
scope equation, respectively. The general discretization of the system of differential
equations, Eq 5.4, into a Runge-Kutta step is[7]

ζ(τ + ∆τ) = ζ(τ) +
1

6
∆τ(F1 + 2F2 + 2F3 + F4), (5.5)

where the F’s are given by the usual Runge-Kutta formulas, see [7]. To illuminate this
discussion, we provide the discretization of the four velocity equation. The Runge-
Kutta formulas are, noting the coordinate dependence of the Γ’s:

F α
1 = −

{

Γαβγ(x
µ)
}

uβuγ,

F α
2 = −

{

Γαβγ(x
µ + (1/2)∆τF µ

1 )
}

(uβ + (1/2)∆τF β
1 )(uγ + (1/2)∆τF γ

1 ),

F α
3 = −

{

Γαβγ(x
µ + (1/2)∆τF µ

2 )
}

(uβ + (1/2)∆τF β
2 )(uγ + (1/2)∆τF γ

2 ),

F α
4 = −

{

Γαβγ(x
µ + ∆τF µ

3 )
}

(uβ + ∆τF β
3 )(uγ + ∆τF γ

3 ).

The components of the F’s actually serve double-duty as there are components that
correspond to both the coordinates and the four velocities, but the context in which
they appear in Eq 5.6 should be clear. These formula are then substituted into the
general Runge-Kutta formula for the four velocity step,

u(τ + ∆τ) = u(τ) +
1

6
∆τ(F1 + 2F2 + 2F3 + F4). (5.6)

The position and spin four vector integration is similar and, once the solutions s(t)
and s(τ) are found, the precession angles cos θ(t) or cos θ(τ) are calculated via Eq
2.8. All that remains is to calculate the Γ’s for the considered geometry and these
are provided in A.1 for the Kerr and van Stockum geometries. The C++ code for
the integration of the van Stockum cylinder is provided in A.2.
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Figure 5.1: Plot of sr(t) for Schwarzschild circular orbit of r =6.5 is compared with the
theoretical expression Eq 3.11.

5.2 Simulations and Parameters

In all simulations, M the mass of the black hole (both Kerr and Schwarzschild) is
set to 1. J , the angular momentum for a Kerr black hole is set to 0.9, and ω, the
angular frequency of the van Stockum cylinder is also set to 0.9. The radius of the
van Stockum cylinder, a, is 1. All simulations are with a tau step of ∆τ = 0.01.

Simulations of the dependence of sr and sφ on t are provided in Figs 5.1 and 5.2 for
Schwarzschild black hole circular orbits of r = 6.5. The plots are compared with the
respective theoretical predictions in 3.11 to validate the numerical code. A plot of the
cosine of the angle θ between the spin four vector sα and the initial radially pointing
spin vector sα(0) as a function of time is provided in Fig 5.3 with the theoretical
prediction, and it is these types of plots that will be used to analyze the precession
of gyroscopes.
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Figure 5.2: Plot of sφ(t) for Schwarzschild circular orbit of r =6.5 is compared with the
theoretical expression Eq 3.11
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Figure 5.3: Plot of cos θ(t) where θ(t) is the angle between sα(t) and sα(0). Here, r = 6.5.
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Chapter 6

Results

A goal of this paper is to better understand the strange temporal behavior of parti-
cle geodesics for the van Stockum cylinder which are presented in Sec 6.1. Results
concerned with the processions of gyroscopes are presented in Sec 6.2.

6.1 van Stockum Cylinder Geodesics

van Stockum cylinder geodesics are shown to verify that the four velocities in Eq. 4.7
do, in fact, yield circular orbits in Figs 6.1 and 6.2 which show the same forward time
oriented circular timelike orbit of r = 647.512. This radius was chosen because it has a
circumference length of 6.5(2π) which coincides with a Schwarzschild orbit of r = 6.5,
and so will be used for comparison. An example of a CTC is provided in Fig 6.3 for
r = 4.82713, a zero of Eq 4.7, and so it is expected to be a CTC. Analysis is done
exclusively on circular orbits because they are more natural to consider precession
on, in order to offer a comparison between the Schwarzschild, Kerr and van Stockum
geometries, and provide a simple example of a CTC; however, the van Stockum
geometry does create more complicated causality violating “flower petal” orbits as
shown in Figs 6.4 and 6.5. Better understanding of these orbits, their symmetry and
where they occur, and ways to find ones that close (becoming CTC’s) is a topic of
future work.
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Figure 6.1: An xyt plot (z suppressed) of a forward time oriented timelike circular orbit
geodesic in the van Stockum metric of r = 647.512, pt = 20.1955 and proper
circumference length 6.5(2π), and so the orbit can be directly compared to
the Kerr and Schwarzschild orbits of the same circumference.

6.2 Precession of Gyroscopes

The precession of gyroscopes for orbits in the Kerr rotating black hole and non-
rotating Schwarzschild black hole are shown as a function of coordinate time in Fig
6.6 and proper time in Fig 6.7 for orbits of a common circumference length (2π)6.5,
and both figures show the effect of inertial frame dragging. The reason different
radii are chosen to make the comparison is that the r coordinate is different for the
Schwarzschild and Kerr solutions (Schwarzschild and Boyer-Lindquist coordinates,
respectively), so a comparison is made between obits that have the same invariant
circumferential distance. Also, the van Stockum r coordinate is different as well which
is why Fig 6.8 is at r = 647.512. Although this radius is huge (when naively compared
to the preceding Schwarzschild and Kerr cases), this radius corresponds to an orbit
of circumferential distance (2π)6.5. Therefore, Figs 6.6, 6.7 and 6.8 all are plotted
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Figure 6.2: An xy projection of Fig 6.1 to show the circular motion.

for orbits that have the same proper circumferential distance.

Gyroscope precession along a CTC in the van Stockum metric is shown in Fig
6.9, and it is clear that the rate at which the gyroscope will precess along the orbit
is much greater along the CTC than the preceding cases. The precession along the
orbits at radii to the left and right of r = 4.82713 is plotted in Fig 6.10 which shows
that r = 4.5 has even more frame dragging (shifted more to the left) and this is to be
expected as, from Fig 6.11, the orbit at r = 4.5 is a backward in time oriented circular
geodesic, so the light cones have tipped even further over, making the particles travel
back in time. The values of pt for particular circular orbits are collected in Table 6.1.
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Figure 6.3: An xyt projection of a CTC at r = 4.82713. Note that coordinate time does
not advance and the particle meets itself at the same place in space at the
same place in time. Importantly, the particle does not counter-rotate with the
cylinder, seemingly in contrast with [16]

r pt Type
647.512 20.1955 Forward

5.0 0.59377 Forward
4.82713 0.515314 CTC

4.5 0.365565 Backward

Table 6.1: The parameters used for van Stockum circular orbits. The type of circular
orbit is also described where Forward denotes forward in time oriented circular
orbits, Backward is for orbits where coordinate time runs backward and CTC is
a closed timelike curve. The values of pt where calculated to ensure the timelike
normalization u · u = −1.
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Figure 6.4: An xyz plot of a particle at r = 17.0 released from rest (spatial four velocity
components set to 0). Shows that the van Stockum solution has more intricate
causality violating orbits than circular ones.
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Figure 6.5: An xy projection of Fig 6.4 to show why it is referred to as a “time flower”,
in this paper.
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Figure 6.6: Comparison of the precession of gyroscopes for stable circular orbits in the
Kerr (co-rotating orbit, J = 0.9) and Schwarzschild case for orbit circum-
ference of 6.5(2π) (rSchwarzschild = 6.5, rKerr = 6.41775). Note the effect of
inertial frame dragging has caused the Kerr case to have a retarded preces-
sion: its precession has been dragged against the precession in the direction
of the rotating body, displaying the expected frame dragging effect on spins
expected from the discussion in Sec 2.5. The cosine of the angle θ is plot-
ted against coordinate time t that ranges to a period (2π/Ω) of an orbit in
the Schwarzschild geometry. The Newtonian curve illustrates the case of no
precession.
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Figure 6.7: The same plot in Fig 6.6, but the cosine of the angle θ is plotted against proper
time τ . This is in order to make a comparison to the later case where we will
consider a CTC orbit in the van Stockum geometry because coordinate time
t will be unusable (it does not advance on a CTC).
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Figure 6.8: The precession of gyroscopes along the forward time oriented timelike orbit of
proper circumference (2π)6.5 with r = 647.512 and pt = 20.1955. Note that
the frame dragging causes a much greater precession opposite the direction of
the rotation of the matter source (the plot has been “squished” and dragged
to the left) than the Kerr case.
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Figure 6.9: Cosine of the angle between initial radial pointing gyroscope with radial com-
ponent of the spin vector (sr(τ) along a CTC in van Stockum metric (xyz
projection of is shown in Fig 6.3) for r = 4.82713. Note an even greater
amount of dragging than in Fig 6.8.
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Figure 6.10: A comparison of gyroscope precession for radial distances around the first of
the CTC radii.
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Figure 6.11: The radial geodesic at r = 4.5 in Fig 6.10 is a backward in time oriented
circular timelike geodesic as also found by Steadman in [15]. The other radius
considered in Fig 6.10, r = 5.0,is forward in time oriented, as expected.
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Chapter 7

Conclusions

In the work of [16], it was hypothesized that CTC’s lead observers to counter-rotate
against the spacetime rotation and so there must be a secondary mechanism that
creates CTC’s. In this study, such counter rotation was not found for CTC’s or
causality violating geodesics in the van Stockum metric, and comparison of the inertial
frame dragging of different orbits, such as in in Fig 6.10, appears to support the
classical idea that it is greater amounts of inertial frame dragging that cause light
cones to tip over, become closed and then become backward in time oriented. In
the [16] paper the Kerr-Newman metric was considered so it may be that for the
van Stockum metric, with the parameters considered here, does not have such a
counter-rotational effect which would expand the mystery of this suggested secondary
mechanism for the generation of CTC’s as suggested by [16]. However, null lines were
not calculated and [16] also claims that the light cones along a CTC also open, rather
than become more narrow, so this would be a topic for future work.

A study of the precession of gyroscopes did not suggest any unknown influence
as to the source of CTC, and endorses the idea that it is solely due to inertial frame
dragging.
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7.1 Future Work

The primary avenue for future work would be to attempt to explain the discrepancy
between this study and [16] as to the orientation of CTC orbits, and if it is found
that observers must counter-rotate in what ways can the probing of gyroscope orbits
reveal the source of this remarkable, counter-intuitive behavior? Simulations of the
light cone structure of the van Stockum spacetime is also needed to better verify the
work of [16] and to gain further insight into the actual causal structure. Finally,
analysis and an algorithm to find non-circular orbits that close could help provide a
broader interpretation as to the generation of CTC’s, as only circular geodesic orbits
were considered here.



Appendices

49



50

.1 Connection Coefficients for equatorial orbits

Here the connection coefficients are provided for equatorial orbits, θ = π/2 for Kerr
and z = 0 for van Stockum.

.1.1 Kerr Connection

Γ0
01 =

M(a2 + r2)

r2∆
Γ0

13 =
−aM(a2 + 3r2)

r2∆

Γ1
00 =

M∆

r4
Γ1

03 = −aM∆

r4

Γ1
11 =

1

r
+
M − r

∆
Γ1

22 = 2M − a2 + r2

r

Γ1
33 =

(a2M − r3)∆

r4

Γ2
12 =

1

r

Γ3
01 =

aM

r2∆
Γ3

13 =
−a2M + r2(−2M + r)

r2(a2 + r(−2M + r))
(1)

.1.2 van Stockum Connection

For simplification we define:

ρ = (ωa)2, ǫ =
√

4ρ2 − 1. (2)

And so the connection coefficients are:

Γ0
01 =

1 + ǫ2

4r
Γ0

12 = −a(1 + ǫ2)3/2

8r

Γ2
01 =

√
1 + ǫ2

2ar
Γ2

12 = −−3 + ǫ2

4r

Γ3
13 = −ρ

r

Γ1
00 = −e

ρ(r/a)2ρ(1 + ǫ2) sin(γ)

2aǫ
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Γ1
02 = −e

ρ(r/a)2ρ

2 sin(2β)
(ǫ cos(aβ + γ) + sin(aβ + γ))

Γ1
22 = −e

ρ(r/a)2ρa(1 + ǫ2)3/2

8ǫ
(ǫ cos(3β + γ) + sin(3β + γ))

Γ1
11 = −ρ

r
Γ1

33 =
ρ

r
(3)

.2 C++ Code

Provided here is the C++ code, written from scratch, for the integration of the
geodesic and gyroscope equations for the van Stockum metric. The Runge-Kutta
step uses convenient syntax found in [7].

#include <iostream>

using namespace std;

#include <string>

#include <fstream>

#include <cmath>

#include <cstdlib>

const int END_STEP = 800000;

const double a =1.0; // radious of van Stockum cylinder

const double OMEGA = 0.9;

const double RHO = OMEGA*OMEGA*a*a;

const double EPS = sqrt(4*RHO - 1);

const double BETA = atan( EPS );

const int dim = 4; //Dimension of spacetime (usually 4)

const double PI=2.0*asin(1.0);

const double t0 = 0.0, r0 =647.512, Phi0=0, z0 = 0;

// 4.82713, 4.5 cool stuff

const double tDot0 = 0.0, rDot0 = 0.0, PhiDot0 = 0.0, zDot0=0.0; //Lets first try

//const double taustep = 0.01;

//define the vanStockum functions------------------

double H(double [dim]);

double L(double [dim]);

double M(double [dim]);
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double F(double [dim]);

double gamma(double [dim]);

double K(double [dim]);

//----------------------------------------

void f(double [3*dim], double [3*dim]);

void nrk4(double [3*dim], double,

void (*derivsRK)(double [3*dim], double [3*dim])

);

int main() {

double xU[dim], uU[dim], sU[dim], s0U[dim],

state[3*dim], derivs[3*dim], gDD[dim][dim];

double tau, tplot , xplot , yplot, zplot;

double metricSum, orthSum, magSum, magSumRoot, sdote;

double b , c;

int i; //stepping variable

int s; //stepping state variable

int mu, nu , gam; // contra and covarient indexes

int simStop;

ofstream outfilet("vanStockumGeos.data",ios::out);

//-----------------------------------

/* initialize */

//-----------------------------------

//Initial Positions

xU[0] = t0;

xU[1] = r0;

xU[2] = Phi0;

xU[3] = z0;

//STEADMAN PAPER

double pt = -0.515314;

pt = 20.1955;

uU[0] = (a*sin(2*BETA + K(xU)))*pt / (2*xU[1]*cos(BETA)*sin(BETA - K(xU)));
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uU[1] = 0;

uU[2] = -(sin(K(xU))*pt)/(xU[1]*sin(BETA - K(xU)));

uU[3] = 0;

//Initialize metric matrix

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

gDD[mu][nu] = 0;

}

}

// vanStockum metric functions

gDD[0][0] = - F(xU);

gDD[0][2] = M(xU);

gDD[2][0] = gDD[0][2];

gDD[1][1] = H(xU);

gDD[2][2] = L(xU);

gDD[3][3] = H(xU);

//The metric sum check

metricSum = 0;

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

metricSum = metricSum + gDD[mu][nu]*uU[mu]*uU[nu];

}

}

cout << metricSum << endl;

//Initial spins

sU[0] = 0;

sU[1] = 1 / sqrt(H(xU));

sU[2] = 0;

sU[3] = 0;

// Collect initial spins into initial spin matrix for later

for(s = 0; s < dim ; s++){
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s0U[s] = sU[s];

}

//----------------------------------------------------

/* main loop of integration steps */

//-----------------------------------------------------

double taustep = 0.01;

for (i=1; i <= END_STEP ; i++) {

tau = i*taustep;

// Initialize derivative array

for( s = 0 ; s < 3*dim ; s++){

derivs[s] = 0;

}

// Puts all vector components into one state vector to pass to integrator

state[0] = xU[0];

state[1] = xU[1];

state[2] = xU[2];

state[3] = xU[3];

state[4] = uU[0];

state[5] = uU[1];

state[6] = uU[2];

state[7] = uU[3];

state[8] = sU[0];

state[9] = sU[1];

state[10] = sU[2];

state[11] = sU[3];

nrk4(state, taustep, f);

//put back into 4-vector notation for convenience

xU[0] = state[0];

xU[1] = state[1];

xU[2] = state[2];

xU[3] = state[3];

uU[0] = state[4];
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uU[1] = state[5];

uU[2] = state[6];

uU[3] = state[7];

sU[0] = state[8];

sU[1] = state[9];

sU[2] = state[10];

sU[3] = state[11];

//-------------------------------------------------

//Checks on the Integration by calculating constraints

//-------------------------------------------------

//Initialize metric matrix

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

gDD[mu][nu] = 0;

}

}

// vanStockum metric functions

gDD[0][0] = - F(xU);

gDD[0][2] = M(xU);

gDD[2][0] = gDD[0][2];

gDD[1][1] = H(xU);

gDD[2][2] = L(xU);

gDD[3][3] = H(xU);

//The metric sum check

metricSum = 0;

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

metricSum = metricSum + gDD[mu][nu]*uU[mu]*uU[nu];

}

}

//Spin metric sum checks

orthSum = 0;
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for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

orthSum = orthSum + gDD[mu][nu]*uU[mu]*sU[nu];

}

}

//Spin Magnitude check (here s_* = 1)

magSum = 0;

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

magSum = magSum + gDD[mu][nu]*sU[mu]*sU[nu];

}

}

magSumRoot = sqrt(magSum);

//Calculate the dot product with initial spin array

sdote = 0;

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

sdote = sdote + gDD[mu][nu]*sU[mu]*s0U[nu];

}

}

//------------------------------------------------------------

// Cartesian for Plotting

tplot = xU[0];

xplot = xU[1] * cos(xU[2]);

yplot = xU[1] * sin(xU[2]);

zplot = xU[3];

// outfilet << tplot << " " << xplot << " " << yplot <<" " << zplot << " " <<

// outfilet << xU[0] << " " << xU[1] << " " << xU[2] << " " << xU[3] << " " <<

// outfilet << metricSum << " " << orthSum << " " << magSumRoot << endl;

//outfilet << tau << " " << sU[1] << " " << sU[3] << endl;



57

outfilet << tau << " " << sdote << endl;

// if(metricSum > -.999995 or metricSum < -1.000005){

// cout << tplot << " " << tau << endl;

// break;

// }

if(i == END_STEP){

cout << tplot << " " << tau << endl;

}

}

return 0;

}

/*---------------------------------------

/ LHS of differential equation for integration

/--------------------------------------

*/

void f(double state[3*dim], double derivs[3*dim]){

double DuU0, DuU1, DuU2 , DuU3;

double DsU0, DsU1, DsU2 , DsU3;

double GammaUDD[dim][dim][dim];

int mu, nu , gam;

double xU[dim], uU[dim], sU[dim];

xU[0] = state[0];

xU[1] = state[1];

xU[2] = state[2];

xU[3] = state[3];

uU[0] = state[4];

uU[1] = state[5];

uU[2] = state[6];

uU[3] = state[7];
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sU[0] = state[8];

sU[1] = state[9];

sU[2] = state[10];

sU[3] = state[11];

// Initialize Gammas to 0 at beggining of each loop

for (mu = 0; mu <= 3 ; mu++){

for(nu =0 ; nu <= 3 ; nu++){

for (gam = 0 ; gam <= 3 ; gam++){

GammaUDD[mu][nu][gam]=0;

}

}

}

//Put in non-trivial Gammas, using symmetry of the connection

GammaUDD[0][0][1] = (1 + EPS*EPS)/(4*xU[1]);

GammaUDD[0][1][0] = GammaUDD[0][0][1];

GammaUDD[0][1][2] = - a * pow(1 + EPS*EPS, 1.5) / (8*xU[1]);

GammaUDD[0][2][1] = GammaUDD[0][1][2];

GammaUDD[1][0][0] = - exp(RHO)*pow(xU[1]/a,2*RHO)*(1+

EPS*EPS)*sin(EPS*log(xU[1]/a))/(2*a*EPS);

GammaUDD[1][0][2] =

-0.5*exp(RHO)*pow(xU[1]/a,2*RHO)*(EPS*cos(atan(EPS)+

EPS*log(xU[1]/a))+ sin(atan(EPS)+EPS*log(xU[1]/a)))/(sin(2*atan(EPS)));

GammaUDD[1][2][0] = GammaUDD[1][0][2];

GammaUDD[1][1][1] = - RHO / xU[1];

GammaUDD[1][2][2] = - a *exp(RHO)*pow(xU[1]/a,2*RHO)*pow(1+

EPS*EPS, 1.5)*(1/(8*EPS))*(EPS*cos(3*atan(EPS)+EPS*log(xU[1]/a))+

sin(3*atan(EPS)+

EPS*log(xU[1]/a)));

GammaUDD[1][3][3] = RHO/xU[1];

GammaUDD[2][0][1] = sqrt(1 + EPS*EPS)/(2*a*xU[1]);

GammaUDD[2][1][0] = GammaUDD[2][0][1];

GammaUDD[2][1][2] = - (-3 + EPS*EPS) / (4*xU[1]);

GammaUDD[2][2][1] = GammaUDD[2][1][2];
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GammaUDD[3][1][3] = - RHO / xU[1];

GammaUDD[3][3][1] = GammaUDD[3][1][3];

//Take derivatives of four velocity

DuU0 = 0;

DuU1 = 0;

DuU2 = 0;

DuU3 = 0;

for(nu= 0 ; nu <= 3 ; nu++){

for(gam= 0 ; gam <= 3 ; gam++){

DuU0 = DuU0 - GammaUDD[0][nu][gam]*uU[nu]*uU[gam];

DuU1 = DuU1 - GammaUDD[1][nu][gam]*uU[nu]*uU[gam];

DuU2 = DuU2 - GammaUDD[2][nu][gam]*uU[nu]*uU[gam];

DuU3 = DuU3 - GammaUDD[3][nu][gam]*uU[nu]*uU[gam];

}

}

// Take derivatives of spins

DsU0 = 0;

DsU1 = 0;

DsU2 = 0;

DsU3 = 0;

for(nu= 0 ; nu <= 3 ; nu++){

for(gam= 0 ; gam <= 3 ; gam++){

DsU0 = DsU0 - GammaUDD[0][nu][gam]*sU[nu]*uU[gam];

DsU1 = DsU1 - GammaUDD[1][nu][gam]*sU[nu]*uU[gam];

DsU2 = DsU2 - GammaUDD[2][nu][gam]*sU[nu]*uU[gam];

DsU3 = DsU3 - GammaUDD[3][nu][gam]*sU[nu]*uU[gam];

}

}

//Assembles the derivative array

derivs[0] = uU[0];

derivs[1] = uU[1];

derivs[2] = uU[2];

derivs[3] = uU[3];
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derivs[4] = DuU0;

derivs[5] = DuU1;

derivs[6] = DuU2;

derivs[7] = DuU3;

derivs[8] = DsU0;

derivs[9] = DsU1;

derivs[10] = DsU2;

derivs[11] = DsU3;

}

//---------------------------

// vanStockum functions

//----------------------------

double gamma(double xU[dim]){

double valueGamma;

valueGamma = EPS*log(xU[1]/a);

return valueGamma;

}

double H(double xU[dim]){

double valueH;

valueH = exp(-RHO)*pow( xU[1]/a , -2 * RHO);

return valueH;

}

double L(double xU[dim]){

double valueL;

valueL = a*xU[1]*sin(3*BETA + gamma(xU))/(2*sin(2*BETA)*cos(BETA));

return valueL;

}

double M(double xU[dim]){

double valueM;

valueM = xU[1]*sin(BETA + gamma(xU))/sin(2*BETA);

return valueM;

}

double F(double xU[dim]){
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double valueF;

valueF = xU[1]*sin(BETA - gamma(xU))/(a*sin(BETA));

return valueF;

}

double K(double xU[dim]){

double valueK;

valueK = 0.5*log(xU[1]/a)*EPS;

return valueK;

}

/*---------------------------------------

/ Fourth Order Runge Kutta

/--------------------------------------

*/

void nrk4(double state[3*dim], double taustep,// state, taustep

void (*derivsRK)(double state[3*dim], double derivs[3*dim]) //state tau derivs

){

double *F1, *F2, *F3, *F4, *tempState;

int i;

F1 = new double [3*dim];

F2 = new double [3*dim];

F3 = new double [3*dim];

F4 = new double [3*dim];

tempState = new double [3*dim];

//Calculate F1

(*derivsRK)(state, F1);

//Calulate F2

//double half_taustep = 0.5*taustep;

for(i = 0; i < 3*dim ; i++){

tempState[i] = state[i] + 0.5*taustep*F1[i];

}

(*derivsRK)(tempState, F2);
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//Calculate F3

for(i = 0; i < 3*dim ; i++){

tempState[i] = state[i] + 0.5*taustep*F2[i];

}

(*derivsRK)(tempState, F3);

//Calculate F4

for(i = 0; i < 3*dim ; i++){

tempState[i] = state[i] + taustep*F3[i];

}

(*derivsRK)(tempState, F4);

for(i = 0; i < 3*dim; i++){

state[i] = state[i] + (taustep/6.0)*(F1[i] + F4[i] + 2.0*(F3[i] + F2[i]));

}

delete [] F1, F2, F3, F4, tempState;

}
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