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Time machines constructed from anti-de Sitter space
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In this paper time machines are constructed from anti—de Sitter space. One is constructed by identifying
points related via boost transformations in the covering space of anti—de Sitter space and it is shown that this
Misner-like anti—de Sitter space is just the Lorentzian section of the complex space constructed by Li, Xu, and
Liu [Phys. Rev. D48, 4735(1993]. The others are constructed by gluing an anti—de Sitter space to a de Sitter
space, which could describe an anti—de Sitter phase bubble living in a de Sitter phase universe. Self-consistent
vacua for a massless conformally coupled scalar field are found for these time machines, whose renormalized
stress-energy tensors are finite and solve the semiclassical Einstein equations. The extensions to electromag-
netic fields and massless neutrinos are discussed. It is argued that, in order to make the results consistent with
Euclidean quantization, a new renormalization procedure for quantum fields in Misner-type ddéares
space, Misner-like de Sitter space, and Misner-like anti—de Sitter sgauired. Such a “self-consistent”
renormalization procedure is proposed. With this renormalization procedure, self-consistent vacua exist for
massless conformally coupled scalar fields, electromagnetic fields, and massless neutrinos in these Misner-type
spaces[S0556-282(99)02108-9

PACS numbe(s): 04.62+v, 04.20.Gz

[. INTRODUCTION model of “tunneling from nothing” has some shortcomings
(see[22], and Penrose if26]). Contrasting with the model
In classical general relativity there are many solutions ofof “tunneling from nothing,” in the model of Gott and Li
Einstein equations with closed timelike curvé€TC’s) [22], the universe does not need a signature change and has
[1-6]. However, some early calculations of vacuum polar-no beginning in time. The Gott-Li universe is always a
ization in spacetimes with CTC’s indicated that the renor-Lorentzian spacetime but at a very early epoch there is a loop
malized stress-energy tensor diverged at the Cauchy horizast time. The universe could thus be its own mother and cre-
or the polarized hypersurfac¢g—10. Hawking thus pro- ate itself. The model of Gott and Li has some additional
posed the chronology protection conjecture which stated thahteresting features: the present epoch of the universe is
physical laws do not allow the appearance of CT{1§]. separated from the early CTC'’s epoch by a past chronology
But many counterexamples to the chronology protection conhorizon. The only self-consistent solution with this geometry
jecture have been fourl[d2—23. In particular, Li and Gott has pure retarded potentials, creating naturally an arrow of
[21] have found a self-consistent vacuum for a massless conime in our current universe, which is consistent with our
formally coupled scalar field in Misner spadeee, also, experiencd22]. Thus, CTC's have potentially important ap-
[20]), which gives an example of a time machifiee., a plications in the early universe.

spacetime with CTC)sat the semiclassical levél.e., the Anti—de Sitter space is a spacetime which has CTC's ev-
background spacetime is classical but the matter fields arerywhere. It is a solution of the vacuum Einstein equation
quantized. with a negative cosmological constant and has maximum

Of more interest, recently Gott and Li have discoveredsymmetry[27]. Anti—de Sitter space plays a very important
that CTC’s could play an important role in the early uni- role in theories of supergravity and superstrig8g,29. If
verse: if we trace backward the history of time, we may entewe “unfold” anti—de Sitter space and go to its covering
an early epoch of CTC’s, which means that there is no earspace, the CTC’s disappear. However, if we identify the
liest event in timg22]. According to the theory of quantum events related by boost transformations in the covering space
foam[23], in the early universéat the Planck epoghquan-  of anti—de Sitter space, we will get a spacetime with an
tum fluctuations of spacetime should be very important andnfinite number of regions with CTC’s and an infinite num-
the spacetime might have a very complicated topology. Venber of regions without CTC’s, where the regions with CTC'’s
strong fluctuations in the metric of spacetime could cause thand the regions without CTC’s are separated by chronology
light cones to distribute randomly, which could give rise to ahorizons. The causal structure is similar to that of Misner
sea of CTC's in the early universe. Therefore, we might exspace, except that Misner space has only two regions with
pect that at very early epochs the universe could have @TC’s and two regions without CTC'’s. For Misner space, Li
tangled network of CTC's. and Gott have found a self-consistent vacuum for a massless

One model of the creation of the universe is the model oconformally coupled scalar field, which is an “adapted”
“tunneling from nothing” [24,25. In this model the uni- Rindler vacuum(i.e., a Rindler vacuum with multiple im-
verse is supposed to be a Lorentzian spacefimith signa-  ages [21]. In this paper we will show that a self-consistent
ture (—,+,+,+)] glued to an early Euclidean spapeith  vacuum also exists for a massless conformally coupled scalar
signature (+,+,+,+)]; thus the universe has a beginning in field in the Misner-like anti—de Sitter space constructed
time (i.e., the beginning of the Lorentzian sectioMhis  above, which is simply the conformal transformation of the
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Li-Gott adapted Rindler vacuum. Z=a sinhy sindsing, ®)
In 1993, Li, Xu, and Liu constructed a time machine in a

space with a complex metrjd3]. In this paper we will show where O<t/a<27, 0<y<ow, 0<f<m, and O<¢<2.

that the Lorentzian section of that solution is just the Misner-Then the anti—de Sitter metric can be written as

like anti—de Sitter space described above. 5. 24 2
Inflation theory proposes that during an early epoch the ds?=—costf xdt*+ a’dy

universe was in a state with an effective positive cosmologi- + a?sini? x(d6?+ sirf6 d¢?). (4)

cal constant at the grand unified thedgUT) (or Planck

scale[30—32, which is well described as a de Sitter phase.The global static coordinate) cover the whole anti—de

By transition to a zero cosmological constétfirough either  Sitter spacdexcept the coordinate singularities g0 and

guantum tunneling or classical evolutjoithe universe then 6#=0,7), the time coordinat¢ has a period of Za. (2)
enters a Friedmann Big Bang stage. But, if there is a transit ocal static coordinatesDefine

tion to a negative cosmological constdittdoes not seem
physical theories exclude a negative cosmological
constant—especially since in supergravity and superstring
theories anti—de Sitter space is the only known self-
consistent solution besides Minkowski spa2é8]), the uni- W=r cosh®,
verse could enter an anti—de Sitter phase where CTC's exist.

t
V=(r2—a2)1’25inh;,

In this paper we will consider some models describing the s 2 t
transition between a de Sitter space and an anti—de Sitter X=(r"-a%)"*cosh_, ®
space, which are obtained by gluing a de Sitter space to an
anti—de Sitter space along a bubble wall, and we will show Y=r sinhé cose,
that self-consistent vacua for these solutions also exist.
The generalization to the case of electromagnetic fields Z=r sinh@sin¢,

and massless neutrinos will also be considered. It is argued

that, in order to be consistent with Euclidean quantization, avhere —e<t<w, r>a, 0<#<%, and 0<¢$<27. Then
new renormalization procedure for quantum fields in Misnerthe anti—de Sitter metric can be writtéin a Schwarzschild-
type spaces is required. A “self-consistent” renormalizationlike form) as

procedure is then proposed. With this renormalization proce- )

2 -1
dure, self-consistent vacua exist for massless conformally dsz=—(r -1 dt2+(r _1) dr?
. .. — Wi r
coupled scalar fields, electromagnetic fields, and massless @ @
neutrinos in the Misner-type spaces. .
Ype sp +r2(d#?+sint? 6d ¢p?). (6)
Il. MISNER-LIKE ANTI —de SITTER SPACE The local static coordinate®) cover only the region with

|[V|<X andW>0 in anti—de Sitter spac€3) Nonstationary

Anti—de Sitter space AdSs a hyperbola coordinates Define

2 2_y2_~\2_52_ 2
VZ4+W2—X2—Y2-Z%2=q 1) V= a cost coshy,

embedded in a five-dimensional spaRewith metric W= a sint

ds?=—dV?—dW2+dX?+dY?+dZ2. 2) X = a cost sinhy cos® @
Anti—de Sitter space has topolo@} X R® and is a solution
of the vacuum Einstein equations with a negative cosmologi-
cal constantA=—3/a?, which has maximum symmetry
(i.e., it has ten Killing vectons

Several coordinate systems can be defined in anti-de Sifvhere — m/2<t<m/2, 0<y<w, 0<f<m, and 0<¢

Y = a cost sinhy sin 6 cos¢,

Z= a cost sinhy sind sin ¢,

ter space(1) Global static coordinatesDefine <2. Then the anti—-de Sitter metric can be writtém an
. open cosmological forjnas
V=—acoshy cos_, ds?= a?{—dt>+coS t[dy?+ sintx(d 6+ sir? 6d )]}
)
W=« coshy sint—, The nonstationary coordinaté€3) cover the region withv
a >0 and|W|< a, but they can by extended to the region with
V<0 and |W|<a by the transformationst—w+t, x
X=a sinhy cos#, ——x, 0—m—0, and ¢p— 7+ ¢. (4 The nonstationary
coordinates can also be extended to the regions With
Y= a sinhy sinf cosa¢, >a. Define
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V=« sinht sinhy,

W= — « coshy,

X= a cosht sinhy cosé, (9)
Y = a cosht sinhy sin 6 cos¢,

Z= a cosht sinhy sin@sin ¢,

where —o<t<wo, 0<y<ew, 0<§<m, and O<¢p<2m.
The coordinatest(y, 8, ¢) cover the region withV< — «,
where the anti—de Sitter metric can be written as

ds?=a?[ —sini? ydt?+dy?
+coslt t sint? y(d6?+ sirfod¢p?)]. (10)

Anti—de Sitter space is multiply connected and has CTC’s
everywhere. For example, in the global static coordinéges
the world line withy = constg= const, andp= const(which
is the intersection of the hyperbola given by Et). with the
surface withX=const, Y=const, andZ=const) is a CTC
with the proper period 2« coshy. If we unfold the anti—de
Sitter space along the time coordindten the global static
coordinategthent goes from— to «), we obtain the cov-
ering space of the anti—de Sitter space, which is simply con-
nected with the topologyR* and does not contain CTC’s
anymore.(However, there is no Cauchy surface in this cov-
ering spacé27].) The Penrose diagram of the covering space
of anti—de Sitter space is shown in Fig. 1. Anti—de Sitter
space has maximum symmetry, which has one time transla-
tion Killing vector, three space rotation Killing vectors, and
six boost Killing vectors. In the local static coordinates in
(5), 9/t is a boost Killing vector. By the continuation

o ~
t%l—lEa, r—t, (11

where —x»<|<w% and —a<t<a, the local static coordi-
nates can be extended to the region withk |X| on the hy-
perbola defined by Eq.l), where the boost Killing vector
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FIG. 1. The Penrose diagram of the covering space of anti—de
Sitter space. The left vertical line represents the hypersurface in
anti—de Sitter space witk=0, where the global static coordinates

becomesi/Jdl and the anti—de Sitter metric can be written aS(t .0, 4) defined by Eq(3) are singular ¢=0). The right vertical

~o\ —1 ~5 line labeled with.7 represents null infinity Y=o). The horizontal
d=—| 1— t_ a2+ 1- t_ dI2 dashed lines represent hypersurfaces witlconst, the labels O7r,
a? a? and 2 refert/a=0, m, and 2r, respectively. The grey triangle

represents the region covered by the nonstatioiepgen cosmo-
4% 2(d6?+sir? 6d¢?). (12 logical) coordinatest, x, 8, ¢) defined by Egs(7) and(8). The two
isolated points labeled with* and i~ represent future timelike
In the covering space of the anti—de Sitter space, if we idenifinity and past timelike infinity, respectively. If the hypersurfaces
tify all points related by boost transformations, then we ob-with the global timet/@=0 andt/a= 27 are identified, we obtain
tain aMisner-like anti-de Sitter spaceWith this identifica-  the usual anti—de Sitter space with CTC'’s everywhere.

tion, there are CTC's in the region with/|<|X| but no
CTC's in the region with|V|>|X|. On the boundany}V|
=|X|, there are closed null curveld/|=|X| is the chronol-
ogy horizon.(See Fig. 2 for the causal structure of Misner-
like anti—de Sitter space.

A coordinate systemt(x,y,z) covering the regior/+ X
>0 of anti—de Sitter space can also be found, which are
given by
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27 27

ds?=(dw—wdy)2+dy?+ (y—ydi) 2+ (z—zdy)?,
(15

where s, y, andz are real butw is complex, and/ has a
period 27 [i.e., (w,y,y,z) are identified with (v,
+2nm,y,z) wheren=*=1+2,...]. They showed that this
space is a solution of the vacuum complex Einstein equation
with a negative cosmological constakt= — 3. Here we find
that, the Lorentzian section of the metric in Ef5) (i.e., let
w=it) is just the anti—de Sitter metric in E¢l4) with «

=1 (i.e., A=—3). Thus the Lorentzian section of the com-
plex space of Li, Xu, and Liu is just the Misner-like anti—de
Sitter space obtained from the covering space of the anti—de
Sitter space by identifying points related by boost transfor-
mations.

Ill. SELF-CONSISTENT VACUUM IN MISNER-LIKE
ANTI —de SITTER SPACE

Usually there is no well-defined quantum field theory in a
spacetime with CTC’s. However the problem can be worked
using Hawking's Euclidean quantization proced{18&8,34.
Alternatively, in the case where a covering space exists, we
can do it in the covering space with the method of images. In
fact, in most cases where the renormalized energy-
momentum tensor in spacetimes with CTC’s has been calcu-
lated, this method has been ugéat the theoretical basis for
the method of images see RdB], and references cited

FIG. 2. The Penrose diagrams of the Misner-like anti—de Sittetherein. Thus we will begin by using this method to deal
space constructed by identifying points related by boost transforma%ith quantum field theory in anti-de Sitter space and
tions in the covering space of anti—de Sitter space. With these boo#flisner-like anti—de Sitter space.
transformationsA and A’ are unchangeda) In the left diagram, Anti—de Sitter space is conformally flat. With the trans-
the light and dark grey regions represent unit cells in the Misnerformation y’ =2 arctareX— 3, the anti—de Sitter metric in
like anti—de Sitter space, whose opposite bounddtieavy dashed Eg. (4) can be written as
lines) being identified. The chronology horizod* and CH™

0 0

separate the regions with CTC(the dark grey regionsfrom that _ 2 a2 2 —di2+dy’2
without CTC's (the light grey region (b) The right diagram is ds’=a” costt xds“=a cosff XL —dt+dy
equivalent to the left one, except that the fundamental cell is chosen +sir? x' (d#%+sir? 6d¢?)], (16)

to be one bounded with null hypersurfacés. is the image ofE

der the boost t f tion. ~ . . .
under the boost fransformation where ds?=—dt?+dy’2+sir? ' (d9?+sir? 6d¢?) is the

metric of the Einstein static universe. With more transforma-

Y=y, tion r=siny'/[2(cost+cosy’)] and t'=sint/[(cost
. +cosy')], the metric of anti—de Sitter space can be written
=z as

where —owo<t,i,y,z<w. With these coordinates, the

024 2—_O2r _ 12 2 2 2 H 2
anti—de Sitter metric can be written as ds’=0%ds’= 0% —dt*+dr+r2(d6” +sin” 6dg?)],

17

ds?=— (dt—td )%+ a?dy?+ (dy—ydy)?+ (dz— zdy)>. —
( Y)"+ atdyt (dy=—ydyg) ‘!’()14) where ds= — dt'2+dr2+ r2(d 62+ sin? 6de?) is just the
Minkowski metric, and()? is given by

dldy is a boost Killing vector. In the covering space of ) ) )

anti—de Sitter space, if the points,{,y,z) are identified Q?=4a? cosltx(cost + coshy)?. (18)

with (t,+2nm,y,z) (n=x1,+2,...), we obtain a

Misner-like anti—de Sitter space. In this space there ar&quation(17) demonstrates that anti—de Sitter space is con-

CTC’s in the regions with>>a?+y?+ 2%, but no CTC'sin  formally flat.

the region witht?< a?+y?+ 72. For a massless conformally coupled scalar field in a con-
In 1993, Li, Xu, and Liu[13] constructed a complex formally flat spacetime, there exists a conformal vacuum
spaceSt X R® with the metric whose Hadamard functio®®(X,X") is related to the Had-
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amard functiorG(®)(X,X") of the corresponding vacuum of have Rab Agaba R=4A, and thus WH,,=0, ®H,,
the massless conformally coupled scalar field in flat= 3A%0an=(3/a")gap. Inserting these into Eq(20), we
Minkowski space vid 35] have

GU(X,X)=Q X)) GV(X,XHQXX"). (19 = 1
<Tab>ren= Q 4< Tab>ren_ 9602 5ab- (23
The corresponding renormalized stress-energy tensors are re-

lated via In Minkowski spacetime, for the massless conformally
. 1 1 coupled scalar field with the Minkowski vacuum, the Had-
(TP ren= Q@ HTP) rent 6.2 9 (UH, P+ 2a, (3)Hab} amard function is
(20 1 1
G (X, X")=5— :
where ¢ 27 —(t' —t")24r2+1'2—2rr 'cos0),

1 (24)
WH,,=2V,V,R—29,,V°V.R— ERzgava 2RRyp, o
21) where cp:@z:cosacos.a’ +sin#sin ' cos(@—¢'). The cor-
responding renormalized stress-energy tensor of the
2 1 1 Minkowski vacuum is
(B)Hab: RaCRcb_ § RRap— E RcdRCdgab+ Z RZgab )

(22) <?ab> ren= 0. (25
and for scalar field we hava,= 13 and az=— 355 [35]. Inserting Eq.(24) into Eg. (19), we get the Hadamard func-

[The sign before 1/16° is positive here because we are tion for the massless conformally coupled scalar field in the
using signature €,+,+,+).] For anti—-de Sitter space we conformal Minkowski vacuum in anti—de Sitter space

1 1
GEu(X.X")= 7 —— , (26)
“a? cog (t—t'")/ a]coshy coshy’ —1—sinhy sinhy’ cos®,

where ¢, x, 6, $) are the global static coordinates of anti—de 3 1
Sittzr_t_space. ClearlG{}), satisfies the periodic boundary At 2t 50,8 = 0 (30)
condition

(1) tx.0.b:t" o ") If A=0, the two solutions to Eq(30) are a=«, which
u(tx, 0.4t X", 60", ¢’ corresponds to Minkowski space; and=i(3607) 2,
_ W VRS which corresponds to a de Sitter space with radias
Gom(t2nmax,0.6:".x".0",¢"), (27) =(3607) Y2 Thus, if the bare cosmological constaft
thus it is a suitable Hadamard function in anti—de Sitter=0, there is no self-consistent anti—de Sitter sp@ieugh
space which has CTC’s everywhere. Inserting &) into  there are a self-consistent de Sitter space with raffiys
Eq.(23), we get the renormalized stress-energy tensor for the= (360m) ~ 12 136,22 and a self-consistent Minkowski
massless and conformally coupled scalar field in the conforspacg. If A<0, the two solutions to Eq30) are

mal Minkowski vacuum in anti—de Sitter space
A
1 a?=——|1+/1- )>o (31)
(Tab>ren: - mgaba (28) 2A 2170m

. . . . which corresponds to an anti—de Sitter space with radius
which is the same as that for de Sitter space with radius 4 P P :
If we insert the energy-momentum tensor in E2p) into

the semiclassical Einstein equations 3 ( A
a?=——|1-+/1- )<o (32
Gab+Agab:87T<Tab>ren- (29 2A 270w

and recall that for anti—de Sitter space we h&g=R,, which corresponds to a de Sitter space with radids (If
—3Rg.p=(3/a?)gap, We find that the semiclassical Einstein A>0, the two solutions both correspond to de Sitter spaces
equations are satisfied if and only if [22].) It is interesting to note that i\ <O there are two
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self-consistent spaces, one of which is an anti—-de Sittewith the conformal relation between anti—de Sitter space
space, and the other is a de Sitter space. EquéBiOntells  and Rindler space given by Eg&5 and (36), the time
us that, if A<O and a?<0, we have|a|<(3601-r)*1’2, coordinatet of the anti—de Sitter space in local static coor-
which implies that the self-consistent de Sitter space supdinates is mapped to the Rindler time coordingte Con-
ported by a negative cosmological constant has a substruct a Misner space with all 7%{(+nng,¢,y,2) (n=0,
Planckian radius(See Sec. V for further discussion. +1,...) identified, then the map given by E5) gives
For the Misner-like anti—de Sitter space which is obtainedrise to a Misner-like anti—de Sitter space with all (
from the covering space of anti—de Sitter space by identify—+nt,,r,6,¢) (n=0,%+1, ...) identified, where
ing points related by boost transformations, as in the case of
Misner-like de Sitter spacg2], it is easy to show that the
adapted conformal Minkowski vacuum is not a self- to=ang. (39)
consistent quantum state for the massless conformally
coupled scalar field. The renormalized stress-energy tens . .
of the adapted conformal Minkowski vacuum diverges as th%quanons(SS)—(SS) give a natural_confor_mal map between
chronology horizon is approached. But, as in the cases df > cf SPace and Misner-like anti-de Sitter space.
Misner spacd21] and Misner-like de Sitter spad@?2], we For a massless conformally_ coupled scalar field in M_|sner
can show that an adapted conformal Rindler vacuum is pace, t.he Hadamard function for the adapted Rindler
self-consistent vacuum state for a massless conformally"’muurn is[21]
coupled scalar field in Misner-like anti—de Sitter space. To
do so, it will be more convenient to write the anti—de Sitter 1 -
metric in the local static coordinat¢ggs. (5) and (6)] and GO(X,X")= 5 2
the Minkowski metric in Rindler coordinates 20

ds?= — £2d %+ d&2+dy?+d 2, (33 y Y
£¢' sinhy[ —(n— 7' +nno)?+¥*]’

where the Rindler coordinateg(£,y,z) are defined by

(39)
t= ¢ sinhy,
x= £ coshy, wherey is defined by
(34)
— 2+12+ _72+Z_Zr2
y=Y, coshy= £ (y2 YPHEm) gy
z=z2, 43

where ¢,Xx,y,z) are the Cartesian coordinates in Minkowski

. ] . The corresponding renormalized stress-energy tensor of the
spacetime. With the transformation b 9 9y

adapted Rindler vacuum [1]

T -3 00 0
B NP (T e 1 [(2_77)4_ 1 00
€= (Tajcosho—1* w R 142007 | g 0 1 ol
(35) 0 00 1

(41

_ (r/a)sinhé cos¢
Y= la)coshe—1

which is expressed in the Rindler coordinates. We see that
(r/a)sinh@sin ¢ (T,;’)R,,?n (@lso(T ,,)rred T#")ryren diverges at the chronol-
Z:W’ ogy horizon where=0 unlessyy=2m. If ny=2m, how-
ever, we have(T,")r =0 throughout the Misner space
(though Rindler coordinates cover only a quadrant in Misner
space, the results can be analytically extended to the whole
Misner spacg21,22 where(T,")g reniS also zero, sef22]
dg?=02ds?=0%(- £d P+de+dy?+d2), (36) for further discussion
Inserting Eq.(39) into Eq.(19), we obtain the Hadamard
hereQ? is function for the adapted conformal Rindler vacuum of the
massless and conformally coupled scalar field in Misner-like
Q?=a?[(rla)coshg—1]2. (37)  anti—de Sitter space

where t,r,0,¢) are the local static coordinates in E®),
the anti—de Sitter metrit6) can be written as
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1 - 0%
GER(XX)=>— 2 : (42
270 == sinhy (1 a®—1)(r'2/a®—1)[ — (t—t' +ntg) 2+ a2y?]
wherey is written in (t,r,6,¢) as
1 J rr’
coshy= 1— —[coshf coshd’' —sinhdsinhd’ cogdp—d')] ;. (43
- 11221 &2
|
Clearly the Hadamard function in E¢2) satisfies the peri- IV. TRANSITION BETWEEN de SITTER AND
odic boundary condition ANTI —de SITTER SPACES
GU(,r,60,¢)=GI(t+nty,r,0,b) (44) Phase transitions play important roles in the evolution of
Y R the early universe. With phase transitions various bubbles
wheren=0,+1, ..., thus it defines a reasonable quantumcould form; inside and outside the bubbles the spacetimes

state in the Misner-like anti—de Sitter space. Inserting Eghave different stress-energy tensors and thus are described by
(41) into Eq. (23), we obtain the renormalized stress-energydifferent spacetime metrids8,39. The inside and outside
tensor of the adapted conformal Rindler vacuum of the conef a bubble are separated by a wall—a spacetime structure
formally coupled scalar field in Misner-like anti—de Sitter which can be approximately treated as a three-dimensional

space hypersurface. Usually it is assumed that the outside of the
bubble is in a state dominated by a positive cosmological

(T.%) _ 1 [(2ﬂa)4_ constant at GUT(or Planckian scale. Thus the spacetime
w TCRIEMT 1 440m2a*(rY a®— 1)\ to metric outside the bubble is well approximated with a de

Sitter metric. Inside the bubble, the cosmological constant

-3 000 could be zero and the stress-energy tensor could be zero thus
0 1 00 1 ) the spacetime inside would be Minkowskian—which is a

“I' 9 0 1 ol 9e0nZato 49 model of inflation decaying through a first-order phase tran-
o 0 0 1 sition in the old inflation theory30]; or, inside the bubble

the cosmological constant could also be positive and at GUT
éor Planckian scale so the spacetime inside the bubble is still
inflating, but after a while the cosmological constant falls off
a plateau and evolves classically to zero and the universe
inside the bubble enters a hot Big Bang phase—which is a
model of transition from inflation to an open Big Bang cos-
ty=2ma, (46) mology through a second-order phase transition
[36,37,31,32 But, either via the first-order phase transition
we get a renormalized Stress_energy tensor which is regu|é}r the second-order phase tranSition, as another alternative,
throughout the Misner-like anti—de Sitter space the inside of the bubble could become dominated by a nega-
tive cosmological constant instead and thus the spacetime
inside the bubble would be described with an anti—de Sitter
<Tab>CR,ren=_m9ab’ (47 metric. In this paper we are interested in this case since
anti—de Sitter space has CTC's.
which is exactly the same as that of de Sitter space and In this paper we will discuss bubbles that are pre-existing
anti-de Sitter space[Though the local coordinates rather than ones that form by quantum tunneling. We thus
(t,r,8,¢) cover only the region withV|<X in anti—de Sit- only consider how to glue a de Sitter space and an anti—de
ter space, the results can be easily extended to the whofgitter space together at a bounddrg., at a wall, and we
Misner-like anti—de Sitter spadgvhere(T,p)crreniS finite  investigate the causal structure of the spacetime so obtained.
and given by Eq(47)), as in the cases of Misner space and The conditions for two spacetimes to be glued together
Misner-like de Sitter spacg1,22.] along a wall(so that the Einstein equations are satisfied at
Similarly, the Misner-like anti—de Sitter space solves thethe wall are[40]: (1) the metrics on the wall induced from
semiclassical Einstein equation with a negative cosmothe spacetimes at the two sides agr@e;the surface stress-
logical constant A and the energy-momentum tensor energy tensor of the wall defined byS,?

where the coordinate system is the local static coordinat
system {,r,0,0). Again, (T.")cRyen (also
(T crred T*")crren diverges at the chronology horizon
r=a, unlessto=2ma. But, if

in Eq. (47) (and thus is self-consistantif «? =lim._o /€ .T,2dn should satisfy(in the Gaussian normal
=—(3/2A)(1+1—A/270m). coordinates near the wall
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n?n,

8 (48)

(vl —ysh),

S'=$/=0, Si=-

wheren? is the normal vector of the hypersurfaBeof the
wall (n®n,=1 if the X is timelike; n®n,=—1 if the wall is

spacelike. Regardiny as a hypersurface embedded in either
the spacetime inside it, or the spacetime outside it, by the

PHYSICAL REVIEW D 59 084016

where O<t<ewo, 0<y<oo, 0<#<m, and O<p<2w. The
coordinates f, x, 0, ¢) in Eq. (54) cover the region on the
hyperbola(52) with V>0 andW> g, where the de Sitter
metric can be written as

ds?= B%{— dt?+sintPt[ dx?+ sinl? x(d 6>+ sir? 6d )1}
(55)

first condition,X should be either timelike or spacelike in The sectiort=const in de Sitter space is an opée., nega-

both. Here we do not consider the case of a null Jyalhd

Yab=[Kap]=Kap—Kap (49
is the difference of the extrinsic curvature bfembedded in
the spacetimes at the two sides of the walD], and y
=y,2. The definition for the extrinsic curvatute,, is K,
=V.n, where we have treated? as an vector field in the

neighborhood oE extended from the normal vector defined

only on 3. In the Gaussian normal coordinates Xf the
components oK, can be written as

1 oh
=— ladd
Kuv 2 on

(50

(Here we use the definition of the extrinsic curvatifg,
with an opposite sign as that used[#0].) The evolution of
the wall is governed by

Si;+[T"]=0, (51)

where “|j” denotes the covariant derivative associated with

the three-metridy;; on X. (Here the Greek letterg, v, . ..

label vectors and tensors in the four-dimensional spacetime,
label vectors and tensors in the

the Latin lettersi,j, . ..
three-dimensional space.)
de Sitter space is a hyperbola

—V2+ W2+ X2+ Y2+ 7%=, (52
embedded in a five-dimensional spaRewith the metric

ds?=—dV2+dW2+dX?+dY?+dZ2. (53

tively curved, homogeneous, and isotropic space. The met-
ric in Eq. (55) could describe an open inflatig86,37. The
coordinates f, x,6,¢) in Eq. (54) can be extended to the
region withV<<0 andW> g by the reflectiort— —t and y
——x, 0—a—0, and p— 7+ ¢. (2) The coordinates in
Eq. (54) could be extended to the region wittw|<g. De-
fine

V= Bsinht cosy,
W= gsiny,

X= B cosht cosy cos#, (56)

Y = cosht cosy sin 6 cos¢,
Z= B cosht cosy sin@sin¢,

where —o<t<w, —72<y<w/2, <0<, and O<¢
<24, then the de Sitter metric can be written as

ds?=B?[ —cos ydt?+dy?

+cosltt cog y(d6?+sir? 6d¢?)]. (57)
The coordinatest(y, 6, ) cover the region withw|< g in
the de Sitter space as a hyperbola given by 6§). The
Penrose diagram of de Sitter space is shown in Fig. 3.

By gluing anti—de Sitter space onto de Sitter space we can
obtain various spacetimes with CTC’s. These spacetimes
with CTC'’s differ from the anti—de Sitter space with CTC's
by the fact that in these glued spacetimes there are regions
without CTC’s which are separated from the regions with
CTC's by chronology horizons, while in the usual anti—de

de Sitter space is a solution of the vacuum Einstein equatiorSitter space CTC's exist everywhere. Here we only show one

with a positive cosmological constant=3/82, which has
maximal symmetry(it has six space rotation Killing vectors
and four boost Killing vectops There are various coordinate
systems for de Sitter spaf€1,27,39. For our purpose here,
the following two coordinate systems are conveni€htDe-
fine

V= B sinht coshy,
W= B cosht,
X= B sinht sinhy cosé, (54)
Y = B sinht sinhy sin# cos¢,

Z= B sinht sinhy sin ésin ¢,

typical example, which is obtained by gluing an anti—de Sit-
ter space onto a de Sitter along a timelike hypersurface
(n®ny=1). This spacetime could describpe a bubble of
anti—de Sitter space existing for all time in an eternal de
Sitter space.

Consider a de Sitter space as a hyperbola described by Eq.
(52) in the embedding space with the metric in E5g). Cut
this de Sitter space along the hypersurfagewith W=w;,
>0 and throw away the part witW>w, . Denote the part of
the de Sitter space wittW<w; asdS" . Then we have a de
Sitter space with a boundary; at W=w;. Supposew;
<, thenX is timelike. In such a case, the hypersurfage
is a three-dimensional timelike hyperbola withVZ+ X2
+Y2+ 7%= g2—w2>0. With the coordinates in E¢56), 3,
is at y=arcsinv;/B). The metrich,, on X, induced from
the de Sitter metric is
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j+

22

22

J FIG. 4. A schematic diagram for the spacetime obtained by
gluing a de Sitter space to an anti—de Sitter space along a timelike
wall. The vertical hyperbola of one shd&a the lef) represents a de
Sitter space in the embedding space of EsB), the horizontal
hyperbola of one shedto the righ} represents an anti—de Sitter
space in the embedding space of E2). They are glued along a
timelike hypersurfacda bubble wall on which a surface stress-
energy tensor is induced so that Einstein equations are satisfied
there. The two embedding spaces match at the bubble Wdall (
=const). The Penrose diagram of this spacetime is shown in Fig. 5.

FIG. 3. The Penrose diagram of de Sitter space. The d&/erg
the antipodal point of the evef The upper horizontal line labeled
with 7" represents future null infinity, the lower horizontal line
labeled with7 ™ represents past null infinity. Twduture and past
light cones fromE andE’ are shown. The curve labeled willy,
represents a timelike hypersurface with=cons 8. The curves
labeled with>,* represent the spacelike hypersurfaces vilh
=const> B (two leaves.

ds2= (82— wA)[ — dt?+ cosi? t(d 62+ sir? 6d¢?)].

(59 K= ab - (61)

The normal vector oE is n®=g8"1(a/dx)3(n®n,=1). The

extrinsic curvatureK,;, of %, is To glue the anti—de Sitter space and the de Sitter space
together, let us identif%; with >, by identifying their co-
w; ordinates t,0,¢). The spacetime so obtained is schemati-
Kab=— —7===Nab- (59 cally shown in Fig. 4. In the sections witti=const in de
BB —wi

Sitter space and anti—de Sitter spaceSaiis glued together

with an H?® at a cross sectioS?. From Eqgs.(58) and (60),

Consider an anti—de Sitter space as the hyperbola givefhe metrich,, onS,=3,=3 induced from de Sitter space
by Eq.(1) in the embedding space with the metric in E&).  5nd anti—de Sitter space agree if and only if
Cut the anti—de Sitter space along the hypersurtagavith

W= —w,<0, throw away the part witW<—w,. We de-
note the anti—de Sitter space witi>—w, as AdS . Then
we have an anti—de Sitter space with> —w, and a bound- _ _
aryS, atW=—w,. Supposav,> a, then3,, is timelike. In By gluing two spacetimes alo_ng_ a hypersurface, usually a
such a casey, is a three-dimensional timelike hyperbola surface stress—.energy tensor is induced. The surfaqe stress-
with —V2+X2+Y2+22=w§— «?>0. With the coordinates €Neray tgnsor mdgced on th_e hypersurf&m deter_mm_ed
(t.x.0,4) in Eq. (9), the hypersurfaceS, is at x by the d|ﬁerence in th(_a extrinsic curvature Bf_l. whlch is

— arccosh(v,/a). The metrich,, on 3, induced from the embeddgd in the de Sitter space and the_ extrinsic curvature
anti—de Sitter metric is of 3, which is embedded in the anti—de Sitter space through
Eqg. (48) with n®n,=1. By inserting the extrinsic curvatures
derived above into Eq$49) and(48), we obtain the surface
stress-energy tensor far:

w2+ ws=a?+ B2 (62)

dsi=(W3— a?)[ —dt?+ cosK t(d#%+ sir? 6d$?)].
(60

The normal vector o, is n®=—a 1(d/dx)3(n?n,=1). S - 1 ( \/1+ MZ_ \/1_ w
The extrinsic curvatur&, of 3, is " Aqu a? B2

Nap (63
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whereu = \w5— a?= /8%— w3, the metrich,, on the time-
like X is given by

ds’=pu?[—dt®+costt t(d?+sir® 0dp?)].  (64)

The surface stress-energy tensor given by &8) is like a
positive three-dimensional cosmological constant. The time-
like hypersurfaces with the metric (64) is a three-
dimensional de Sitter space. The Penrose diagram of th T*
spacetime obtained by gluing dSwith AdS* along the
timelike X is shown in Fig. 5. There are CTC's in the region
of dS~ with W> — 8 and the whole AdS. But there are no
CTC'’s in the region of dS with W<— B. The null hyper- &
surfaceW= — B is the chronology horizon which separates G
the region with CTC'’s from that without CTC'§See Fig. 5.
Mathematically, a de Sitter space can also be glued to ar
anti—de Sitter space along a spacelike hypersurface, the re
sultant spacetime has similar properties as the example de
scribed above. The surface stress-energy tensor induced &, ds4 = AdS e E;
the spacelike hypersurface is like a negative cosmologica
constant in a three-dimensional Euclidean space. The space
like hypersurface is a three-dimensional hypertiefa The
causal structure of the spacetime obtained by gluing a de
Sitter space to an anti—de Sitter space along a spacelike hy C}%
persurface is the same as that of the spacetime obtained &
gluing a de Sitter space to an anti—de Sitter space along |
timelike hypersurface. There are CTC's in the region of dS
with W>— g8 and the whole AdS. But there are no CTC'’s
in the region of dS with W<— 8. The null hypersurface J
W= — B is the chronology horizon which separates the re-
gion with CTC’s from that without CTC'’s. For both cases,
we haveT"=0 andh';=0, thus the evolution equation SN
(5)) is satisfied automatically.
From Egs.(63) we see that ifu—0, i.e., if 3 becomes
null, we haveS,,— 0. Though the coordinates, §, 8, ¢) are
singular at the null with w;= g andw,=«a, we can show
that asu—0, the scalar§=h?3°S,, and$?*S,,, also vanish L _ _
as u—0. (These conclusions also hold ¥ is spacelike. _ _ _
However, since the metrio,, on a null hypersurface is de- . FIG. 5. Th? Penrose d'agram. of the spacetime Ob.ta'n'?d by glu-
generate, the formalism discussed above cannot be used ing anti—de Sitter space to de Sitter space along a timelike hyper-

: ] surface. The heavy curve labeled wEhrepresents a timelike hy-
the junction at null hypersurfaces. Thus the case of Bull ersurfacgthe bubble wall on the left side of which there is a de

I’e’quires more discgssipn. Here we .do ”C?t diSCl.JSS this C(mg'itter space (d9, and on the right side of which there is an
plicated but interesting issugror detailed discussions on the .~ 1 Sitter space (AdE On the anti—de Sitter side, the space-

junction conditions at null hypersurfaces, see RBf2,43.)  |ixe hypersurfaces denoted with two dashed lines are identified.

This spacetime contains CTC's in the grey region, but no CTC’s in

V. SELF-CONSISTENT VACUA FOR SPACETIMES the blank region. The region with CTC’s is separated from that
WITH CTC'S without CTC’s by the chronology horizot=. J*, J, andJ

. . . ) . represent future null infinity, past null infinity, and null infinity,
As discussed in Sec. lll, an anti—de Sitter space with rarespectively(Compare with Fig. 4.

dius « is self-consistenti.e., the semiclassical Einstein equa-
tions (29) are satisfied wit T ,p)en being the renormalized 3 1
stress-energy tensor of vacuum polarizatidrthe negative AzZ?( 1- W)
cosmological constant is

(66)

A, is always negativeA, could be either positive or nega-
A :_i(1+ 1 ) (65) tive, depending on the value ¢g8. From Eg. (66), if 8
7 a2 360ma?®)’ >(3607) Y2, A, is positive; if B<(3607) Y2 A, is
negative. Thus, interestingha de Sitter space with sub-
while a de Sitter space with radiysis self-consistent if the Planckian radius could be self-consistent only if the bare
cosmological constant {22] cosmological constant is negative
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From Eqgs. (65 and (66), we see that if 8 If Egs. (62) and(71) are satisfied simultaneously, the space-

<(3607) "2 A,;=A, if and only if time obtained by gluing the de Sitter space to the anti—de
Sitter space is self-consistent and has a unique negative bare

1_1236% 67) cosmological constant through both de Sitter and anti—de

B?  a? ' Sitter regions. Such a solution is very interesting. The semi-

] . ] . ~ classical Einstein equations with a negative bare cosmologi-
This together with Eq(62) gives a self-consistent spacetime ca| constant can have two self-consistent solutions, one being
which is obtained by gluing a de Sitter space to an anti-d@n anti—de Sitter space, the other being a de Sitter space.
Sitter space witha unique negative bare cosmological con- These two spacetimes could transit from one to the other

stant throughoutThis could be realized since for a negative across a bubble walthrough whatever quantum processes
cosmological constant there are two self-consistent solutiongithout changing the cosmological constant.

of the semiclassical Einstein equations, one is anti—de Sitter Byt, for Misner-type spaceisner space, Misner-like de
space, the other is de Sitter space, and these two could Stter space, or Misner-like anti-de Sitter spadke situa-
glued together—as discussed in Sec. lll. _tion for matter fields other than the massless and conformally
The spacetime obtained by gluing a de Sitter space witlgoupled scalar field is more complicated since the self-
an anti—de Sitter space as discussed in the last section, isc8nsistent vacua are not Lorentzian, de Sitter, or anti—de
self-consistent solution of the semiclassical Einstein equasitter invariant. To see thiS, let us consider the e|ectromag_
tions if Eqs.(65) and(66) are satisfied and on the wall sepa- netic field in Misner space. As an alternative to the method
rating the de Sitter region and the anti—de Sitter region thergf images, Euclidean quantization is another more powerful
is a surface stress-energy tensor given by E&@. Since the  too| for dealing with quantum field theory in an acausal
Hadamard function is continuous across the wile Had-  space[33,34. The Euclidean method provides a convenient
amard function does not contain any derivatives of the methridge between the conical space around a cosmic string
I‘IC?, the wall does not introduce any additional vacuum pO'[44,43 and Misner space, which could Convenient|y trans-
larization effects. . . late the results of quantum field theory in a conical space to
The above discussions of self-consistent solutions are foghat in Misner spacésince a conical space and Misner space
a massless conformally coupled scalar field in de Sitterhave the same Euclidean section—the Euclidean conical
anti—de Sitter spaces. The results can be easily extended §pace. In [20], from the well-known renormalized stress-
other matter fields. If their vacua are invariant under deenergy tensor of the conformally coupled scalar field in the
Sitter/anti—de Sitter transformations, it could be expecte¢onical space around a cosmic string, using the Euclidean
that their renormalized stress-energy tensor should have thgethod(first translate the results in the conical space around
form of a constark g, . If there are many matter fields with the string to that in the Euclidean conical space, then trans-
their vacua belng invariant under de Sitter/anti—de Sltteuate these results to that in Misner Sph(@assidy has suc-
transformations, the renormalized stress-energy tensor coulgssfully predicted that there should be a quantum state with

be written as vanishing renormalized stress-energy tensor in Misner space
when the boost parametey is 277, which corresponds to no
(Totdrer= — 9*2 Oabs (68) cosmic string. With Li and Gott’s independent discovery of
960r the self-consistent vacuum statean adapted Rindler

vacuum for a conformally coupled scalar field in Misner
whereg, is a dimensionless number determined by the numspace[21], Cassidy’s prediction has been confirmed. And,
ber and spins of matter fields existing in the de Sitter/anti—-deéhe Euclidean quantization procedure gives a beautiful geo-
Sitter space with radius, (ro= e« for anti—de Sitter space, metrical explanation for the self-consistent vacua in Misner-
ro=p for de Sitter space, in practigg, ~100). Correspond- type spaces namely that whesy=2 the corresponding
ingly, with the appearance of many matter fields with de-Euclidean section is flat with no conical singularity and thus
Sitter/anti—de Sitter invariant vacua, Eq$5) and (66)  has (T «Yren=0 throughout[21,22. Recently, with the
should be replaced by method of Euclidean quantization, Li and Gott have found a
self-consistent vacuum for a model of inflation in the
A=— |1 O« ) (69) Kaluza-Klein theory, and found a relation between the fine-
1 y . . . .
structure constant and the inflationary energy scale which is
consistent with the energy scale usually talked about in in-
and flation and GUT theory46]. Thus, we adopt the method of
Euclidean quantization.
A :i<1_ 9« ) (70) The Euclidean section of Misner space is a Euclidean
2 p? 3607 3?)" conical space with metricds?’=d&2+ £2d 2+ dy?+d 72
where ¢,¢,y,2) is identified with ¢, ¢+ndg,y,z) (n
A4 is always negativeA, is negative if3<(g,/360m)"2,  =+1+2 . ). If we make the continuations—i» and
positive if 3> (g, /360m) 2. And, A;=A, if do—1imo, We obtain Misner spad@1]. (On the other hand,
if we make the continuatiog—it, we obtain the spacetime
_ i=36077971 (71) of a cosmic string. The quantum field effects in the conical
a? * space have been investigated by many pedgde[47,48

1
B
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and references thergirirhus, for the electromagnetic field in tween the Lorentzian and Euclidean sections. This raises a
the Euclidean conical space, the renormalized stress-energyiestion as to the procedure of Euclidean quantization: is the
tensor of vacuum polarization is Euclidean quantization still valid for the electromagnetic
field in Misner space? A fundamental requirement for Eu-
1 277)2 1“(277 2
bo bo

) clidean quantization should be thdtiring the continuation
<TM >ren: 72077_254

between the Lorentzian section and the Euclidean section,
the Einstein equations should be preservetherwise the

+11

1 0 0 O Euclidean quantization loses its significanddote that if we
0 -3 0 O first take ¢o= 27 in the Euclidean section of Misner space,
X o o 1 ol (72 (T,")ren Will be zero in the Euclidean section according to
Eq.(72). Then, if we use the continuatiap—i 7 and ¢, (in
0O 0 01 this case=2m)—i 7q (in this case=i2m) when going from

the Euclidean conical space to Misner space, naturally we
where the cylindrical coordinatesé(p,y,z) are used. expect “zero” should be continued to “zero” in the renor-
Clearly, if ¢g=2, the renormalized stress-energy tensor ofmalized stress-energy tensor. Then we should expect that the
the electromagnetic field is zero and thus the semiclassicdll ,”), in the Misner space should also be zero, which
vacuum Einstein equatior(ge., the Einstein equations with would conflict with the results obtained above by going to
the renormalized stress-energy tensor being that of vacuumhe Lorentzian section first and then setting=2=. What
polarization) are satisfied. This is what we expect since forcauses this non-self-consistency?
¢o= 2 the Euclidean conical space becomes the regular flat If we check the continuation procedure carefully, we find
Euclidean spac&*. But, when the Euclidean conical space that the problem is at renormalization. In the Euclidean sec-
is continued to Misner space liy—in and ¢y—ing in Eq.  tion, the renormalization is equivalent to subtracting from the
(72), the renormalized stress-energy tensor becomes original nonrenormalized Hadamard functi@(X,X’) a
reference Hadamard functig®{%(X,X") with ¢o=2, i.e.,

(T 1 [_ 2_7T>2_1H_(2_7T 2+11 the regularized Hadamard function is
# e T20m g 7o 70 (1) , 1) ) (1) )
Greg(xlx 1¢O):G( (X,X 1¢O)_Gref(xix 1277)1
-3 0 0 O (74)
0O 1 0 O
X o 0 1 ol (73  where
0 00 1 Gl (X,X";:2m) =GN (X X";¢o=2m). (75

where the Rindler coordinates;(¢,y,z) are used. We see [|f we make the continuation witkpb—i» and ¢o—ino but
that, unlike the case for a massless conformally coupled sceep#o= 27 unchanged irG(y), G} would be continued
lar field, even ifpy= 21, the renormalized stress-energy ten-as

sor given by Eq(73) is nonzero. In facT,")enin EQ. (73)

diverges att=0 unlessyo=27/\11. If 7o=2m/\11, the Gl f(&.b.y.Z;E ¢y .2 po=2)

T, )rengiven by Eq.(73) is zero and thus it would solve the _ et .

<se;rtni>classical Einstein equations for this locally flat space. —Glef(&iny.zE in' Yy 2 po=2m=in9), (76)
But, if this were a self-consistent solution, it would be sur- _ 1) : _ o

prising that the self-consistent vacua of different matteitn€n the obtaine@y in the Lorentzian section is the usual

fields have different values af,. Recall that, for the mass- Hadamard function for the Minkowski vacuufsee[35)),

less conformally coupled scalar field the self-consistenfnd the corresponding ren(_)rmahzclad stress-energy tensor
vacuum haspe=2m ([21,22, and Sec. Il of this papgr (which is obt:?un_ed by operating O@Eegj Wlth a @ffereqﬂal
And, for the case withy,= 21, there is an excellent geo- ©OPerator35)) is just given by Eq(73). But, in this continu-
metric explanation: the corresponding Euclidean section wittation procedure, it would be surprising why in bafy) and
¢do=27 is the regular Euclidean spa& without conical G™@ the parameters, was changed tdz, but in G§§ the
singularity[21,22]; while for 7;0=277/\El, we cannot find parametekpy,= 27 was unchanged, thus this procedure is not
any simple geometric explanation. Another surprise wouldself-consistent. The result of this non-self-consistent proce-
be that, for the case of the electromagnetic field, the Eucliddure is that the semiclassical Einstein equations are broken,
ean section withpy,= 2 is a self-consistent solution of the as mentioned above.

semiclassical Euclidean Einstein equations; but, by adopting For a flat Euclidean spade* with Cartesian coordinates
the continuationg—i» and ¢o—i 7o, the resultant Misner (7,X,y,z) and metricds’=d7?+dx?+dy?+dz, if we go
space withny=27 is not a self-consistent solution of the to the Lorentzian section by the continuation-it, the Eu-
semiclassical Einstein equations. This implies that the semiclidean spac&R? is naturally continued to the usual simply
classical Einstein equations are broken during this continuasonnected Minkowski space with Cartesian coordinates
tion: that is, with this particular continuation the solutions of (t,x,y,z) and metricds?= —dt?+ dx?+dy?+dz2. Since in

the semiclassical Einstein equations cannot be translated bte Euclidean section goes from—< to o, naturally in the
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ence Hadamard function is continued to be the Hadamard
function in the Lorentzian sectiofMisner spacg with 7,

in in =2r. With this self-consistent renormalization procedure,
instead of Eq(76), the reference Hadamard function is con-

ing ing tinued to be

i2x i2x Glef(£,0,Y.2:€ 8"y ,2'; po=27)

\\ —Gl(&iny.zE in Yy 2 ne=2m),
0 2 Po ¢ 0 2r do @ (77)
Old Continuation New Continuation

FIG. 6. A schematic diagram of the old and the new renormal-m_aklng all th_e problems m_entl_oned above go away. With
ization procedures. The horizontal lines are real axes, the verticzﬂ1IS Self-conSIStent_ renormalization procedure, instead of Eq.
lines are imaginary axes. The arcs with arrows represent the cort/ ), the renormalized stress-energy tensor of electromag-
tinuation from the Euclidean section to the Lorentzian sectign. Netic field in Misner space becomiesibstitutingi 7, for ¢
The left diagram describes the old renormalization procedure i@ndi2 for 27 in Eq. (72)]

Euclidean quantization. As one goes from the Euclidean section of

a conical space to its Lorentzian sectiOMlisner spacg ¢ is 1 2m\? 2m\?
changed td 5, ¢, is changed td 5,, while the parameter 2 in <TMV>ren:W (—) -1 (—) +11
‘ 70, o= & 0 7o
the reference Hadamard function is unchanged. With this old renor-
malization procedure, the semiclassical Einstein equations are bro- -3 0 0 O
ken during the continuation, as discussed in the téjtThe right 0 1 0 0
diagram describes the new self-consistent renormalization proce- % , (78)
dure in Euclidean quantization. With this new procedure, as one 0O 0 1 0
goes from the Euclidean section to the Lorentzian sectipris 0 0 0 1

changed toi , ¢ is changed td 7y, and 27 in the reference
Hadamard function is changed t87. The semiclassical Einstein

equations are preserved during this new continuation. in the Rindler coordinatesz,¢,y,z). Clearly, if 7o=2,

we have(T,")er=0 and thus the semiclassical Einstein
equations are satisfied. The situation is similar for massless

Lorentzian sectiort also goes from-—o o x. With this neutrinos in Misner space. If we make the continuatipn
continuation, the Hadamard function for the Euclidean ™. pace. b

vacuum in the EuclideaR* space—which is the reference ;Agrym(gﬁ;\;ig?{ 2r7cT)c_e>:ji7rTé vL\j/Zm%bt;?r? ths:”'rce?]gf'nsq:?zte q
Hadamard function for renormalization in the Euclidean P ’

section—is continued to the Hadamard function for thestress—energy tensor of vacuum polarization for massless

Lorentzian vacuum in Minkowski space—which is the refer-nemrInOS in Misner space
ence Hadamard function for renormalization in Minkowski 9

space. But in our case, we start with a flat Euclidean space (T, ver= (2_77)2_1}[(2_77 +17

R* with cylindrical coordinates &, ¢,y,z) and metricds? w1 B760m Y | 9o 70

=d&?+ £2dp?+dy?+dz? where ¢ has a period of 2. 300 0

When we go to the Lorentzian section by the continuation

¢—in, very naturallyn has also a period of 2. Then the 0 100

obtained Lorentzian section is a Misner space with the boost X o o0 1 ol (79
parameterny,= 2. With this continuation, the Hadamard 00 1

function for the Euclidean vacuum in the Euclidean
section—which is the reference Hadamard function for
renormalization in the Euclidean section—is continued to thavhich is also zero forpo=27. Thus, with the new renor-
Hadamard function for Li and Gott's adapted Rindler malization procedure, we obtain self-consistent vacua for
vacuum withn,= 27—very naturally which should also be €lectromagnetic fields and massless neutrinos in Misner
the reference Hadamard function for renormalization in Mis-SPace. It is very easy to check that this new renormalization
ner space. We start with the reference space for a Euclidedifocedure does not change the results for a massless confor-
conical space—which is the flat Euclidean space withoufnally coupled scalar field in Misner space. The Euclidean
conical singularity, and end with the corresponding referencéesult for a conical space is

space for Misner space—which is the Misner space with

1o= 2. This procedure is very natural. Therefore, here we -3 0 0 O
propose the followingelf-consistent renormalization proce- 1 2.7\ 4 0O 1 0 0
dure for quantum fields in Misner-type spaces: When we (T V>R’ren=ﬁ[(—) -

make the continuation from the Euclidean section to the g 1440m°¢7 | ¢o 0 010
Lorentzian section byp—i»n and ¢y—i 7y, we should also 0 0 0 1
make the continuation2— 127 (see Fig. &, then the refer- (80
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Substitutingi 7, for ¢y andi2# for 27 into Eq. (80) gives 1 217\ 2 27\ ?
Eq. (41) just as before. Thus, Li and Gott’s adapted Rindler L= 1440728 %) -1 o +11}, (82

vacuum[21] is still a self-consistent vacuum for the massless

conformally coupled scalar field in Misner space wil  \hich is zero everywhere ifjp=27. Thus the Lorentzian
=2m. These results can be easily transplanted to Misner-likgective action is also zero foy,= 2. This shows that, for

de Sitter space and Misner-like anti-de Sitter space, SinCgq selt-consistent vacuum in Misner space, the effective ac-
these f|eld_$mgssless conformally coupled scalar fields, elecyjon is zero. It can be expected that this result can be ex-
tromagnetic fields, and massless neutrjnm® conformally  tonged to other quantum fields or other spacetimes with
invariant and de Sitter space and anti—de Sitter space afeTC’s, where the(Euclidean or Lorentzianeffective La-
conformally flat. The results are: if the boost period isrg grangian would be finite throughout the spaaed thus the
(wherer is the radius of the de Sitter space or anti—de Sitte{gyclidean or Lorentzianeffective action would also be fi-
spacg, the renormalized stress-energy tensors are finite andite] for the self-consistent vacua. Thus Cassidy and Hawk-
given by Eq.(68) with g, =11/2 for one neutrino field and g5 argument that the effective actigar equivalently the

g, =62 for the electromagnetic field. With Eq&9) and  entropy enforce chronology protection is questionable.
(70), self-consistent solutions of the semiclassical Einstein

equations with cosmological constant can be found. Thus,
with our new renormalization method, various self-consistent

vacuum states in Misner-type spaces with CTC’'s can be From the covering space of anti—de Sitter space, a
found. Misner-like anti—-de Sitter space can be constructed. This
The chronology protection conjectuigl] was originally  Misner-like anti—de Sitter space has CTC'’s but the regions
based on the fact that for a massless conformally couplegith CTC's are separated from the regions without CTC'’s by
scalar field with the adapted Minkowski vacuum in the Mis- chronology horizons. In the appropriate coordinates, this
ner space the renormalized stress-energy tensor of vacuuffisner-like anti—de Sitter space is just the Lorentzian sec-
polarization diverges at the chronology horiZai. After the  tion of the complex space with CTC’s constructed by Li, Xu,
appearance of many counterexamgleg—20, Cassidy and  and Liu in 1993[13]. For a massless conformally coupled
Hawking[49] demonstrated that the backreaction of vacuumscalar field in this space, a self-consistent vacuum is found,
polarization does not enforce chronology protection. The rewhose renormalized stress-energy tensor is like that of a
sults in this papetand[21,22) support this demonstration. positive cosmological constant—which when added to an ap-
However, Cassidy and Hawkir[¢9] turned to the proposi- propriate negative bare cosmological constant can self-
tion that the effective action of matter fields in spacetimesconsistently solve the semiclassical Einstein equations.
with CTC’s always diverges at the chronology horizon and By gluing a de Sitter space to an anti—de Sitter space
that it is this that enforces chronology protection. The effecgiong a bubble wall, another new spacetime with CTC’s is
tive action plays an important role in Euclidean quantumoptained. This spacetime could describe the transition be-
gravity, which gives the probability for the creation of space-tween de Sitter space and anti—de Sitter space. In this space-
time through quantum tunneling. Consider a simple examplgme, the region with CTC's and the region without CTC's
of a massless conformally coupled scalar field in Misnergre separated via chronology horizons. For the de Sitter or

VI. CONCLUSIONS

space. The Euclidean effective Lagrangian densify& anti—de Sitter invariant vacua in these spacetimes, the renor-
) ) malized stress-energy tensors are like positive cosmological
_ 1 2_77 _ T constants. A self-consistent solution can be obtained if there

L= S 1 +11]. 81 ! ; ) . :
1440m°£%\ ¢ b0 is a single negative bare cosmological constant in the two

regions with the renormalized stress-energy tensor of
The Euclidean effective action is obtained by integrating the;acuum polarization adding different positive cosmological
Euclidean effective Lagrangian density over a suitable volconstants to the two sides of the bubble wall so that the
ume of the Euclidean section. Clearly,@# 2, the effec-  effective cosmological constaribare + renormalized is
tive Euclidean Lagrangian divergesét O (thus the Euclid-  positive on one side and negative on the other. On the hy-
ean effective action diverges if the domain for integrationpersurface separating de Sitter space from anti—de Sitter
includes the conical singularity = 0). But, if $o=27, we  space, in order that the Einstein equations are satisfied, a
have £=0, which is not surprising since whep,=2m the  surface stress-energy tensor should be induced. If the hyper-
conical singularity at =0 disappears and the Euclidean sec-surface is timelike, the surface stress-energy tensor is like
tion becomes the usual regular fRt space. The Euclidean that of a three-dimensional positive cosmological constant.
effective action is also zero since the Euclidean effective The self-consistent solutions of the semiclassical Einstein
Lagrangian is zero everywhere. By the continuatign equations with cosmological constant and the renormalized
—in, ¢o—ing, and with the self-consistent renormaliza- stress-energy tensor of vacuum polarization in de Sitter/
tion procedure outlined above, the reference Hadamard fun@nti—de Sitter space are investigated. If the bare cosmologi-
tion is continued to be that withyo=27 in Misner space cal constant is positive, there are two self-consistent solu-
(which means that the ratioi®2 ¢ in Eq. (81) is changed to tions, both of them are de Sitter spaces. If the bare
2wl 5y since po—iny and 2r—i27), then the effective cosmological constant is zero then there are two self-
Lagrangian for a massless conformally coupled scalar fieldonsistent solutions—one is Minkowski space and the other
in Misner space is is a Planckian scale de Sitter space. If the bare cosmological
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constant is negative, there are also two self-consistent solumalization procedure should be introduced. We have pro-
tions, one of them is an anti—de Sitter space, but the other isosed such a self-consistent renormalization procedure, with
a sub-Planckian scale de Sitter space. And, at the sulwhich self-consistent vacua for electromagnetic fields and

Planckian scale, self-consistent solutiofgther de Sitter
space or anti—de Sitter spaaxist only for a bare negative
cosmological constant.

The generalization to electromagnetic fields and massless

neutrinos are found.

ACKNOWLEDGMENTS

neutrinos in spacetimes with CTC’s are discussed. It is ar-

gued that, for Misner-type spacetimes, in order that the semi- | am very grateful to J. Richard Gott for many stimulating
classical Einstein equations are preserved under continuatiand helpful discussions. This research was supported by NSF
between the Euclidean and Lorentzian sections, a new renogrant AST95-29120 and NASA grant NAG5-2759.

[1] K. Godel, Rev. Mod. Phys21, 447 (1949.

[2] A. H. Taub, Ann. Math53, 472 (195J).

[3] E. T. Newman, L. Tamburino, and T. J. Unti, J. Math. Phjs.
915(1963.

[4] C. W. Misner, inRelativity Theory and Astrophysics I: Rela-
tivity and Cosmologyedited by J. Ehlers, Lectures in Applied
Mathematics, Vol. 8American Mathematical Society, Provi-
dence, 196} p. 160.

[28] L. Castellani, R. D’Auria, and P. Fr&upergravity and Super-
strings: a Geometric Perspectiy@&/orld Scientific, Singapore,
199)).

[29] E. Witten, J. High Energy Phy§, 006 (1998.

[30] A. H. Guth, Phys. Rev. 23, 347(198)).

[31] A. D. Linde, Phys. Lett108B, 389 (1982.

[32] A. Albrecht and P. J. Steinhardt, Phys. Rev. Ld®, 1220
(1982.

[5] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Lett.[33] S. W. Hawking, inGeneral Relativity: An Einstein Centenary

61, 1446(1988.

[6] J. R. Gott, Phys. Rev. Let66, 1126(1991).

[7] W. A. Hiscock and D. A. Konkowski, Phys. Rev. 26, 1225
(1982.

[8] V. P. Frolov, Phys. Rev. @3, 3878(1991.

[9] S.-W. Kim and K. S. Thorne, Phys. Rev.43, 3929(1991).

[10] J. D. E. Grant, Phys. Rev. B7, 2388(1993.

[11] S. W. Hawking, Phys. Rev. @6, 603 (1992.

[12] D. G. Boulware, Phys. Rev. B6, 4421(1992.

[13] L.-X. Li, J.-M. Xu, and L. Liu, Phys. Rev. D48, 4735(1993.

[14] L.-X. Li, Phys. Rev. D50, R6037(1994.

[15] T. Tanaka and W. A. Hiscock, Phys. Rev.92, 4503(1995.

[16] L.-X. Li, Class. Quantum Grawl3, 2563(1996.

[17] S. V. Krasnikov, Phys. Rev. 54, 7322(1996.

[18] S. V. Sushkov, Class. Quantum Graw, 523(1997).

[19] M. Visser, Phys. Rev. 35, 5212(1997.

[20] M. J. Cassidy, Class. Quantum Graw, 3031(1997.

[21] L.-X. Li and J. R. Gott, Phys. Rev. LetB0, 2980(1998.

[22] J. R. Gott and L.-X. Li, Phys. Rev. B8, 023501(1998.

[23] J. A. Wheeler, Phys. Re@7, 511(1955.

[24] A. Vilenkin, Phys. Lett.117B, 25(1982.

[25] J. B. Hartle and S. W. Hawking, Phys. Rev. 8, 2960
(1983.

[26] S. Hawking and R. Penros&he Nature of Space and Time
(Princeton University Press, Princeton, 1296

[27] S. W. Hawking and G. F. R. EllisThe Large Scale Structure

of Space-timgCambridge University Press, Cambridge, En-

gland, 1973

Survey edited by S. W. Hawking and W. Isra@Cambridge
University Press, Cambridge, 1979. 746.

[34] S. W. Hawking, Phys. Rev. B2, 5681(1995.

[35] N. D. Birrell and P. C. W. DaviesQuantum Fields in Curved
Space(Cambridge University Press, Cambridge, 1982

[36] J. R. Gott, NaturéLondon 295, 304 (1982.

[37] J. R. Gott, ininner Space /Outer Spacedited by E. W. Kolb
et al. (University of Chicago Press, Chicago, 1986

[38] S. Coleman, Phys. Rev. D6, 2929(1977).

[39] S. Coleman and F. de Luccia, Phys. Rev2D 3305(1980.

[40] C. W. Misner, K. Thorne, and J. A. WheeleGravitation
(Freeman, San Francisco, 1973

[41] E. Schralinger, Expanding Universe$Cambridge University
Press, London, 1956

[42] C. J. S. Clarke and T. Dray, Class. Quantum Grév265
(1987.

[43] C. Barrabes and W. Israel, Phys. Rev4B 1129(199)).

[44] J. R. Gott, Astrophys. 288 422 (1985.

[45] W. A. Hiscock, Phys. Rev. 31, 3288(1985.

[46] L.-X. Li and J. R. Gott, Phys. Rev. B8, 103513(1998.

[47] J. S. Dowker, Quantum Field Theory around Conical Defects,
in The Formation and Evolution of Cosmic Stringslited by
G. Gibbons, S. Hawking, and T. Uachasp@&@ambridge Uni-
versity Press, Cambridge, 1990

[48] D. lellici, Ph.D. thesis, Trento
gr-qc/9805058.

[49] M. J. Cassidy and S. W. Hawking, Phys. Rev.53, 2372
(1998.

University, 1998,

084016-15



