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Time machines constructed from anti–de Sitter space
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Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544

~Received 13 November 1998; published 18 March 1999!

In this paper time machines are constructed from anti–de Sitter space. One is constructed by identifying
points related via boost transformations in the covering space of anti–de Sitter space and it is shown that this
Misner-like anti–de Sitter space is just the Lorentzian section of the complex space constructed by Li, Xu, and
Liu @Phys. Rev. D48, 4735~1993!#. The others are constructed by gluing an anti–de Sitter space to a de Sitter
space, which could describe an anti–de Sitter phase bubble living in a de Sitter phase universe. Self-consistent
vacua for a massless conformally coupled scalar field are found for these time machines, whose renormalized
stress-energy tensors are finite and solve the semiclassical Einstein equations. The extensions to electromag-
netic fields and massless neutrinos are discussed. It is argued that, in order to make the results consistent with
Euclidean quantization, a new renormalization procedure for quantum fields in Misner-type spaces~Misner
space, Misner-like de Sitter space, and Misner-like anti–de Sitter space! is required. Such a ‘‘self-consistent’’
renormalization procedure is proposed. With this renormalization procedure, self-consistent vacua exist for
massless conformally coupled scalar fields, electromagnetic fields, and massless neutrinos in these Misner-type
spaces.@S0556-2821~99!02108-6#

PACS number~s!: 04.62.1v, 04.20.Gz
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I. INTRODUCTION

In classical general relativity there are many solutions
Einstein equations with closed timelike curves~CTC’s!
@1–6#. However, some early calculations of vacuum pol
ization in spacetimes with CTC’s indicated that the ren
malized stress-energy tensor diverged at the Cauchy hor
or the polarized hypersurfaces@7–10#. Hawking thus pro-
posed the chronology protection conjecture which stated
physical laws do not allow the appearance of CTC’s@11#.
But many counterexamples to the chronology protection c
jecture have been found@12–22#. In particular, Li and Gott
@21# have found a self-consistent vacuum for a massless
formally coupled scalar field in Misner space~see, also,
@20#!, which gives an example of a time machine~i.e., a
spacetime with CTC’s! at the semiclassical level~i.e., the
background spacetime is classical but the matter fields
quantized!.

Of more interest, recently Gott and Li have discover
that CTC’s could play an important role in the early un
verse: if we trace backward the history of time, we may en
an early epoch of CTC’s, which means that there is no e
liest event in time@22#. According to the theory of quantum
foam @23#, in the early universe~at the Planck epoch!, quan-
tum fluctuations of spacetime should be very important a
the spacetime might have a very complicated topology. V
strong fluctuations in the metric of spacetime could cause
light cones to distribute randomly, which could give rise to
sea of CTC’s in the early universe. Therefore, we might
pect that at very early epochs the universe could hav
tangled network of CTC’s.

One model of the creation of the universe is the mode
‘‘tunneling from nothing’’ @24,25#. In this model the uni-
verse is supposed to be a Lorentzian spacetime@with signa-
ture (2,1,1,1)# glued to an early Euclidean space@with
signature (1,1,1,1)#; thus the universe has a beginning
time ~i.e., the beginning of the Lorentzian section!. This
0556-2821/99/59~8!/084016~15!/$15.00 59 0840
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model of ‘‘tunneling from nothing’’ has some shortcoming
~see@22#, and Penrose in@26#!. Contrasting with the mode
of ‘‘tunneling from nothing,’’ in the model of Gott and Li
@22#, the universe does not need a signature change and
no beginning in time. The Gott-Li universe is always
Lorentzian spacetime but at a very early epoch there is a l
of time. The universe could thus be its own mother and c
ate itself. The model of Gott and Li has some addition
interesting features: the present epoch of the univers
separated from the early CTC’s epoch by a past chronol
horizon. The only self-consistent solution with this geome
has pure retarded potentials, creating naturally an arrow
time in our current universe, which is consistent with o
experience@22#. Thus, CTC’s have potentially important ap
plications in the early universe.

Anti–de Sitter space is a spacetime which has CTC’s
erywhere. It is a solution of the vacuum Einstein equat
with a negative cosmological constant and has maxim
symmetry@27#. Anti–de Sitter space plays a very importa
role in theories of supergravity and superstrings@28,29#. If
we ‘‘unfold’’ anti–de Sitter space and go to its coverin
space, the CTC’s disappear. However, if we identify t
events related by boost transformations in the covering sp
of anti–de Sitter space, we will get a spacetime with
infinite number of regions with CTC’s and an infinite num
ber of regions without CTC’s, where the regions with CTC
and the regions without CTC’s are separated by chronol
horizons. The causal structure is similar to that of Misn
space, except that Misner space has only two regions w
CTC’s and two regions without CTC’s. For Misner space,
and Gott have found a self-consistent vacuum for a mass
conformally coupled scalar field, which is an ‘‘adapted
Rindler vacuum~i.e., a Rindler vacuum with multiple im-
ages! @21#. In this paper we will show that a self-consiste
vacuum also exists for a massless conformally coupled sc
field in the Misner-like anti–de Sitter space construct
above, which is simply the conformal transformation of t
©1999 The American Physical Society16-1
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Li-Gott adapted Rindler vacuum.
In 1993, Li, Xu, and Liu constructed a time machine in

space with a complex metric@13#. In this paper we will show
that the Lorentzian section of that solution is just the Misn
like anti–de Sitter space described above.

Inflation theory proposes that during an early epoch
universe was in a state with an effective positive cosmolo
cal constant at the grand unified theory~GUT! ~or Planck!
scale@30–32#, which is well described as a de Sitter pha
By transition to a zero cosmological constant~through either
quantum tunneling or classical evolution!, the universe then
enters a Friedmann Big Bang stage. But, if there is a tra
tion to a negative cosmological constant~it does not seem
physical theories exclude a negative cosmologi
constant—especially since in supergravity and superst
theories anti–de Sitter space is the only known s
consistent solution besides Minkowski space@28#!, the uni-
verse could enter an anti–de Sitter phase where CTC’s e
In this paper we will consider some models describing
transition between a de Sitter space and an anti–de S
space, which are obtained by gluing a de Sitter space to
anti–de Sitter space along a bubble wall, and we will sh
that self-consistent vacua for these solutions also exist.

The generalization to the case of electromagnetic fie
and massless neutrinos will also be considered. It is arg
that, in order to be consistent with Euclidean quantization
new renormalization procedure for quantum fields in Misn
type spaces is required. A ‘‘self-consistent’’ renormalizati
procedure is then proposed. With this renormalization pro
dure, self-consistent vacua exist for massless conform
coupled scalar fields, electromagnetic fields, and mass
neutrinos in the Misner-type spaces.

II. MISNER-LIKE ANTI –de SITTER SPACE

Anti–de Sitter space AdS4 is a hyperbola

V21W22X22Y22Z25a2 ~1!

embedded in a five-dimensional spaceR5 with metric

ds252dV22dW21dX21dY21dZ2. ~2!

Anti–de Sitter space has topologyS13R3 and is a solution
of the vacuum Einstein equations with a negative cosmolo
cal constantL523/a2, which has maximum symmetr
~i.e., it has ten Killing vectors!.

Several coordinate systems can be defined in anti–de
ter space:~1! Global static coordinates. Define

V52a coshx cos
t

a
,

W5a coshx sin
t

a
,

X5a sinhx cosu,

Y5a sinhx sinu cosf,
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Z5a sinhx sinu sinf, ~3!

where 0<t/a,2p, 0,x,`, 0,u,p, and 0<f,2p.
Then the anti–de Sitter metric can be written as

ds252cosh2 xdt21a2dx2

1a2sinh2 x~du21sin2u df2!. ~4!

The global static coordinates~3! cover the whole anti–de
Sitter space~except the coordinate singularities atx50 and
u50,p), the time coordinatet has a period of 2pa. ~2!
Local static coordinates. Define

V5~r 22a2!1/2sinh
t

a
,

W5r coshu,

X5~r 22a2!1/2cosh
t

a
, ~5!

Y5r sinhu cosf,

Z5r sinhu sinf,

where2`,t,`, r .a, 0,u,`, and 0<f,2p. Then
the anti–de Sitter metric can be written~in a Schwarzschild-
like form! as

ds252S r 2

a2 21Ddt21S r 2

a2 21D 21

dr2

1r 2~du21sinh2 udf2!. ~6!

The local static coordinates~5! cover only the region with
uVu,X andW.0 in anti–de Sitter space.~3! Nonstationary
coordinates. Define

V5a cost coshx,

W5a sint,

X5a cost sinhx cosu, ~7!

Y5a cost sinhx sinu cosf,

Z5a cost sinhx sinu sinf,

where 2p/2,t,p/2, 0,x,`, 0,u,p, and 0<f
,2p. Then the anti–de Sitter metric can be written~in an
open cosmological form! as

ds25a2$2dt21cos2 t@dx21sinh2x~du21sin2 udf2!#%.
~8!

The nonstationary coordinates~7! cover the region withV
.0 anduWu,a, but they can by extended to the region wi
V,0 and uWu,a by the transformationst→p1t, x
→2x, u→p2u, and f→p1f. ~4! The nonstationary
coordinates can also be extended to the regions withuWu
.a. Define
6-2
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V5a sinht sinhx,

W52a coshx,

X5a cosht sinhx cosu, ~9!

Y5a cosht sinhx sinu cosf,

Z5a cosht sinhx sinu sinf,

where 2`,t,`, 0,x,`, 0,u,p, and 0<f,2p.
The coordinates (t,x,u,f) cover the region withW,2a,
where the anti–de Sitter metric can be written as

ds25a2@2sinh2 xdt21dx2

1cosh2 t sinh2 x~du21sin2udf2!#. ~10!

Anti–de Sitter space is multiply connected and has CT
everywhere. For example, in the global static coordinates~3!,
the world line withx5const,u5const, andf5const~which
is the intersection of the hyperbola given by Eq.~1! with the
surface withX5const, Y5const, andZ5const) is a CTC
with the proper period 2pa coshx. If we unfold the anti–de
Sitter space along the time coordinatet in the global static
coordinates~thent goes from2` to `), we obtain the cov-
ering space of the anti–de Sitter space, which is simply c
nected with the topologyR4 and does not contain CTC’
anymore.~However, there is no Cauchy surface in this co
ering space@27#.! The Penrose diagram of the covering spa
of anti–de Sitter space is shown in Fig. 1. Anti–de Sit
space has maximum symmetry, which has one time tran
tion Killing vector, three space rotation Killing vectors, an
six boost Killing vectors. In the local static coordinates
~5!, ]/]t is a boost Killing vector. By the continuation

t→ l 2 i
p

2
a, r→ t̃ , ~11!

where 2`, l ,` and 2a, t̃ ,a, the local static coordi-
nates can be extended to the region withV.uXu on the hy-
perbola defined by Eq.~1!, where the boost Killing vector
becomes]/] l and the anti–de Sitter metric can be written

ds252S 12
t̃ 2

a2D 21

d t̃21S 12
t̃ 2

a2D dl2

1 t̃ 2~du21sin2 udf2!. ~12!

In the covering space of the anti–de Sitter space, if we id
tify all points related by boost transformations, then we o
tain aMisner-like anti–de Sitter space. With this identifica-
tion, there are CTC’s in the region withuVu,uXu but no
CTC’s in the region withuVu.uXu. On the boundaryuVu
5uXu, there are closed null curves.uVu5uXu is the chronol-
ogy horizon.~See Fig. 2 for the causal structure of Misne
like anti–de Sitter space.!

A coordinate system (t,x,y,z) covering the regionV1X
.0 of anti–de Sitter space can also be found, which
given by
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V5a coshc1
1

2a
e2c~y21z22t2!,

W5t,

X5a sinhc2
1

2a
e2c~y21z22t2!, ~13!

FIG. 1. The Penrose diagram of the covering space of anti
Sitter space. The left vertical line represents the hypersurfac
anti–de Sitter space withX50, where the global static coordinate
(t,x,u,f) defined by Eq.~3! are singular (x50). The right vertical
line labeled withJ represents null infinity (x5`). The horizontal
dashed lines represent hypersurfaces witht5const, the labels 0,p,
and 2p refer t/a50, p, and 2p, respectively. The grey triangle
represents the region covered by the nonstationary~open cosmo-
logical! coordinates (t,x,u,f) defined by Eqs.~7! and~8!. The two
isolated points labeled withi 1 and i 2 represent future timelike
infinity and past timelike infinity, respectively. If the hypersurfac
with the global timet/a50 andt/a52p are identified, we obtain
the usual anti–de Sitter space with CTC’s everywhere.
6-3



e

of

a

tion

-
e
–de
or-

a
ed

we
. In
gy-
lcu-
r

al
nd

s-

a-

en

on-

on-
um

tte
m
oo

e

s

LI-XIN LI PHYSICAL REVIEW D 59 084016
Y5y,

Z5z,

where 2`,t,c,y,z,`. With these coordinates, th
anti–de Sitter metric can be written as

ds252~dt2tdc!21a2dc21~dy2ydc!21~dz2zdc!2.
~14!

]/]c is a boost Killing vector. In the covering space
anti–de Sitter space, if the points (t,c,y,z) are identified
with (t,c12np,y,z) (n561,62, . . . ), we obtain a
Misner-like anti–de Sitter space. In this space there
CTC’s in the regions witht2.a21y21z2, but no CTC’s in
the region witht2,a21y21z2.

In 1993, Li, Xu, and Liu @13# constructed a complex
spaceS13R3 with the metric

FIG. 2. The Penrose diagrams of the Misner-like anti–de Si
space constructed by identifying points related by boost transfor
tions in the covering space of anti–de Sitter space. With these b
transformations,A and A8 are unchanged.~a! In the left diagram,
the light and dark grey regions represent unit cells in the Misn
like anti–de Sitter space, whose opposite boundaries~heavy dashed
lines! being identified. The chronology horizonsCH1 and CH2

separate the regions with CTC’s~the dark grey regions! from that
without CTC’s ~the light grey region!. ~b! The right diagram is
equivalent to the left one, except that the fundamental cell is cho
to be one bounded with null hypersurfaces.E8 is the image ofE
under the boost transformation.
08401
re

ds25~dw2wdc!21dc21~y2ydc!21~z2zdc!2,
~15!

wherec, y, andz are real butw is complex, andc has a
period 2p @i.e., (w,c,y,z) are identified with (w,c
12np,y,z) wheren56162, . . .#. They showed that this
space is a solution of the vacuum complex Einstein equa
with a negative cosmological constantL523. Here we find
that, the Lorentzian section of the metric in Eq.~15! ~i.e., let
w5 i t ) is just the anti–de Sitter metric in Eq.~14! with a
51 ~i.e., L523). Thus the Lorentzian section of the com
plex space of Li, Xu, and Liu is just the Misner-like anti–d
Sitter space obtained from the covering space of the anti
Sitter space by identifying points related by boost transf
mations.

III. SELF-CONSISTENT VACUUM IN MISNER-LIKE
ANTI –de SITTER SPACE

Usually there is no well-defined quantum field theory in
spacetime with CTC’s. However the problem can be work
using Hawking’s Euclidean quantization procedure@33,34#.
Alternatively, in the case where a covering space exists,
can do it in the covering space with the method of images
fact, in most cases where the renormalized ener
momentum tensor in spacetimes with CTC’s has been ca
lated, this method has been used~for the theoretical basis fo
the method of images see Ref.@8#, and references cited
therein!. Thus we will begin by using this method to de
with quantum field theory in anti–de Sitter space a
Misner-like anti–de Sitter space.

Anti–de Sitter space is conformally flat. With the tran
formation x852 arctanex21

2p, the anti–de Sitter metric in
Eq. ~4! can be written as

ds25a2 cosh2 xds̃25a2 cosh2 x@2dt21dx82

1sin2 x8~du21sin2 udf2!#, ~16!

where ds̃252dt21dx821sin2 x8(du 21sin2 udf2) is the
metric of the Einstein static universe. With more transform
tion r 5sinx8/@2(cost1cosx8)# and t85sint/@(cost
1cosx8)#, the metric of anti–de Sitter space can be writt
as

ds25V2ds̄25V2@2dt821dr21r 2~du21sin2 udf2!#,
~17!

where ds̄252dt821dr21r 2(du21sin2 udf2) is just the
Minkowski metric, andV2 is given by

V254a2 cosh2x~cost1coshx!2. ~18!

Equation~17! demonstrates that anti–de Sitter space is c
formally flat.

For a massless conformally coupled scalar field in a c
formally flat spacetime, there exists a conformal vacu
whose Hadamard functionG(1)(X,X8) is related to the Had-
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amard functionḠ(1)(X,X8) of the corresponding vacuum o
the massless conformally coupled scalar field in
Minkowski space via@35#

G~1!~X,X8!5V21~X!Ḡ~1!~X,X8!V21~X8!. ~19!

The corresponding renormalized stress-energy tensors ar
lated via

^Ta
b& ren5V24^T̄a

b& ren1
1

16p2F1

9
a1

~1!Ha
b12a3

~3!Ha
bG ,
~20!

where

~1!Hab52¹a¹bR22gab¹
c¹cR2

1

2
R2gab12RRab ,

~21!

~3!Hab5Ra
cRcb2

2

3
RRab2

1

2
RcdR

cdgab1
1

4
R2gab ,

~22!

and for scalar field we havea15 1
120 and a352 1

360 @35#.
@The sign before 1/16p2 is positive here because we a
using signature (2,1,1,1).# For anti–de Sitter space w
de
y

te

th
fo

in
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have Rab5Lgab , R54L, and thus (1)Hab50, (3)Hab
5 1

3 L2gab5(3/a4)gab . Inserting these into Eq.~20!, we
have

^Ta
b& ren5V24^T̄a

b& ren2
1

960p2a4 da
b. ~23!

In Minkowski spacetime, for the massless conforma
coupled scalar field with the Minkowski vacuum, the Ha
amard function is

ḠM
~1!~X,X8!5

1

2p2

1

2~ t82t9!21r 21r 8222rr 8cosQ2

,

~24!

where cosQ25cosu cosu81sinu sinu8cos(f2f8). The cor-
responding renormalized stress-energy tensor of
Minkowski vacuum is

^T̄ab& ren50. ~25!

Inserting Eq.~24! into Eq. ~19!, we get the Hadamard func
tion for the massless conformally coupled scalar field in
conformal Minkowski vacuum in anti–de Sitter space
GCM
~1! ~X,X8!5

1

4p2a2

1

cos@~ t2t8!/a#coshx coshx8212sinhx sinhx8 cosQ2

, ~26!
i

ces
where (t,x,u,f) are the global static coordinates of anti–
Sitter space. ClearlyGCM

(1) satisfies the periodic boundar
condition

GCM
~1! ~ t,x,u,f;t8,x8,u8,f8!

5GCM
~1! ~ t12npa,x,u,f;t8,x8,u8,f8!, ~27!

thus it is a suitable Hadamard function in anti–de Sit
space which has CTC’s everywhere. Inserting Eq.~25! into
Eq. ~23!, we get the renormalized stress-energy tensor for
massless and conformally coupled scalar field in the con
mal Minkowski vacuum in anti–de Sitter space

^Tab& ren52
1

960p2a4 gab , ~28!

which is the same as that for de Sitter space with radiusa.
If we insert the energy-momentum tensor in Eq.~28! into

the semiclassical Einstein equations

Gab1Lgab58p^Tab& ren, ~29!

and recall that for anti–de Sitter space we haveGab5Rab
2 1

2 Rgab5(3/a2)gab , we find that the semiclassical Einste
equations are satisfied if and only if
r

e
r-

L1
3

a2 1
1

120pa4 50. ~30!

If L50, the two solutions to Eq.~30! are a5`, which
corresponds to Minkowski space; anda5 i (360p)21/2,
which corresponds to a de Sitter space with radiusuau
5(360p)21/2. Thus, if the bare cosmological constantL
50, there is no self-consistent anti–de Sitter space~though
there are a self-consistent de Sitter space with radiusuau
5(360p)21/2 @36,22# and a self-consistent Minkowsk
space!. If L,0, the two solutions to Eq.~30! are

a252
3

2LS 11A12
L

270p D .0, ~31!

which corresponds to an anti–de Sitter space with radiusa,
and

a252
3

2LS 12A12
L

270p D ,0, ~32!

which corresponds to a de Sitter space with radiusuau. ~If
L.0, the two solutions both correspond to de Sitter spa
@22#.! It is interesting to note that ifL,0 there are two
6-5
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LI-XIN LI PHYSICAL REVIEW D 59 084016
self-consistent spaces, one of which is an anti–de S
space, and the other is a de Sitter space. Equation~30! tells
us that, if L,0 and a2,0, we have uau,(360p)21/2,
which implies that the self-consistent de Sitter space s
ported by a negative cosmological constant has a s
Planckian radius.~See Sec. V for further discussion.!

For the Misner-like anti–de Sitter space which is obtain
from the covering space of anti–de Sitter space by ident
ing points related by boost transformations, as in the cas
Misner-like de Sitter space@22#, it is easy to show that the
adapted conformal Minkowski vacuum is not a se
consistent quantum state for the massless conform
coupled scalar field. The renormalized stress-energy te
of the adapted conformal Minkowski vacuum diverges as
chronology horizon is approached. But, as in the case
Misner space@21# and Misner-like de Sitter space@22#, we
can show that an adapted conformal Rindler vacuum i
self-consistent vacuum state for a massless conform
coupled scalar field in Misner-like anti–de Sitter space.
do so, it will be more convenient to write the anti–de Sit
metric in the local static coordinates@Eqs. ~5! and ~6!# and
the Minkowski metric in Rindler coordinates

ds̄252j2dh21dj21dy21dz2, ~33!

where the Rindler coordinates (h,j,y,z) are defined by

t5j sinhh,

x5j coshh,
~34!

y5y,

z5z,

where (t,x,y,z) are the Cartesian coordinates in Minkows
spacetime. With the transformation

h5
t

a
,

j5
Ar 2/a221

~r /a!coshu21
,

~35!

y5
~r /a!sinhu cosf

~r /a!coshu21
,

z5
~r /a!sinhu sinf

~r /a!coshu21
,

where (t,r ,u,f) are the local static coordinates in Eq.~5!,
the anti–de Sitter metric~6! can be written as

ds25V2ds̄25V2~2j2dh21dj21dy21dz2!, ~36!

hereV2 is

V25a2@~r /a!coshu21#2. ~37!
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With the conformal relation between anti–de Sitter spa
and Rindler space given by Eqs.~35! and ~36!, the time
coordinatet of the anti–de Sitter space in local static coo
dinates is mapped to the Rindler time coordinateh. Con-
struct a Misner space with all (h1nh0 ,j,y,z) (n50,
61, . . . ) identified, then the map given by Eq.~35! gives
rise to a Misner-like anti–de Sitter space with allt
1nt0 ,r ,u,f) (n50,61, . . . ) identified, where

t05ah0 . ~38!

Equations~35!–~38! give a natural conformal map betwee
Misner space and Misner-like anti–de Sitter space.

For a massless conformally coupled scalar field in Mis
space, the Hadamard function for the adapted Rind
vacuum is@21#

G~1!~X,X8!5
1

2p2 (
n52`

`

3
g

jj8 sinhg@2~h2h81nh0!21g2#
,

~39!

whereg is defined by

coshg5
j21j82 1~y2y8!21~z2z8!2

2jj8
. ~40!

The corresponding renormalized stress-energy tensor of
adapted Rindler vacuum is@21#

^Tm
n&R,ren5

1

1440p2j4F S 2p

h0
D 4

21G S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D ,

~41!

which is expressed in the Rindler coordinates. We see
^Tm

n&R,ren ~also^Tmn&R,ren̂ Tmn&R,ren) diverges at the chronol
ogy horizon wherej50 unlessh052p. If h052p, how-
ever, we havê Tm

n&R,ren50 throughout the Misner spac
~though Rindler coordinates cover only a quadrant in Mis
space, the results can be analytically extended to the w
Misner space@21,22# where^Tm

n&R,ren is also zero, see@22#
for further discussion!.

Inserting Eq.~39! into Eq. ~19!, we obtain the Hadamard
function for the adapted conformal Rindler vacuum of t
massless and conformally coupled scalar field in Misner-l
anti–de Sitter space
6-6
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GCR
~1!~X,X8!5

1

2p2 (
n52`

` g

sinhgA~r 2/a221!~r 82 /a221!@2~ t2t81nt0!21a2g2#
, ~42!

whereg is written in (t,r ,u,f) as

coshg5
1

A~r 2/a221!~r 82 /a221!
H 12

rr 8

a2
@coshu coshu82sinhu sinhu8 cos~f2f8!#J . ~43!
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Clearly the Hadamard function in Eq.~42! satisfies the peri-
odic boundary condition

G~1!~ t,r ,u,f!5G~1!~ t1nt0 ,r ,u,f!, ~44!

wheren50,61, . . . , thus it defines a reasonable quantu
state in the Misner-like anti–de Sitter space. Inserting
~41! into Eq. ~23!, we obtain the renormalized stress-ener
tensor of the adapted conformal Rindler vacuum of the c
formally coupled scalar field in Misner-like anti–de Sitt
space

^Tm
n&CR,ren5

1

1440p2a4~r 2/a221!2F S 2pa

t0
D 4

21G

3S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D 2
1

960p2a4 dm
n, ~45!

where the coordinate system is the local static coordin
system (t,r ,u,f). Again, ^Tm

n&CR,ren ~also
^Tmn&CR,ren̂ Tmn&CR,ren) diverges at the chronology horizo
r 5a, unlesst052pa. But, if

t052pa, ~46!

we get a renormalized stress-energy tensor which is reg
throughout the Misner-like anti–de Sitter space

^Tab&CR,ren52
1

960p2a4 gab , ~47!

which is exactly the same as that of de Sitter space
anti–de Sitter space.@Though the local coordinate
(t,r ,u,f) cover only the region withuVu,X in anti–de Sit-
ter space, the results can be easily extended to the w
Misner-like anti–de Sitter space„where^Tab&CR,ren is finite
and given by Eq.~47!…, as in the cases of Misner space a
Misner-like de Sitter space@21,22#.#

Similarly, the Misner-like anti–de Sitter space solves t
semiclassical Einstein equation with a negative cosm
logical constant L and the energy-momentum tens
in Eq. ~47! ~and thus is self-consistent! if a2

52(3/2L)(11A12L/270p).
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IV. TRANSITION BETWEEN de SITTER AND
ANTI –de SITTER SPACES

Phase transitions play important roles in the evolution
the early universe. With phase transitions various bubb
could form; inside and outside the bubbles the spacetim
have different stress-energy tensors and thus are describe
different spacetime metrics@38,39#. The inside and outside
of a bubble are separated by a wall—a spacetime struc
which can be approximately treated as a three-dimensio
hypersurface. Usually it is assumed that the outside of
bubble is in a state dominated by a positive cosmolog
constant at GUT~or Planckian! scale. Thus the spacetim
metric outside the bubble is well approximated with a
Sitter metric. Inside the bubble, the cosmological const
could be zero and the stress-energy tensor could be zero
the spacetime inside would be Minkowskian—which is
model of inflation decaying through a first-order phase tr
sition in the old inflation theory@30#; or, inside the bubble
the cosmological constant could also be positive and at G
~or Planckian! scale so the spacetime inside the bubble is s
inflating, but after a while the cosmological constant falls o
a plateau and evolves classically to zero and the unive
inside the bubble enters a hot Big Bang phase—which
model of transition from inflation to an open Big Bang co
mology through a second-order phase transit
@36,37,31,32#. But, either via the first-order phase transitio
or the second-order phase transition, as another alterna
the inside of the bubble could become dominated by a ne
tive cosmological constant instead and thus the space
inside the bubble would be described with an anti–de Si
metric. In this paper we are interested in this case si
anti–de Sitter space has CTC’s.

In this paper we will discuss bubbles that are pre-exist
rather than ones that form by quantum tunneling. We th
only consider how to glue a de Sitter space and an anti
Sitter space together at a boundary~i.e., at a wall!, and we
investigate the causal structure of the spacetime so obtai

The conditions for two spacetimes to be glued toget
along a wall~so that the Einstein equations are satisfied
the wall! are @40#: ~1! the metrics on the wall induced from
the spacetimes at the two sides agree;~2! the surface stress
energy tensor of the wall defined by Sa

b

5 lime→0 *2e
e Ta

bdn should satisfy~in the Gaussian norma
coordinates near the wall!
6-7
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Sn
n5Sn

i50, Si
j52

nana

8p
~g i

j2gd i
j !, ~48!

wherena is the normal vector of the hypersurfaceS of the
wall (nana51 if the S is timelike; nana521 if the wall is
spacelike. RegardingS as a hypersurface embedded in eith
the spacetime inside it, or the spacetime outside it, by
first condition,S should be either timelike or spacelike
both. Here we do not consider the case of a null wall!, and

gab[@Kab#[Kab
1 2Kab

2 ~49!

is the difference of the extrinsic curvature ofS embedded in
the spacetimes at the two sides of the wall@40#, and g
[ga

a. The definition for the extrinsic curvatureKab is Kab
5¹anb where we have treatedna as an vector field in the
neighborhood ofS extended from the normal vector define
only on S. In the Gaussian normal coordinates ofS, the
components ofKab can be written as

Kmn5
1

2

]hmn

]n
. ~50!

~Here we use the definition of the extrinsic curvatureKab
with an opposite sign as that used in@40#.! The evolution of
the wall is governed by

Si j
u j1@Tin#50, ~51!

where ‘‘u j ’’ denotes the covariant derivative associated w
the three-metrichi j on S. ~Here the Greek lettersm,n, . . .
label vectors and tensors in the four-dimensional spacet
the Latin lettersi , j , . . . label vectors and tensors in th
three-dimensional spaceS.!

de Sitter space is a hyperbola

2V21W21X21Y21Z25b2, ~52!

embedded in a five-dimensional spaceR5 with the metric

ds252dV21dW21dX21dY21dZ2. ~53!

de Sitter space is a solution of the vacuum Einstein equat
with a positive cosmological constantL53/b2, which has
maximal symmetry~it has six space rotation Killing vector
and four boost Killing vectors!. There are various coordinat
systems for de Sitter space@41,27,35#. For our purpose here
the following two coordinate systems are convenient:~1! De-
fine

V5b sinht coshx,

W5b cosht,

X5b sinht sinhx cosu, ~54!

Y5b sinht sinhx sinu cosf,

Z5b sinht sinhx sinu sinf,
08401
r
e

e,

ns

where 0,t,`, 0,x,`, 0,u,p, and 0<f,2p. The
coordinates (t,x,u,f) in Eq. ~54! cover the region on the
hyperbola~52! with V.0 and W.b, where the de Sitter
metric can be written as

ds25b2$2dt21sinh2t@dx21sinh2 x~du21sin2 udf2!#%.

~55!

The sectiont5const in de Sitter space is an open~i.e., nega-
tively curved!, homogeneous, and isotropic space. The m
ric in Eq. ~55! could describe an open inflation@36,37#. The
coordinates (t,x,u,f) in Eq. ~54! can be extended to th
region withV,0 andW.b by the reflectiont→2t andx
→2x, u→p2u, and f→p1f. ~2! The coordinates in
Eq. ~54! could be extended to the region withuWu,b. De-
fine

V5b sinht cosx,

W5b sinx,

X5b cosht cosx cosu, ~56!

Y5b cosht cosx sinu cosf,

Z5b cosht cosx sinu sinf,

where 2`,t,`, 2p/2,x,p/2, 0,u,p, and 0<f
,2p, then the de Sitter metric can be written as

ds25b2@2cos2 xdt21dx2

1cosh2 t cos2 x~du21sin2 udf2!#. ~57!

The coordinates (t,x,u,f) cover the region withuWu,b in
the de Sitter space as a hyperbola given by Eq.~52!. The
Penrose diagram of de Sitter space is shown in Fig. 3.

By gluing anti–de Sitter space onto de Sitter space we
obtain various spacetimes with CTC’s. These spacetim
with CTC’s differ from the anti–de Sitter space with CTC
by the fact that in these glued spacetimes there are reg
without CTC’s which are separated from the regions w
CTC’s by chronology horizons, while in the usual anti–
Sitter space CTC’s exist everywhere. Here we only show
typical example, which is obtained by gluing an anti–de S
ter space onto a de Sitter along a timelike hypersurf
(nana51). This spacetime could describe a bubble
anti–de Sitter space existing for all time in an eternal
Sitter space.

Consider a de Sitter space as a hyperbola described by
~52! in the embedding space with the metric in Eq.~53!. Cut
this de Sitter space along the hypersurfaceS1 with W5w1
.0 and throw away the part withW.w1 . Denote the part of
the de Sitter space withW,w1 asdS2. Then we have a de
Sitter space with a boundaryS1 at W5w1 . Supposew1
,b, thenS1 is timelike. In such a case, the hypersurfaceS1
is a three-dimensional timelike hyperbola with2V21X2

1Y21Z25b22w1
2.0. With the coordinates in Eq.~56!, S1

is at x5arcsin(w1 /b). The metrichab on S1 induced from
the de Sitter metric is
6-8
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ds1
25~b22w1

2!@2dt21cosh2 t~du21sin2 udf2!#.
~58!

The normal vector ofS is na5b21(]/]x)a(nana51). The
extrinsic curvatureKab

2 of S1 is

Kab
2 52

w1

bAb22w1
2

hab . ~59!

Consider an anti–de Sitter space as the hyperbola g
by Eq.~1! in the embedding space with the metric in Eq.~2!.
Cut the anti–de Sitter space along the hypersurfaceS2 with
W52w2,0, throw away the part withW,2w2 . We de-
note the anti–de Sitter space withW.2w2 as AdS1. Then
we have an anti–de Sitter space withW.2w2 and a bound-
ary S2 at W52w2 . Supposew2.a, thenS2 is timelike. In
such a case,S2 is a three-dimensional timelike hyperbo
with 2V21X21Y21Z25w2

22a2.0. With the coordinates
(t,x,u,f) in Eq. ~9!, the hypersurfaceS2 is at x
5arccosh(w2 /a). The metrichab on S2 induced from the
anti–de Sitter metric is

ds3
25~w2

22a2!@2dt21cosh2 t~du21sin2 udf2!#.
~60!

The normal vector ofS2 is na52a21(]/]x)a(nana51).
The extrinsic curvatureKab

1 of S2 is

FIG. 3. The Penrose diagram of de Sitter space. The eventE8 is
the antipodal point of the eventE. The upper horizontal line labele
with J1 represents future null infinity, the lower horizontal lin
labeled withJ2 represents past null infinity. Two~future and past!
light cones fromE and E8 are shown. The curve labeled withS1

represents a timelike hypersurface withW5const,b. The curves
labeled with S2

6 represent the spacelike hypersurfaces withW
5const.b ~two leaves!.
08401
en

Kab
1 52

w2

aAw2
22a2

hab . ~61!

To glue the anti–de Sitter space and the de Sitter sp
together, let us identifyS1 with S2 by identifying their co-
ordinates (t,u,f). The spacetime so obtained is schema
cally shown in Fig. 4. In the sections withV5const in de
Sitter space and anti–de Sitter space, anS3 is glued together
with an H3 at a cross sectionS2. From Eqs.~58! and ~60!,
the metrichab on S15S2[S induced from de Sitter spac
and anti–de Sitter space agree if and only if

w1
21w2

25a21b2. ~62!

By gluing two spacetimes along a hypersurface, usuall
surface stress-energy tensor is induced. The surface st
energy tensor induced on the hypersurfaceS is determined
by the difference in the extrinsic curvature ofS1 which is
embedded in the de Sitter space and the extrinsic curva
of S2 which is embedded in the anti–de Sitter space throu
Eq. ~48! with nana51. By inserting the extrinsic curvature
derived above into Eqs.~49! and~48!, we obtain the surface
stress-energy tensor forS:

Sab52
1

4pmSA11
m2

a22A12
m2

b2D hab , ~63!

FIG. 4. A schematic diagram for the spacetime obtained
gluing a de Sitter space to an anti–de Sitter space along a time
wall. The vertical hyperbola of one sheet~to the left! represents a de
Sitter space in the embedding space of Eq.~53!, the horizontal
hyperbola of one sheet~to the right! represents an anti–de Sitte
space in the embedding space of Eq.~2!. They are glued along a
timelike hypersurface~a bubble wall! on which a surface stress
energy tensor is induced so that Einstein equations are sati
there. The two embedding spaces match at the bubble wallW
5const). The Penrose diagram of this spacetime is shown in Fig
6-9
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wherem5Aw2
22a25Ab22w1

2, the metrichab on the time-
like S is given by

ds25m2@2dt21cosh2 t~du21sin2 udf2!#. ~64!

The surface stress-energy tensor given by Eq.~63! is like a
positive three-dimensional cosmological constant. The tim
like hypersurfaceS with the metric ~64! is a three-
dimensional de Sitter space. The Penrose diagram of
spacetime obtained by gluing dS2 with AdS1 along the
timelike S is shown in Fig. 5. There are CTC’s in the regio
of dS2 with W.2b and the whole AdS1. But there are no
CTC’s in the region of dS2 with W,2b. The null hyper-
surfaceW52b is the chronology horizon which separat
the region with CTC’s from that without CTC’s.~See Fig. 5.!

Mathematically, a de Sitter space can also be glued to
anti–de Sitter space along a spacelike hypersurface, th
sultant spacetime has similar properties as the example
scribed above. The surface stress-energy tensor induce
the spacelike hypersurface is like a negative cosmolog
constant in a three-dimensional Euclidean space. The sp
like hypersurface is a three-dimensional hyperbolaH3. The
causal structure of the spacetime obtained by gluing a
Sitter space to an anti–de Sitter space along a spacelike
persurface is the same as that of the spacetime obtaine
gluing a de Sitter space to an anti–de Sitter space alon
timelike hypersurface. There are CTC’s in the region of d2

with W.2b and the whole AdS1. But there are no CTC’s
in the region of dS2 with W,2b. The null hypersurface
W52b is the chronology horizon which separates the
gion with CTC’s from that without CTC’s. For both case
we haveTin50 and hi j

u j50, thus the evolution equatio
~51! is satisfied automatically.

From Eqs.~63! we see that ifm→0, i.e., if S becomes
null, we haveSab→0. Though the coordinates (t,x,u,f) are
singular at the nullS with w15b andw25a, we can show
that asm→0, the scalarsS[habSab andSabSab also vanish
as m→0. ~These conclusions also hold ifS is spacelike.!
However, since the metrichab on a null hypersurface is de
generate, the formalism discussed above cannot be use
the junction at null hypersurfaces. Thus the case of nulS
requires more discussion. Here we do not discuss this c
plicated but interesting issue.~For detailed discussions on th
junction conditions at null hypersurfaces, see Refs.@42,43#.!

V. SELF-CONSISTENT VACUA FOR SPACETIMES
WITH CTC’S

As discussed in Sec. III, an anti–de Sitter space with
diusa is self-consistent~i.e., the semiclassical Einstein equ
tions ~29! are satisfied witĥ Tab& ren being the renormalized
stress-energy tensor of vacuum polarization! if the negative
cosmological constant is

L152
3

a2S 11
1

360pa2D , ~65!

while a de Sitter space with radiusb is self-consistent if the
cosmological constant is@22#
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L25
3

b2S 12
1

360pb2D . ~66!

L1 is always negative.L2 could be either positive or nega
tive, depending on the value ofb. From Eq. ~66!, if b
.(360p)21/2, L2 is positive; if b,(360p)21/2, L2 is
negative. Thus, interestingly,a de Sitter space with sub
Planckian radius could be self-consistent only if the ba
cosmological constant is negative.

FIG. 5. The Penrose diagram of the spacetime obtained by
ing anti–de Sitter space to de Sitter space along a timelike hy
surface. The heavy curve labeled withS represents a timelike hy
persurface~the bubble wall! on the left side of which there is a d
Sitter space (dS4), and on the right side of which there is a
anti–de Sitter space (AdS4). On the anti–de Sitter side, the spac
like hypersurfaces denoted with two dashed lines are identifi
This spacetime contains CTC’s in the grey region, but no CTC’s
the blank region. The region with CTC’s is separated from t
without CTC’s by the chronology horizonsCH6. J1, J2, andJ
represent future null infinity, past null infinity, and null infinity
respectively.~Compare with Fig. 4.!
6-10
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From Eqs. ~65! and ~66!, we see that if b
,(360p)21/2, L15L2 if and only if

1

b2 2
1

a2 5360p. ~67!

This together with Eq.~62! gives a self-consistent spacetim
which is obtained by gluing a de Sitter space to an anti–
Sitter space witha unique negative bare cosmological co
stant throughout. This could be realized since for a negati
cosmological constant there are two self-consistent solut
of the semiclassical Einstein equations, one is anti–de S
space, the other is de Sitter space, and these two coul
glued together—as discussed in Sec. III.

The spacetime obtained by gluing a de Sitter space w
an anti–de Sitter space as discussed in the last section
self-consistent solution of the semiclassical Einstein eq
tions if Eqs.~65! and~66! are satisfied and on the wall sep
rating the de Sitter region and the anti–de Sitter region th
is a surface stress-energy tensor given by Eqs.~63!. Since the
Hadamard function is continuous across the wall~the Had-
amard function does not contain any derivatives of the m
ric!, the wall does not introduce any additional vacuum p
larization effects.

The above discussions of self-consistent solutions are
a massless conformally coupled scalar field in de Sit
anti–de Sitter spaces. The results can be easily extende
other matter fields. If their vacua are invariant under
Sitter/anti–de Sitter transformations, it could be expec
that their renormalized stress-energy tensor should have
form of a constant3gab . If there are many matter fields wit
their vacua being invariant under de Sitter/anti–de Si
transformations, the renormalized stress-energy tensor c
be written as

^Tab& ren52
g*

960p2r 0
4 gab , ~68!

whereg* is a dimensionless number determined by the nu
ber and spins of matter fields existing in the de Sitter/anti–
Sitter space with radiusr 0 (r 05a for anti–de Sitter space
r 05b for de Sitter space, in practiceg* ;100). Correspond-
ingly, with the appearance of many matter fields with d
Sitter/anti–de Sitter invariant vacua, Eqs.~65! and ~66!
should be replaced by

L152
3

a2S 11
g*

360pa2D , ~69!

and

L25
3

b2S 12
g*

360pb2D . ~70!

L1 is always negative.L2 is negative ifb,(g* /360p)1/2,
positive if b.(g* /360p)1/2. And, L15L2 if

1

b2 2
1

a2 5360pg
*
21 . ~71!
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If Eqs. ~62! and~71! are satisfied simultaneously, the spac
time obtained by gluing the de Sitter space to the anti–
Sitter space is self-consistent and has a unique negative
cosmological constant through both de Sitter and anti–
Sitter regions. Such a solution is very interesting. The se
classical Einstein equations with a negative bare cosmol
cal constant can have two self-consistent solutions, one b
an anti–de Sitter space, the other being a de Sitter sp
These two spacetimes could transit from one to the ot
across a bubble wall~through whatever quantum processe!
without changing the cosmological constant.

But, for Misner-type spaces~Misner space, Misner-like de
Sitter space, or Misner-like anti–de Sitter space!, the situa-
tion for matter fields other than the massless and conform
coupled scalar field is more complicated since the s
consistent vacua are not Lorentzian, de Sitter, or anti
Sitter invariant. To see this, let us consider the electrom
netic field in Misner space. As an alternative to the meth
of images, Euclidean quantization is another more powe
tool for dealing with quantum field theory in an acaus
space@33,34#. The Euclidean method provides a convenie
bridge between the conical space around a cosmic st
@44,45# and Misner space, which could conveniently tran
late the results of quantum field theory in a conical space
that in Misner space~since a conical space and Misner spa
have the same Euclidean section—the Euclidean con
space!. In @20#, from the well-known renormalized stress
energy tensor of the conformally coupled scalar field in
conical space around a cosmic string, using the Euclid
method~first translate the results in the conical space arou
the string to that in the Euclidean conical space, then tra
late these results to that in Misner space!, Cassidy has suc
cessfully predicted that there should be a quantum state
vanishing renormalized stress-energy tensor in Misner sp
when the boost parameterh0 is 2p, which corresponds to no
cosmic string. With Li and Gott’s independent discovery
the self-consistent vacuum state~an adapted Rindler
vacuum! for a conformally coupled scalar field in Misne
space@21#, Cassidy’s prediction has been confirmed. An
the Euclidean quantization procedure gives a beautiful g
metrical explanation for the self-consistent vacua in Misn
type spaces namely that whenh052p the corresponding
Euclidean section is flat with no conical singularity and th
has ^Tm

n& ren50 throughout @21,22#. Recently, with the
method of Euclidean quantization, Li and Gott have foun
self-consistent vacuum for a model of inflation in th
Kaluza-Klein theory, and found a relation between the fin
structure constant and the inflationary energy scale whic
consistent with the energy scale usually talked about in
flation and GUT theory@46#. Thus, we adopt the method o
Euclidean quantization.

The Euclidean section of Misner space is a Euclide
conical space with metricds25dj21j2df21dy21dz2

where (j,f,y,z) is identified with (j,f1nf0 ,y,z) (n
561,62, . . . ). If we make the continuationf→ ih and
f0→ ih0 , we obtain Misner space@21#. ~On the other hand,
if we make the continuationy→ i t , we obtain the spacetime
of a cosmic string.! The quantum field effects in the conica
space have been investigated by many people~see@47,48#
6-11
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and references therein!. Thus, for the electromagnetic field i
the Euclidean conical space, the renormalized stress-en
tensor of vacuum polarization is

^Tm
n& ren5

1

720p2j4F S 2p

f0
D 2

21GF S 2p

f0
D 2

111G

3S 1 0 0 0

0 23 0 0

0 0 1 0

0 0 0 1

D , ~72!

where the cylindrical coordinates (j,f,y,z) are used.
Clearly, if f052p, the renormalized stress-energy tensor
the electromagnetic field is zero and thus the semiclass
vacuum Einstein equations~i.e., the Einstein equations wit
the renormalized stress-energy tensor being that of vac
polarization! are satisfied. This is what we expect since
f052p the Euclidean conical space becomes the regular
Euclidean spaceR4. But, when the Euclidean conical spa
is continued to Misner space byf→ ih andf0→ ih0 in Eq.
~72!, the renormalized stress-energy tensor becomes

^Tm
n& ren5

1

720p2j4F2S 2p

h0
D 2

21GF2S 2p

h0
D 2

111G

3S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , ~73!

where the Rindler coordinates (h,j,y,z) are used. We see
that, unlike the case for a massless conformally coupled
lar field, even ifh052p, the renormalized stress-energy te
sor given by Eq.~73! is nonzero. In fact,̂Tm

n& ren in Eq. ~73!
diverges atj50 unlessh052p/A11. If h052p/A11, the
^Tm

n& ren given by Eq.~73! is zero and thus it would solve th
semiclassical Einstein equations for this locally flat spa
But, if this were a self-consistent solution, it would be su
prising that the self-consistent vacua of different mat
fields have different values ofh0 . Recall that, for the mass
less conformally coupled scalar field the self-consist
vacuum hash052p ~@21,22#, and Sec. III of this paper!.
And, for the case withh052p, there is an excellent geo
metric explanation: the corresponding Euclidean section w
f052p is the regular Euclidean spaceR4 without conical
singularity @21,22#; while for h052p/A11, we cannot find
any simple geometric explanation. Another surprise wo
be that, for the case of the electromagnetic field, the Euc
ean section withf052p is a self-consistent solution of th
semiclassical Euclidean Einstein equations; but, by adop
the continuationf→ ih andf0→ ih0 , the resultant Misner
space withh052p is not a self-consistent solution of th
semiclassical Einstein equations. This implies that the se
classical Einstein equations are broken during this contin
tion: that is, with this particular continuation the solutions
the semiclassical Einstein equations cannot be translated
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tween the Lorentzian and Euclidean sections. This raise
question as to the procedure of Euclidean quantization: is
Euclidean quantization still valid for the electromagne
field in Misner space? A fundamental requirement for E
clidean quantization should be thatduring the continuation
between the Lorentzian section and the Euclidean sect
the Einstein equations should be preserved~otherwise the
Euclidean quantization loses its significance!. Note that if we
first takef052p in the Euclidean section of Misner spac
^Tm

n& ren will be zero in the Euclidean section according
Eq. ~72!. Then, if we use the continuationf→ ih andf0 ~in
this case52p)→ ih0 ~in this case5 i2p) when going from
the Euclidean conical space to Misner space, naturally
expect ‘‘zero’’ should be continued to ‘‘zero’’ in the renor
malized stress-energy tensor. Then we should expect tha
^Tm

n& ren in the Misner space should also be zero, whi
would conflict with the results obtained above by going
the Lorentzian section first and then settingh052p. What
causes this non-self-consistency?

If we check the continuation procedure carefully, we fi
that the problem is at renormalization. In the Euclidean s
tion, the renormalization is equivalent to subtracting from t
original nonrenormalized Hadamard functionG(1)(X,X8) a
reference Hadamard functionGref

(1)(X,X8) with f052p, i.e.,
the regularized Hadamard function is

Greg
~1!~X,X8;f0!5G~1!~X,X8;f0!2Gref

~1!~X,X8;2p!,
~74!

where

Gref
~1!~X,X8;2p![G~1!~X,X8;f052p!. ~75!

If we make the continuation withf→ ih and f0→ ih0 but
keepf052p unchanged inGref

(1) , Gref
(1) would be continued

as

Gref
~1!~j,f,y,z;j8,f8,y8,z8;f052p!

→Gref
~1!~j,ih,y,z;j8,ih8,y8,z8;f052p5 ih0!, ~76!

then the obtainedGref
(1) in the Lorentzian section is the usu

Hadamard function for the Minkowski vacuum~see @35#!,
and the corresponding renormalized stress-energy te
~which is obtained by operating onGreg

(1) with a differential
operator@35#! is just given by Eq.~73!. But, in this continu-
ation procedure, it would be surprising why in bothGreg

(1) and
G(1) the parameterf0 was changed toih0 but in Gref

(1) the
parameterf052p was unchanged, thus this procedure is n
self-consistent. The result of this non-self-consistent pro
dure is that the semiclassical Einstein equations are bro
as mentioned above.

For a flat Euclidean spaceR4 with Cartesian coordinate
(t,x,y,z) and metricds25dt21dx21dy21dz2, if we go
to the Lorentzian section by the continuationt→ i t , the Eu-
clidean spaceR4 is naturally continued to the usual simp
connected Minkowski space with Cartesian coordina
(t,x,y,z) and metricds252dt21dx21dy21dz2. Since in
the Euclidean sectiont goes from2` to `, naturally in the
6-12
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Lorentzian sectiont also goes from2` to `. With this
continuation, the Hadamard function for the Euclide
vacuum in the EuclideanR4 space—which is the referenc
Hadamard function for renormalization in the Euclide
section—is continued to the Hadamard function for t
Lorentzian vacuum in Minkowski space—which is the refe
ence Hadamard function for renormalization in Minkows
space. But in our case, we start with a flat Euclidean sp
R4 with cylindrical coordinates (j,f,y,z) and metricds2

5dj21j2df21dy21dz2 where f has a period of 2p.
When we go to the Lorentzian section by the continuat
f→ ih, very naturallyh has also a period of 2p. Then the
obtained Lorentzian section is a Misner space with the bo
parameterh052p. With this continuation, the Hadamar
function for the Euclidean vacuum in the Euclide
section—which is the reference Hadamard function
renormalization in the Euclidean section—is continued to
Hadamard function for Li and Gott’s adapted Rindl
vacuum withh052p—very naturally which should also b
the reference Hadamard function for renormalization in M
ner space. We start with the reference space for a Euclid
conical space—which is the flat Euclidean space with
conical singularity, and end with the corresponding refere
space for Misner space—which is the Misner space w
h052p. This procedure is very natural. Therefore, here
propose the followingself-consistent renormalization proce
dure for quantum fields in Misner-type spaces: When
make the continuation from the Euclidean section to
Lorentzian section byf→ ih andf0→ ih0 , we should also
make the continuation 2p→ i2p ~see Fig. 6!, then the refer-

FIG. 6. A schematic diagram of the old and the new renorm
ization procedures. The horizontal lines are real axes, the ver
lines are imaginary axes. The arcs with arrows represent the
tinuation from the Euclidean section to the Lorentzian section.~a!
The left diagram describes the old renormalization procedure
Euclidean quantization. As one goes from the Euclidean sectio
a conical space to its Lorentzian section~Misner space!, f is
changed toih, f0 is changed toih0 , while the parameter 2p in
the reference Hadamard function is unchanged. With this old re
malization procedure, the semiclassical Einstein equations are
ken during the continuation, as discussed in the text.~b! The right
diagram describes the new self-consistent renormalization pr
dure in Euclidean quantization. With this new procedure, as
goes from the Euclidean section to the Lorentzian section,f is
changed toih, f0 is changed toih0 , and 2p in the reference
Hadamard function is changed toi2p. The semiclassical Einstein
equations are preserved during this new continuation.
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ence Hadamard function is continued to be the Hadam
function in the Lorentzian section~Misner space! with h0
52p. With this self-consistent renormalization procedu
instead of Eq.~76!, the reference Hadamard function is co
tinued to be

Gref
~1!~j,f,y,z;j8,f8,y8,z8;f052p!

→Gref
~1!~j,ih,y,z;j8,ih8,y8,z8;h052p!,

~77!

making all the problems mentioned above go away. W
this self-consistent renormalization procedure, instead of
~73!, the renormalized stress-energy tensor of electrom
netic field in Misner space becomes@substitutingih0 for f0
and i2p for 2p in Eq. ~72!#

^Tm
n& ren5

1

720p2j4F S 2p

h0
D 2

21GF S 2p

h0
D 2

111G

3S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , ~78!

in the Rindler coordinates (h,j,y,z). Clearly, if h052p,
we have ^Tm

n& ren50 and thus the semiclassical Einste
equations are satisfied. The situation is similar for mass
neutrinos in Misner space. If we make the continuationf
→ ih, f0→ ih0 , 2p→ i2p, using the self-consisten
renormalization procedure, we obtain the renormaliz
stress-energy tensor of vacuum polarization for mass
neutrinos in Misner space

^Tm
n& ren5

1

5760p2j4F S 2p

h0
D 2

21GF S 2p

h0
D 2

117G

3S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D , ~79!

which is also zero forh052p. Thus, with the new renor-
malization procedure, we obtain self-consistent vacua
electromagnetic fields and massless neutrinos in Mis
space. It is very easy to check that this new renormaliza
procedure does not change the results for a massless co
mally coupled scalar field in Misner space. The Euclide
result for a conical space is

^Tm
n&R,ren5

1

1440p2j4F S 2p

f0
D 4

21G S 23 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D .

~80!
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Substitutingih0 for f0 and i2p for 2p into Eq. ~80! gives
Eq. ~41! just as before. Thus, Li and Gott’s adapted Rind
vacuum@21# is still a self-consistent vacuum for the massle
conformally coupled scalar field in Misner space withh0
52p. These results can be easily transplanted to Misner-
de Sitter space and Misner-like anti–de Sitter space, s
these fields~massless conformally coupled scalar fields, el
tromagnetic fields, and massless neutrinos! are conformally
invariant and de Sitter space and anti–de Sitter space
conformally flat. The results are: if the boost period is 2pr 0
~wherer 0 is the radius of the de Sitter space or anti–de Si
space!, the renormalized stress-energy tensors are finite
given by Eq.~68! with g* 511/2 for one neutrino field and
g* 562 for the electromagnetic field. With Eqs.~69! and
~70!, self-consistent solutions of the semiclassical Einst
equations with cosmological constant can be found. Th
with our new renormalization method, various self-consist
vacuum states in Misner-type spaces with CTC’s can
found.

The chronology protection conjecture@11# was originally
based on the fact that for a massless conformally coup
scalar field with the adapted Minkowski vacuum in the M
ner space the renormalized stress-energy tensor of vac
polarization diverges at the chronology horizon@7#. After the
appearance of many counterexamples@12–20#, Cassidy and
Hawking @49# demonstrated that the backreaction of vacu
polarization does not enforce chronology protection. The
sults in this paper~and @21,22#! support this demonstration
However, Cassidy and Hawking@49# turned to the proposi-
tion that the effective action of matter fields in spacetim
with CTC’s always diverges at the chronology horizon a
that it is this that enforces chronology protection. The eff
tive action plays an important role in Euclidean quantu
gravity, which gives the probability for the creation of spac
time through quantum tunneling. Consider a simple exam
of a massless conformally coupled scalar field in Misn
space. The Euclidean effective Lagrangian density is@48#

L5
1

1440p2j4F S 2p

f0
D 2

21GF S 2p

f0
D 2

111G . ~81!

The Euclidean effective action is obtained by integrating
Euclidean effective Lagrangian density over a suitable v
ume of the Euclidean section. Clearly, iff0Þ2p, the effec-
tive Euclidean Lagrangian diverges atj50 ~thus the Euclid-
ean effective action diverges if the domain for integrati
includes the conical singularity atj50). But, if f052p, we
haveL50, which is not surprising since whenf052p the
conical singularity atj50 disappears and the Euclidean se
tion becomes the usual regular flatR4 space. The Euclidean
effective action is also zero since the Euclidean effect
Lagrangian is zero everywhere. By the continuationf
→ ih, f0→ ih0 , and with the self-consistent renormaliz
tion procedure outlined above, the reference Hadamard f
tion is continued to be that withh052p in Misner space
~which means that the ratio 2p/f0 in Eq. ~81! is changed to
2p/h0 since f0→ ih0 and 2p→ i2p), then the effective
Lagrangian for a massless conformally coupled scalar fi
in Misner space is
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L5
1

1440p2j4F S 2p

h0
D 2

21GF S 2p

h0
D 2

111G , ~82!

which is zero everywhere ifh052p. Thus the Lorentzian
effective action is also zero forh052p. This shows that, for
the self-consistent vacuum in Misner space, the effective
tion is zero. It can be expected that this result can be
tended to other quantum fields or other spacetimes w
CTC’s, where the~Euclidean or Lorentzian! effective La-
grangian would be finite throughout the space@and thus the
~Euclidean or Lorentzian! effective action would also be fi
nite# for the self-consistent vacua. Thus Cassidy and Haw
ing’s argument that the effective action~or equivalently the
entropy! enforce chronology protection is questionable.

VI. CONCLUSIONS

From the covering space of anti–de Sitter space
Misner-like anti–de Sitter space can be constructed. T
Misner-like anti–de Sitter space has CTC’s but the regio
with CTC’s are separated from the regions without CTC’s
chronology horizons. In the appropriate coordinates, t
Misner-like anti–de Sitter space is just the Lorentzian s
tion of the complex space with CTC’s constructed by Li, X
and Liu in 1993@13#. For a massless conformally couple
scalar field in this space, a self-consistent vacuum is fou
whose renormalized stress-energy tensor is like that o
positive cosmological constant—which when added to an
propriate negative bare cosmological constant can s
consistently solve the semiclassical Einstein equations.

By gluing a de Sitter space to an anti–de Sitter sp
along a bubble wall, another new spacetime with CTC’s
obtained. This spacetime could describe the transition
tween de Sitter space and anti–de Sitter space. In this sp
time, the region with CTC’s and the region without CTC
are separated via chronology horizons. For the de Sitte
anti–de Sitter invariant vacua in these spacetimes, the re
malized stress-energy tensors are like positive cosmolog
constants. A self-consistent solution can be obtained if th
is a single negative bare cosmological constant in the
regions with the renormalized stress-energy tensor
vacuum polarization adding different positive cosmologic
constants to the two sides of the bubble wall so that
effective cosmological constant~bare 1 renormalized! is
positive on one side and negative on the other. On the
persurface separating de Sitter space from anti–de S
space, in order that the Einstein equations are satisfie
surface stress-energy tensor should be induced. If the hy
surface is timelike, the surface stress-energy tensor is
that of a three-dimensional positive cosmological constan

The self-consistent solutions of the semiclassical Eins
equations with cosmological constant and the renormali
stress-energy tensor of vacuum polarization in de Sit
anti–de Sitter space are investigated. If the bare cosmol
cal constant is positive, there are two self-consistent so
tions, both of them are de Sitter spaces. If the b
cosmological constant is zero then there are two s
consistent solutions—one is Minkowski space and the ot
is a Planckian scale de Sitter space. If the bare cosmolog
6-14
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constant is negative, there are also two self-consistent s
tions, one of them is an anti–de Sitter space, but the oth
a sub-Planckian scale de Sitter space. And, at the
Planckian scale, self-consistent solutions~either de Sitter
space or anti–de Sitter space! exist only for a bare negative
cosmological constant.

The generalization to electromagnetic fields and mass
neutrinos in spacetimes with CTC’s are discussed. It is
gued that, for Misner-type spacetimes, in order that the se
classical Einstein equations are preserved under continua
between the Euclidean and Lorentzian sections, a new re
-
d
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tt

e

n-
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malization procedure should be introduced. We have p
posed such a self-consistent renormalization procedure,
which self-consistent vacua for electromagnetic fields a
neutrinos are found.
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