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It has been suggested that an advanced civilization might have the technology to warp spacetime so
that closed timelike curves would appear, allowing travel into the past. This paper examines this possi-

bility in the case that the causality violations appear in a finite region of spacetime without curvature
singularities. There will be a Cauchy horizon that is compactly generated and that in general contains
one or more closed null geodesics which will be incomplete. One can define geometrical quantities that
measure the Lorentz boost and area increase on going round these closed null geodesics. If the causality
violation developed from a noncompact initial surface, the averaged weak energy condition must be
violated on the Cauchy horizon. This shows that one cannot create closed timelike curves with finite

lengths of cosmic string. Even if violations of the weak energy condition are allowed by quantum theory,
the expectation value of the energy-momentum tensor would get very large if timelike curves become al-

most closed. It seems the back reaction would prevent closed timelike curves from appearing. These re-
sults strongly support the chronology protection conjecture: The laws ofphysics do not allow the appear
ance ofclosed timelike curves.

PACS number{s}: 04.20.Cv, 04.60.+n

I. INTRODUCTION

There have been a number of suggestions that we
might be able to warp spacetime in such a way as to allow
rapid intergalactic space travel or travel back in time. Of
course, in the theory of relativity, time travel and faster-
than-light space travel are closely connected. If you can
do one, you can do the other. You just have to travel
from A to B faster than light would normally take. You
then travel back, again faster than light, but in a different
Lorentz frame. You can arrive back before you left.

One might think that rapid space travel might be possi-
ble using the wormholes that appear in the Euclidean ap-
proach to quantum gravity. However, one would have to
be able to move in the imaginary direction of time to use
these wormholes. Further, it seems that Euclidean
wormholes do not introduce any nonlocal effects. So they
are no good for space or time travel.

Instead, I shall consider real-time, Lorentzian metrics.
In these, the light-cone structure forces one to travel at
less than the speed of light and forward in time in a local
region. However, the global structure of spacetime may
allow one to take a shortcut from one region to another
or may let one travel into the past. Indeed, it has been
suggested by Morris and Thorne and others [1—3] that in
the future, with improved technology, we might be able
to create traversable wormholes connecting distant re-
gions of spacetime. These wormholes would allow rapid
space travel and, thus, travel back in time. However, one
does not need anything as exotic as wormholes. Gott [4]
has pointed out that an infinite cosmic string warps
spacetime in such a way that one can get ahead of a beam
of light. If one has two infinite cosmic strings, moving at
high velocity relative to each other, one can get from A
to 8 and back again before one sets out. This example is

worrying, because unlike wormholes, it does not involve
negative-energy densities. However, I will show that one
cannot create a spacetime in which one can travel into
the past if one only uses finite lengths of cosmic string.

The aim of this paper is to show that even if it is possi-
ble to produce negative-energy densities, quantum effects
are likely to prevent time travel. If one tries to warp
spacetime to allow travel into the past, vacuum polariza-
tion effects will cause the expectation value of the
energy-momentum tensor to be large. If one fed this
energy-momentum tensor back into the Einstein equa-
tions, it appears to prevent one from creating a time
machine. It seems there is a chronology protection agen-
cy, which prevents the appearance of closed timelike
curves and so makes the universe safe for historians.

Kim and Thorne [5] have considered the expectation
value of the energy-momentum tensor in a particular
model of a time machine. They find that it diverges, but
argue that it might be cut off by quantum-gravitational
effects. They claim that the perturbation that it would
produce in the metric would be so small that it could not
be measured, even with the most sensitive modern tech-
nology. Because we do not have a well-defined theory of
quantum gravity, it is difficult to decide whether there
will be a cutoff to quantum effects calculated on a back-
ground spacetime. However, I shall argue that even if
there is a cutoff, one would not expect it to come into
effect until one was a Planck distance from the region of
closed timelike curves. This Planck distance should be
measured in an invariant way, not the frame-dependent
way that Kim and Thorne adopt. This cutoff would lead
to an energy density of the Planck value, 10 g/cc, and a
perturbation in the metric of order 1. Even if "order 1"
meant 10 in practice, such a perturbation would create
a disturbance that was enormous compared with chemi-
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cal binding energies of order 10 or 10 ' . So one could
not hope to travel through such a region and back into
the past. Furthermore, the sign of the energy-momentum
tensor of the vacuum polarization seems to be such as to
resist the warping of the light cones to produce closed
timelike curves.

Morris and Thorne build their time machine out of
traversable Lorentzian wormholes, that is, Lorentzian
spacetimes of the form X XR. Here R is the time direc-
tion and X is a three-dimensional surface, that is, asymp-
totically flat, and has a handle or wormhole connecting
two mouths. Such a wormhole would tend to collapse
with time, unless it were held up by the repulsive gravity
of a negative-energy density. Classically, energy densities
are always positive, but quantum field theory allows the
energy density to be negative locally. An example is the
Casimir effect. Morris and Thorne speculate that with
future technology it might be possible to create such
wormholes and to prevent them from collapsing.

Although the length of the throat connecting the two
mouths of the wormhole will be fairly short, the two
mouths can be arbitrarily far apart in the asymptotically
flat space. Thus going through a wormhole would be a
way of traveling large distances in a short time. As
remarked above, this would lead to the possibility of trav-
el into the past, because one could travel back to one' s
starting point using another wormhole whose mouths
were moving with respect to the first wormhole. In fact,
it would not be necessary to use two wormholes. It
would be sufficient just for one mouth of a single
wormhole to be moving with respect to the other mouth.
Then there would be the usual special-relativistic time-
dilation factor between the times as measured at the two
mouths. This would mean that at some point in the
wormhole's history it would be possible to go down one
mouth and come out of the other mouth in the past of
when you went down. In other words, closed timelike
curves would appear. By traveling in a space ship on one
of these closed timelike curves, one could travel into
one's past. This would seem to give rise to all sorts of
logical problems, if you were able to change history. For
example, what would happen if you killed your parents
before you were born. It might be that one could avoid
such paradoxes by some modification of the concept of
free will. But this will not be necessary if what I call the
chronology protection conjecture is correct: The laws of
physics prevent closed timelike curves from appearing.

Kim and Thorne [5,6] suggest that they do not. I will

present evidence that they do.

II. CAUCHY HORIZONS

The particular time machine that Kim and Thorne [5]
consider involves wormholes with nontrivial topology.
But as I will show, to create a wormhole, one has to dis-

tort the spacetime metric so much that closed timelike
curves appear. I shall therefore consider the appearance
of closed timelike curves in general, without reference to
any particular model.

I shall assume that our region of spacetime develops
from a spacelike surface S without boundary. By going
to a covering space if necessary [7], one can assume that

spacetime is time orientable and that no timelike curve
intersects S more than once. Let us suppose that the ini-
tial surface S did not contain any wormholes: Say it was
simply connected, like R or S . But let us suppose we
had the technology to warp the spacetime that developed
from S, so that a later spacelike surface S' had a different
topology, say, with a wormhole or handle. It seems
reasonable to suppose that we would be able to warp
spacetime only in a bounded region. In other words, one
could find a timelike cylinder T which intersected the
spacelike surfaces S and S' in compact regions ST and ST
of different topology. In that case the topology change
would take place in the region of spacetime MT bounded

by T, S, and S'. The region MT would not be compact if
it contained a curvature singularity or if it went off to
infinity. But in that case, extra unpredictable informa-
tion would enter the spacetime from the singularity or
from infinity. Thus one could not be sure that one' s

warping of spacetime would achieve the result desired if
the region MT were noncompact. It therefore seems
reasonable to suppose that MT is compact. In Sec. V, I
show that this implies that MT contains closed timelike
curves. So if you try to create a wormhole to use as a
time machine, you have to warp the light-cone structure
of spacetime so much that closed timelike curves appear
anyway. Furthermore, one can show the requirement
that MT have a Lorentz metric and a spin structure im-

ply that wormholes cannot be created singly, but only in
multiples of 2 [8]. I shall therefore just consider the ap-
pearance of closed timelike curves without there neces-
sarily being any change in the topology of the spatial sec-
tions.

If there were a closed timelike curve through a point p
to the future of S, then p would not lie in the future Cau-
chy development [7] D+(S). This is the set of points q
such that every past-directed curve through q intersects S
if continued far enough. So there would have to be a fu-
ture Cauchy horizon H+(S) which is the future bound-
ary of D+(S). I wish to study the creation of closed
timelike curves from the warping of the spacetime metric
in a bounded region. I shall therefore consider Cauchy
horizons H+(S) that are what I shall call "compactly
generated. " That is, all the past-directed null geodesic
generators of H+(S) enter and remain within a compact
set C. One could generalize this definition to a situation
in which there were a countable number of disjoint com-
pact sets C, but for simplicity I shall consider only a sin-

gle compact set.
What this condition means is that the generators of the

Cauchy horizon do not come in from infinity or a singu-
larity. Of course, in the presence of closed timelike
curves, the Cauchy problem is not well posed in the strict
mathematical sense. But one might hope to predict
events beyond the Cauchy horizon if it is compactly gen-
erated, because extra information will not come in from
infinity or singularities. This idea is supported by some
calculations that show there is a unique solution to the
wave equation on certain wormhole spacetimes that con-
tain closed timelike curves [15]. But even if there is not a
unique solution beyond the Cauchy horizon, it will not
affect the conclusions of this paper because the quantum
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effects that I shall describe occur in the future Cauchy
development D+(S), where the Cauchy problem is well
posed and where there is a unique solution, given the ini-
tial data and quantum state on S.

The inner horizons of the Reissner-Norstrom and Kerr
solutions are examples of Cauchy horizons that are not
compactly generated. Beyond the Cauchy horizon, new
information can come in from singularities or infinity,
and so one could not predict what will happen. In this
paper I will restrict my attention to compactly generated
Cauchy horizons. It is, however, worth remarking that
the inner horizons of black holes suffer similar quantum-
mechanical divergences of the energy-momentum tensor.
The quantum radiation from the outer black-hole horizon
will pile up on the inner horizon, which will be at a
difFerent temperature.

By contrast, the Taub-Newman-Unti-Tamburino
(NUT) universe is an example of a spacetime with a com-
pactly generated Cauchy horizon. It is a homogeneous
anisotropic closed universe, where the surfaces of homo-
geneity go from being spacelike to null and then timelike.
The null surface is a Cauchy horizon for the spacelike
surfaces of homogeneity. This Cauchy horizon will be
compact and therefore will automatically be compactly
generated. However, I have deliberately chosen the
definition of compactly generated, so that it can apply
also to Cauchy horizons that are noncompact. Indeed, if
the initial surface S is noncompact, the Cauchy horizon
H+(S) will be either noncompact or empty. To show
this one uses the standard result, derived in Sec. V, that a
manifold with a Lorentz metric admits a timelike vector
field V'. (Strictly, a Lorentz metric implies the existence
of a vector field up to a sign. But one can choose a con-
sistent sign for the vector field if the spacetime is time
orientable, which I shall assume. ) Then the integral
curves of the vector field give a mapping of the future
Cauchy horizon H+(S) into S. This mapping will be
continuous and one to one onto the image of H+(S) in S.
But the future Cauchy horizon H+(S) is a three-manifold
without boundary. So, if S is noncompact, H+(S) must
be noncompact as well. However, that need not prevent
it from being compactly generated.

An example will illustrate how closed timelike curves
can appear without there being any topology change.
Take the spacetime manifold to be R with coordinates
t, r, 8,$. Let the initial surface S be t=O and let the
spacetime metric g,b be the flat Minkowski metric g,b for
t negative. For positive t let the metric still be the flat
Minkowski metric outside a timelike cylinder, consisting
of a two-sphere of radius L times the positive-time axis.
Inside the cylinder let the light cones gradually tip in the
P direction, until the equator of the two-sphere, r =

—,'L,
becomes first a closed null curve y and then a closed
timelike curve. For example, the metric could be

ds2= dt2+2f dt dP f dP +d—r-
+r (d8 +sin 8dg ),

f =r t sin 8sin
m.r

The Cauchy horizon will be generated by null geodesics
that in the past direction spiral toward the closed null
geodesic y. They will all enter and remain within any
compact neighborhood C of y. Thus the Cauchy horizon
will be compactly generated.

One could calculate the Einstein tensor of this metric.
As I will show, it will necessarily violate the weak energy
condition. But one could take the attitude that quantum
field theory in curved space allows violations of the weak
energy condition, as in the Casimir effect. One might
hope, therefore, that in the future we might have the
technology to produce an energy-momentum tensor equal
to the Einstein tensor of such a spacetime. It is worth re-
marking that, even if we could distort the light cones in
the manner of this example, it would not enable us to
travel back in time to before the initial surface S. That
part of the history of the universe is already fixed. Any
time travel would have to be confined to the future of S.

I shall mainly be interested in the case where the initial
surface S is noncompact, because that corresponds to
building a time machine in a local region. However,
most of the results in this paper will also apply to the
cosmological case, in which S can be compact.

The Cauchy horizon is generated by null geodesic seg-
ments [7]. These may have future end points, where they
intersect another generator. The future end points will
form a closed set 8 of measure zero. On the other hand,
the generators will not have past end points. If the hor-
izon is compactly generated, the generators will enter and
remain within a compact set C. One can introduce a null
tetrad l', n ', m ', m ' in a neighborhood of
(H+(S) B)flC. The—vector l' is chosen to be the
future-directed tangent to the generators of the Cauchy
horizon. The vector n' is another future-directed null
vector. Because I am using the signature —+++, rath-
er than the + ———signature of Newman and Penrose,
I normalize them by I'n, = —1. The complex-conjugate
null vectors m' and m' are orthogonal to l' and n' and
are normalized by m'm, =1. One can then define the
Newman-Penrose quantities [9,10]

e= —
—,'(n'l, .,l' —m'm, ,l'),

x = —m'l, .,l',
p= —m'l, ,m',

cr = —m'l, ,m' .

Note that these definitions have the opposite sign to those
of Newman and Penrose. This is because of the different
signature of the metric.

Because the generators are null geodesics and lie in a
null hypersurface, ~=0 and p=p. The convergence p
and shear o. obey the Newman-Penrose equations along

dpp =p +o.o +(e+F)p+ ,'R,bl'I—
6fO =2po + ( 3E e)cr +C,b,z l '—m I 'm
dt

where t is the parameter along the generators such that
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l'= dx '/dt.
The real and imaginary parts of e, respectively, mea-

sure how the vectors l' and m' change compared to a
parallel-propagated basis. By choosing an affine parame-
ter t on the generators, one can rescale the tangent vector
I' so that t. +2=0. The generators may be geodesically
incomplete in the future direction; i.e., the affine parame-
ter may have an upper bound. But one can adapt the
lemma in Ref. [7], p. 295, to show that the generators of
the horizon are complete in the past direction.

Now suppose the weak energy condition holds:

for any null vector I'. Then the Einstein equations (with
or without cosmological constant) imply

It then follows that the convergence p of the generators
must be non-negative everywhere on the Cauchy horizon.
For suppose p=p&(0 at a point p on a generator y.
Then one could integrate the Newman-Penrose equation
for p in the negative t direction along y to show that p
diverged at some point q within an affine distance p& to
the past ofp. Such a point q would be a past end point of
the null geodesic segment y in the Cauchy horizon. But
this is impossible because the generators of the Cauchy
horizon have no past end points. This shows that p must
be everywhere non-negative on a compactly generated
Cauchy horizon if the weak energy condition holds.

I shall now establish a contradiction in the case that
the initial surface S is noncompact. The argument is
similar to that in Ref. [7], p. 297. On C one can intro-
duce a unit timelike vector field V'. One can then define
a positive definite metric by

g,b
—g,b+2Vg Vb .

In other words, g is the spacetime g with the sign of the
metric in the tirnelike V' direction reversed.

One can normalize the tangent vector to the generators
by g,bl'V =1/&2. The parameter t on the generators
then measures the proper distance in the metric g,b. One
can define a map

p, :(H+(S) B)Cl C (H+—(S) B)Il C, —

by moving each point of the Cauchy horizon a parameter
distance t to the past along the generators. The three-
volume (measured with respect to the metric g,b ) of the
image of the Cauchy horizon under this map will change
according to

dA=2 pdA .
dt I,(H+(s) nc) I,(H+(s)nc)

The change in volume cannot be positive because the
Cauchy horizon is mapped into itself. If the initial sur-
face S is noncompact, the change in volume will be strict-
ly negative, because the Cauchy horizon will be noncom-
pact and will not lie completely in the compact set C.
This would establish a contradiction with the require-
ment that p 0 if the weak energy condition is satisfied.

Thus a compactly generated Cauchy horizon cannot form
if the weak energy condition holds and S is noncompact.

On the other hand, the example of the Taub-NUT
universe shows that it is possible to have a compactly
generated Cauchy horizon if S is compact. However, in
that case the weak energy condition would imply that p
and o. would have to be zero everywhere on the Cauchy
horizon. This would mean that no matter or informa-
tion, and in particular no observers, could cross the Cau-
chy horizon into the region of closed tirnelike curves.
Moreover, as will be shown in the next section, the solu-
tion will be classically unstable in that a small matter-
field perturbation would pile up on the horizon. Thus the
chronology protection conjecture will hold if the weak
energy condition is satisfied whether or not S is compact.
In particular, this implies that if no closed timelike
curves are present initially, one cannot create them by
warping the metric in a local region with finite loops of
cosmic string. If the weak energy condition is satisfied,
closed timelike curves require either singularities (as in
the Kerr solution) or a pathological behavior at infinity
{as in the Godel and Gott spacetimes).

The weak energy condition is satisfied by the classical
energy-momentum tensors of all physically reasonable
fields. However, it is not satisfied locally by the quantum
expectation value of the energy-momentum tensor in cer-
tain quantum states in Hat space. In Minkowski space
the weak energy condition is still satisfied if the expecta-
tion value is averaged along a null geodesic [11], but
there are curved-space backgrounds where even the aver-
aged expectation values do not satisfy the weak energy
condition. The philosophy of this paper is therefore not
to rely on the weak energy condition, but to look for vac-
uum polarization effects to enforce the chronology pro-
tection conjecture.

III. CLOSED NULL GEODESICS

The past-directioned generators of the Cauchy horizon
will have no past end points. If the horizon is compactly
generated, they will enter and remain within a compact
set C. This means they will wind round and round inside
C. In Sec. V it is shown that there is a nonempty set E of
generators, each of which remains in a compact set C in

the future direction, as well as in the past direction.
The generators in E will be almost closed. That is

there will be points q such that a generator in E will re-
turn infinitely often to any small neighborhood of q. But
they need not actually close up. For example, if the ini-

tial surface is a three-torus, the Cauchy horizon will also
be a three-torus, and the generators can be nonrational
curves that do not close up on themselves. However, this
kind of behavior is unstable. The least perturbation of
the metric will cause the horizon to contain closed null

geodesics. More precisely, the space of all metrics on the
spacetime manifold M can be given a C topology.
Then, if g is a metric that has a compactly generated hor-
izon which does not contain closed null geodesics, any
neighborhood of g will contain a metric g' whose Cauchy
horizon does contain closed null geodesics.

The spacetime metric is presumably the classical limit
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of an inherently quantum object and so can be defined
only up to some uncertainty. Thus the only properties of
the horizon that are physically significant are those that
are maintained under small variations of the metric. In
Sec. U it will be shown that in general the closed null geo-
desics in the horizon have this property. That is, if g is a
metric such that the Cauchy horizon contains closed null
geodesics, then there is a neighborhood U of g such that
every metric g' in U has closed null geodesics in its Cau-
chy horizon. I shall therefore assume that in general E
consists of one or more disjoint closed null geodesics.
The example given above of the metric with closed time-
like curves shows that the Cauchy horizon need not con-
tain more than one.

I shall now concentrate attention on a closed null geo-
desic y in the Cauchy horizon. Pick a point p on y and
parallel propagate a frame around y and back to p. The
result will be a Lorentz transformation A of the original
frame. This Lorentz transformation will lie in the four-
parameter subgroup that leaves unchanged the null direc-
tion tangent to the generator. It will be generated by an
antisymmetric tensor

A=e

The null vector I' tangent to the null geodesic will be an
eigenvector of co because its direction is left unchanged by
A:

f=ln An+1

A„

where A„and A„+& are the areas of the pencil on succes-
sive passes of the point p in the future direction. The
quantity f measures the amount the generators are
diverging in the future direction. Because neighboring
generators tend toward the closed null geodesic y in the
past direction, f will be greater than or equal to zero.
Again, f=O is a limiting case. In general, f will be
greater than zero.

The quantity f determines the classical stability of the
Cauchy horizon. A small, high-frequency wave packet
going round the horizon in the neighborhood of y will
have its energy blueshifted by a factor e" each time it
comes round. This increased energy will be spread across
a cross section transverse to y. On each circuit of y, the
two-dimensional area of the cross section will increase by
a factor e~. The time duration of the cross section will be
reduced by a factor e ". So the local energy density will
remain bounded and the Cauchy horizon will be classical-
ly stable if

with the closed null geodesic y in the Cauchy horizon is
the change of cross-sectional area of a pencil of genera-
tors of the horizon as one goes round the closed null geo-
desic. Let

The eigenvalue h determines the change of scale, e", of
the tangent vector after it has been parallel propagated
around the closed null geodesic in the future direction.
In Sec. V it is shown that if h were negative, one could
move each point of y to the past to obtain a closed time-
like curve. But this curve would be in the Cauchy devel-
opment of S, which is impossible, because the Cauchy de-
velopment does not contain any closed timelike curves.
This shows that h must be positive or zero. Clearly, h =0
is a limiting case. In practice, one would expect h to be
positive. This will mean that each time one goes round
the closed null geodesic, the parallel-propagated tangent
vector will increase in size by a factor e". The aSne-
parameter distance around will decrease by a factor e
Thus the closed null geodesic y will be incomplete in the
future direction, although it will remain in the compact
set C and so it will not end on any curvature singularity.
Because h ~0, y will be complete in the past direction.

If h@0, there will be another null vector n', which is
an eigenvector of clb with eigenvalue —h. The Lorentz
transformation A will consist of a boost e" in the timelike
plane spanned by I' and n ' and a rotation through an an-
gle 8 in the orthogonal spacelike plane.

The quantity h is rather like the surface gravity of a
black hole. It measures the rate at which the null cones
tip over near y. As in the black-hole case, it gives rise to
quantum efFects. However, in this case, they will have
imaginary temperature, corresponding to periodicity in
real time, rather than in imaginary time, as in the black-
hole ease.

Another important geometrical quantity associated

This is true of the wormholes that Kim and Thorne con-
sider, provided they are moving slowly. But it seems they
will still be unstable quantum mechanically.

One can relate the result of going round y to integrals
of the Newman-Penrose quantities defined in the last sec-
tion:

where e" is the boost in the l' n' plane -and e' is the spa-
tial rotation in the m'-m' plane of a tetrad that is paral-
lel propagated after one circuit of y. One can also define
the distortion q of an initially circular pencil of genera-
tors by

o dt= —
—,'q .

One can choose the parameter t on y so that e+F is
constant and so that the parameter distance of one circuit
of y is 1. Then

e+e= —h .

One can now integrate the Newman-Penrose equation for
p around a circuit of y and use the Schwarz inequa1ity to
show

)R,t,
l'1 dt & —[hf+ ,'(f +qq)]&0. —

This gives a measure of how much the weak energy con-
dition has to be violated on y. In particular, it cannot be
satisfied unless f =q=O.
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IV. QUANTUM FIELDS ON THE BACKGROUND

Quantum effects in the spacetime will be determined by
the propagator or two-point function

& Ty(x)y(y)) .

This will be singular when the two points x and y can be
joined by a null geodesic. Thus quantum effects near y
will be dominated by closed or almost-closed null geo-
desics.

One can construct a simple spacetime that reproduces
the Lorentz transformation A on going around y, but not
the area increase e, in the following way. One starts
with Minkowski space and identifies points that are taken
into each other by the Lorentz transformation A. For
simplicity, I will just describe the case where A is a pure
boost in the n'-I' plane. Consider the past light cone of
the origin in two-dimensional Minkowski space. The or-
bits of the boost Killing vector will be spaeelike. Identify
a point p with its image under the boost A. This gives
what is called Misner space [12,7] with the metric

ds = —dt +t dx

on a half-cylinder defined by t (0 with the x coordinate
identified with period h. This metric has an apparent
singularity at t=0. However, one can extend it by intro-
ducing new coordinates

w=t, v =lnt+x .

The metric then takes the form

ds = —dv d~+~dv

This can then be extended through ~=0. This corre-
sponds to extending from the bottom quadrant into the
left-hand quadrant. One then gets a metric on a cylinder.
This develops from a spacelike surface S. However, at
~=0, the light cones tip over and a closed null geodesic
appears. For negative ~, closed timelike curves appear.
The full four-dimensional space is the product of this
two-dimensional Misner space with two extra Hat dimen-
sions. One can identify these other dimensions periodi-
cally if one wants to have a spacetime in which the initial
surface S and the Cauchy horizon D+(S) are compact.
However, such a compactification will not change the na-
ture of the behavior of the energy-momentum tensor on
the horizon.

Misner space has a four-parameter group of isometrics
and is also invariant under an overall dilation. It is there-
fore natural to expect the quantum state of a eonformally
invariant field also to have these symmetries. By the con-
servation equations and the trace-anomaly equation, the
expectation value of the energy-momentum tensor for a
conformally invariant field must then have the form

( T,b )0=diag(K, 3K, —K, —K), IC = B

in an orthonormal basis along the (t, x,y, z) axes. The
coefficient B will depend on the quantum state and spin
of the field.

Because the space is flat, it is easy to calculate a propa-

gator ( TP(x)P(y) )0 for a particular quantum state of any
free field with these symmetries. One just takes the usual
Minkowski propagator and puts in image charges under
A. One can then calculate the expectation value of the
energy-momentum tensor by taking the limit of this
propagator minus the usual Minkowski propagator. This
has been done by Hiscock and Konkowski [13] for the
ease of a conformally invariant scalar field. They found
that B is negative, implying that the expectation value of
the energy density is negative and diverges on the Cauchy
horizon.

The quantum state that the propagator ( TP(x)P(y) )0
corresponds to is a particularly natural one, but is cer-
tainly not the only quantum state of the spacetime. The
propagator in any other state will obey the same wave
equation. Thus it can be written

( TP(x)P(y) ) = ( TP(x)P(y) )0

+ g —,'[g„(x)g„(y)+c.c.],
where g„are solutions of the homogeneous wave equa-
tion that are nonsingular on the initial surface S. The ex-
pectation value of the energy-momentum tensor in this
state will be

where T,'b[g„] is the classical energy-momentum tensor
of the field i)'r„. One can think of the last term as the en-

ergy momentum of particles in modes corresponding to
the solutions g„.

One could ask if there was a propagator that gave an
energy-momentum tensor that did not diverge on the
Cauchy horizon. I have found propagators that give the
expectation value of the energy momentum to be zero
everywhere, but they do not satisfy the positivity condi-
tions that are required for them to be the time-ordered
expectation values of the field operators in a well-defined
quantum state. I am grateful to Bernard Kay for point-
ing this out. One way of getting a propagator that was
guaranteed to satisfy the positivity conditions would be
to add particle excitations to the ( )0 state. However, no
distribution of particles would have a stress in the x
direction that is 3 times the energy density. Unless the
energy-momentum tensor of the particles had the same
form as that of ( T,b )0, it would not diverge with the
same power of distance away from the horizon and so
could not cancel the divergence. Thus I am almost sure
there is no quantum state on Misner space for which
(T,b) is finite on the horizon, but I do not have a
rigorous proof.

In the general case in which there is a negative Ricci
tensor and f & 0, it is difficult to calculate the expectation
value of the energy-momentum tensor exactly because
one does not have a closed form for the propagator.
However, near the Cauehy horizon the metric and quan-
tum state will asymptotically have the same symmetries
and scale invariance as in Misner space. Thus one would
still expect the same Bt behavior, where the value of t
at a point is now defined to be the least upper bound of
the lengths of timelike curves from the point to the closed
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null geodesic y. If h & 0, t will be finite on D+(S).
Again, the coefficient B will depend on the quantum

state. Approximate %KB calculations by Kim and
Thorne [5] for a wormhole spacetime indicate that there
is a quantum state for this spacetime for which B is nega-
tive. Because the classical stability condition f &2h is
satisfied, it does not seem possible to cancel the negative-
energy divergence with positive-energy quanta. Thus it
seems that the expectation value of the energy-
momentum tensor will always diverge on the Cauchy
horizon for any quantum state.

V. GLOBAL RESULTS

If there is a timelike tube T connecting surfaces S and
S' ofdiferent topology, then the region Mz contains closed
timelike curves.

This is a modification of a theorem of Geroch [14]. I
shall describe it here because it involves constructions
that will be useful later. One first puts a positive-definite
metric g,b on the spacetime manifold M. (This can al-
ways be done. ) Then one can define a timelike vector
field V' as an eigenvector with negative eigenvalue of the
physical metric g,b with respect to g,b..

g,b
V'= —

A,g,b
V' .

One can normalize V' to have unit magnitude in the
spacetime metric g,b. With a bit more care, one can
choose the vector field V' so that it is tangent to the time-
like tube T. One can define a mapping

p:S&~S&

by moving points along the integral curves of V'. If each
integral curve that cuts Sz were also to cut Sz, p would
be one-to-one and onto. But this would imply that S&
and Sz. have the same topology, which they do not.
Therefore there must be some integral curve y which
cuts Sz- but which winds round and round inside the
compact set Mz- and does not intersect Sz-. This implies
there will be points p&Mz that are limit points of y.
Through p there will be an integral curve y, each point of
which is a limit point of y. But because y is timelike, it
would be possible to deform segments of y to form closed
timelike curves.

A compactly generated Cauchy horizon D+(S) contains
a set E of generators which have no past or future end
points and which are contained in the compact set C.

Let A. be a generator of the Cauchy horizon. This
means that it may have a future end point (where it inter-
sects another generator), but it can have no past point.
Instead, because the horizon is compactly generated, in
the past direction A, will enter and remain within a com-
pact set C. This means that there will be points q in C
which are such that every small neighborhood of q is in-
tersected by A, an infinite numbers of times. Let B be a
normal coordinate ball about a limit point q. There will
be points p and r on BB to the future and past of q which
will be limit points of where A, intersects M. It is easy to
see that p and r must lie on a null geodesic segment y
through q. By repeating this construction about p and r,

Let V' be a future-directed timelike vector field normal-
ized so that l'V g,b= —1. Then one can find a one-
parameter family of curves y(t, u) such that

y(t, 0)=y(t),
X —l0
ai

BX = —xV',
u

where x is a given function on y. Then

a b(l'l g, i, ) = —2xl'. , V'l "g,s

2(x V') —,l'l g, i, .

= —2(x V'l g,b ).,l'+ 2x V'I ., l'g, i,

Let

X=2 2ax
at

x =exp f a dt+htb
0

where b =ddt Then, fo. r sufficiently small v &0, y(t, v)
will be a closed timelike curve to the past of y.

If the metric g is such that the Cauchy horizon H+(S)
contains a closed null geodesic y with h & 0 and
f —~q~AO, then the property of having a closed null geo
desic is stable; i e , g will h. a.ve a neighborhood U such that
for any metric g'G U, there will also be a closed null geo-
desic in the Cauchy horizon.

l.et p be a point on y. A point q in I (p), the chrono-
logical past of p, will lie in the Cauchy development
D+(S), and J (p) fl J+(S), the intersection of the causal
past of p with the causal future of S, will be compact.
This means that a sufficiently small variation of g will
leave q in the Cauchy develpment of S. On the other
hand, because h )0, the previous result implies there is a
closed timelike curve A, through a point r just to the fu-
ture ofp. A sufticiently small variation of the metric will
leave A, a closed timelike curve and hence will leave r not
in the Cauchy development. Thus the existence of a Cau-
chy horizon will be a stable property of the metric g.
Similarly, the positions, directions, and derivatives of the
generators will be continuous functions of the metric g in

one can extend y to a null geodesic without future or past
end points, each point of which is a limit point for A, . Be-
cause A, enters and remains within C, y must remain
within C in both past and future directions. the set E
consists of all such limit geodesics y.

If y is a closed null geodesic with h (0, then y can be
deformed to give a closed timelike curve A, to the past of y.

Let I'=dx'/dt be the future-directed vector tangent to
y and let a be defined by

lb=al'
;b

Then a =(e+F), and so

gadt= —h .
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a neighborhood of y.
Let 8'be a time like three-surface through p transverse

to the Cauchy horizon. Then the generators of the hor-
izon near y define a map

v: WtlD +(S) WflD+(S),

by mapping where they intersect 8' to where they inter-
sect it again the next titne round. Iff —

~ q ~
NO, the eigen-

values of dv will be bounded away from 1. It then fol-
lows that the existence of a closed orbit is a stable proper-
ty.

VI. CONCLUSIONS

As one approaches a closed null geodesic y in the Cau-
chy horizon, the propagator will acquire extra singulari-
ties from null geodesics close to y that almost return to
the original point. In the Misner-space example in Sec.
IV, these extra contributions came from the image
charges under the boost. When one approached the Cau-
chy horizon, which corresponded to the past light cone of
the origin in two-dimensional Minkowski space, these im-
age charges became nearly null separated and their light
cones became nearly on top of each other. It was there-
fore natural to find that the expectation value of the
energy-momentum tensor diverged as one approached
the Cauchy horizon.

If the boost h on going round y is zero, the distance t
from y to any point to the past of y in the Cauchy devel-
opment will be infinite. This is rather like the fact that
there is an infinite spatial distance to the horizon of a
black hole with zero surface gravity. If the expectation
value were of the form of Bt with finite 8, it would
therefore be zero. Even if the energy-momentum tensor
of individual fields did not have this form and still
diverged on the Cauchy horizon, one might expect that
the total energy-momentum tensor might vanish in a su-

persymmetric theory, because the contributions of boson-
ic and fermionic fields might have opposite signs. How-
ever, one would not expect such a cancellation unless the
spacetime admitted a supersymmetry at least on the hor-
izon. This would require that the tangent vector to the
horizon corresponded to a Killing spinor, which would

imply

O=p=o. =0,
in addition to

h =0.
These conditions will not hold on a general horizon, but
it is possible that the back reaction could drive the
geometry to satisfy them, as the back reaction of black-
hole evaporation can drive the surface gravity to zero in
certain circumstances.

If one assumes that the expectation value of the
energy-momentum tensor diverges on the horizon, one
can ask what effect this would have if one fed it back into
the field equations. On dimensional grounds one would
expect the eigenvalues of the energy-momentum tensor to

diverge as Bt, where 8 is a constant that depends on
the quantum state and t is the distance function to the
horizon. However, because of boost and other factors,
the energy density measured by an observer who crosses
the Cauchy horizon on a timelike geodesic will go as
Bd 's, where s is proper distance along the observer's
world line until the horizon and d is some typical length
in the problem. In Misner space, d is the length of the
spacelike geodesic from the origin orthogonal to the
observer's world line.

To get the metric perturbation generated by this
energy-momentum tensor, one has to integrate with
respect to s twice. Thus the metric perturbation will

diverge as GBd 's '. Kim and Thorne [5] agree that
the metric perturbation diverges, but claim that
quantum-gravitation effects might cut it off when the
observer's proper time before crossing the Cauchy hor-
izon, s, is the Planck time. This would give a metric per-
turbation of order

BI d

If d were of order 1 m, the metric perturbation would be
of order 10 . This is far less than about 10 ', which is
the best that can be detected with the most sensitive
modern instruments.

It may be that quantum gravity introduces a cutoff at
the Planck length. But one would not expect any cutoff
to involve the observer-dependent time s. If there is a
cutoff, one would expect it to occur when the invariant
distance t from the Cauchy horizon was of order the
Planck length. But t is of order ds. So a cutoff in t at
the Planck length would give a metric perturbation of or-
der 1. This would completely change the spacetime and
probably make it impossible to cross the Cauchy horizon.
One would not therefore be able to use the region of
closed timelike curves to travel back in time.

If the coeScient 8 is negative, the energy-momentum
tensor will have a repulsive gravitational effect in the
equation for the rate of change of the volume. This will

tend to prevent the spacetime from developing a Cauchy
horizon. The calculations that indicate 8 is negative
therefore suggest that spacetime will resist being warped
so that closed timelike curves appear. On the other hand,
if 8 were positive, the graviational effect would be attrac-
tive, and the spacetime would develop a singularity,
which would prevent one reaching a region of closed
timelike curves. Either way, there seem to be theoretical
reasons to believe the chronology protection conjecture:
The 1aws ofphysics prevent the appearance of closed time
like curves.

There is also strong experimental evidence in favor of
the conjecture from the fact that we have not been invad-
ed by hordes of tourists from the future.
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