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Bell’s theorem for temporal order
Magdalena Zych 1, Fabio Costa 1, Igor Pikovski 2,3,4 & Časlav Brukner5,6

Time has a fundamentally different character in quantum mechanics and in general relativity.

In quantum theory events unfold in a fixed order while in general relativity temporal order is

influenced by the distribution of matter. When matter requires a quantum description,

temporal order is expected to become non-classical—a scenario beyond the scope of current

theories. Here we provide a direct description of such a scenario. We consider a thought

experiment with a massive body in a spatial superposition and show how it leads to

entanglement of temporal orders between time-like events. This entanglement enables

accomplishing a task, violation of a Bell inequality, that is impossible under local classical

temporal order; it means that temporal order cannot be described by any pre-defined local

variables. A classical notion of a causal structure is therefore untenable in any framework

compatible with the basic principles of quantum mechanics and classical general relativity.
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Quantum mechanics forces us to question the view that
physical quantities (such as spin, positions or energy)
have predefined values: Bell’s theorem shows that if

observable quantities were determined by some locally defined
classical variables, it would be impossible to accomplish certain
tasks—such as the violation of Bell’s inequalities—whereas such
tasks are possible according to quantum mechanics1,2 and have
been realised in experiments3–6. However, the causal relations
between events remain fixed in quantum theory: whether an
event A is in the past, in the future, or space-like separated from
another event B is predefined by the location of such events in
space-time7,8. In contrast, in general relativity, space-time itself is
dynamical: the presence of massive objects affects local clocks and
thus causal relations between events defined with respect to them.
Nonetheless, the dynamical causal structure of general relativity is
still classically predefined: the causal relation between any pair of
events is uniquely determined by the distribution of matter-
energy degrees of freedom (DOFs) in their past light cone. In
other words, causal relations are always determined by local
classical variables. This picture is expected to change if we con-
sider quantum states of gravitating DOFs: if a massive system is
prepared in a superposition of two distinct states, each yielding an
observably different causal structure for future events, would it be
possible to observe causal relations that display genuine quantum
features?

A main obstacle in the analysis of macroscopic superpositions
of gravitating bodies is that, in the absence of a classical space-
time manifold, it becomes unclear how to identify space-like
surfaces on which quantum states are defined, or global fields of
time-like vectors to define time evolution. Indeed, some models
even postulate that such superpositions are simply not valid
physical states and must decohere (or collapse) fast enough to
preserve a classical description of space-time and dynamical
laws9–13. A very different mindset underlies various quantum
gravity frameworks14—where quantum features of the metric and
therefore of the causal relations are indeed expected. However, to
date, none of the quantum gravity frameworks has been applied
to analyse such an epitomic example as superpositions of space-
times with macroscopically distinct causal structures. Therefore, it
is unclear whether there exists any phenomenology unequivocally
associated with quantum causal structures, nor whether quantum
gravity frameworks can circumvent or directly address the
objections against superpositions of manifolds. Independently,
quantum formalisms have been recently developed to study
quantum causal structures at an abstract level in the context of
quantum-information processing8,15,16. However, although
quantum features of space-time are among the motivations for
these studies, no direct link with quantum gravity has yet been
established.

This work provides the first direct analysis of quantum causal
relations arising from a spatial superposition of a massive object.
We show how the temporal order between time-like events can
become superposed or even entangled. We further discuss a
thought experiment, an admissible albeit remote physical sce-
nario, where these non-classical causal relations arise among
physical events. In order to prove their non-classicality, we for-
mulate a Bell-type theorem for temporal order: We define a task
that cannot be accomplished if the time order between the events
was predetermined by local variables, while the task becomes
possible if the events are in a space-time region affected by the
gravitational field of a massive object in an appropriate quantum
state. Our approach provides a method to directly describe sce-
narios so far considered to be out of reach for standard theoretical
physics. We show explicitly how to overcome the difficulties with
describing superpositions of metrics that motivated collapse
models. On the other hand, our result is independent of the high-

energy completion of any specific quantum gravity framework—
we do not assume any new physics, the results are based entirely
on well-established, low-energy general relativity and on quan-
tum mechanics. Our results are therefore robust against particular
mathematical approaches to quantising gravity, thus providing a
benchmark for specific frameworks. Furthermore, the time and
energy scale at which entangled temporal order arises is closer
than the Planck scale, typically invoked in this context, and is also
far remote from the scale given by the decoherence models—
which therefore do not preclude quantum features of space-time
to arise. Our results thus reveal that both the above approaches
are missing crucial intuition and correct physical understanding
of the phenomena associated with causal structures at the inter-
face of quantum and gravitational physics. In turn, our work
provides a robust method to quantitatively assess these phe-
nomena, helping to build correct physical intuition for quantum
causal structures.

Results
Dynamical causal structure in general relativity. In classical
general relativity, the causal structure is the structure of light
cones of the space-time metric17,18. As the matter-energy DOFs
determine the metric through Einstein’s equations, the causal
structure of a region of space-time is dynamical: it depends on the
state of the matter energy in its past light cone. A major obstacle
towards a quantum theory of gravity is that it is not clear how to
transpose the mathematical notion of causal relations to scenarios
where matter DOFs can be in general quantum states, as such
scenarios seem to preclude the use of any underlying space-time
manifold with respect to which events, light cones and causal
relations could be defined. To overcome this obstacle, our
approach is to start from a physical understanding of events and
their causal relations. Even in classical general relativity a physical
event cannot be directly identified with a point on a space-time
manifold, a fundamental aspect of the theory captured mathe-
matically by diffeomorphism invariance19. Although it can be
debated whether or not space-time points have an intrinsic
physical meaning, a natural way to define diffeomorphism-
invariant events is to specify them operationally, relative to
physical systems; for example, positions and proper times of
physical systems used as clocks20. We adopt this notion of events
throughout the work. Causal relations are then understood as the
possibility to exchange non-faster-than-light signals—or more
generally, physical systems—between operationally defined
events.

The presence of massive bodies generally alters the relative
rates at which clocks tick. For example, in a weak field limit, a
clock in a gravitational potential Φ exchanging signals with an
identical clock far away from the source of Φ, where the potential
effectively vanishes, will appear to tick slower by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2 Φ
c2

q
. In classical physics, this leads to the well-tested time-

dilation21,22 and redshift effects23. When the clocks are described
as quantum systems, new effects arise from the combination of
quantum and general relativistic theories. For a clock in
superposition of different distances to the mass, its time-
keeping DOFs become entangled to the clock’s position24–26.
This entanglement implies a universal decoherence mechanism
for generic macroscopic systems under time dilation27,28. The
regime of low-energy quantum systems in curved space-time can
be described within a framework of general relativistic composite
quantum particles29. Here we additionally exploit the fact that
only the distance between a clock and a mass has physical
significance and due to linearity of quantum theory this must
hold also for a superposition of different distances. (There is no
difference in the relative ticking rates of two clocks whether we
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think that the clocks are being positioned at different distances—
possibly in a superposition—from the mass, or that the mass is
positioned at different distances from the clocks30.)

Consider two agents, a and b, with two initially synchronised
clocks, each following a fixed world line. A third agent prepares
one of two mass configurations, KA�B or KB�A, so as to induce
time dilation between the clocks of a and b. If configuration KA�B
is prepared, event A—defined by the clock of agent a showing
proper time ta= τ*—will be in the past light cone of the event B,
which is defined in an analogous way: by the clock of agent b
showing proper time tb= τ*. If configuration KB�A is prepared,
event B will be in the past light cone of event A. To keep the
world lines of the agents independent of the mass configuration,
their laboratories can be embedded in tight enough trapping
potentials, that is, much stronger than the gravitational field
(which is feasible since our protocol does not require macroscopic
source masses, see Methods). In Supplementary Note 4 we discuss
other mass configurations, which have the desired effect on
temporal order, but for which the agents a, b can remain inertial.

A possible way to realise configuration KA�B is to place an
approximately point-like body of massM closer to b than to a, see
Fig. 1. The light-cone structure of the resulting space-time is fully
determined by the metric tensor gμν, for which we adopt the sign
convention (−, +, +, +). In isotropic coordinates in the first-
order post-Newtonian expansion the metric components are31

g00ðrÞ ¼ �ð1þ 2 ΦðrÞ
c2 Þ and gijðrÞ ¼ δijð1þ 2 ΦðrÞ

c2 Þ�1, i, j= 1, 2, 3,
where ΦðrÞ ¼ � GM

r is the gravitational potential and r is the
spatial distance between the mass and the event where the metric
is evaluated. For an event with a spatial coordinate Ra and the
mass at a spatial coordinate rM (where the spatial coordinates are
defined, for example, by a far-away agent as in Fig. 1), we have
r≡ |Ra− rM|. Note that we use a common coordinate system to
describe the different mass configurations and the associated
space-time metrics. Operationally, we can associate such
coordinates with the far-away agent, whose local clocks are not
affected by the change in the matter distribution. However, this is
only a convenient interpretation, we can always think of the
coordinates in analogy to gauge fixing—any physical prediction
regarding proper times of the clocks and exchange of the signals
will not depend on the choice of coordinates.

We consider that a and b remain at fixed coordinate distances
from the mass, ra and rb = ra− h, respectively, and find the
parameters for which event A ends up in the past light cone of B
for KA�B (and vice versa for KB�A). An infinitesimal proper time
element along a world line at a distance r from the mass is given
by dτðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðrÞ

p
dt; where t is the coordinate time, and a

photon travelling in the radial direction from ra reaches rb after a

coordinate time Tc ¼ 1
c

R ra
rb
dr′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� grrðr′Þ

g00ðr′Þ
q

. Therefore, if the photon

is emitted at the local time ta= τ*, it reaches rb when b’s local

time is �tb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðrbÞ

p
τ�ffiffiffiffiffiffiffiffiffiffiffiffi

�g00ðraÞ
p þ Tc

� �
, assuming that the local

clocks are synchronised so that ta= 0 and tb= 0 coincide with the
coordinate time t= 0. For

τ�>Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðrbÞ
p
1�

ffiffiffiffiffiffiffiffiffiffi
g00ðrbÞ
g00ðraÞ

q ; ð1Þ

we have �tb � τ�, which means that there is enough time for a
not-faster-than-light signal emitted at event A (defined by ta= τ*)
to travel the distance h and reach agent b at event B (defined by
tb= τ*). This means that event A is in the causal past of event B as
required. For example, for h � ra condition (1) is satisfied for

τ�> 2r2a c
GM. Configuration KB�A can be arranged analogously, by

placing the mass closer to a than to b. Then, the condition

τ�> 2r2bc
GM, for h � rb, ensures that B is in the causal past of A. Note

that with the above conditions on τ* the events A and B are
always time-like separated, but have different time orders for
the two mass configurations—these conditions guarantee that the
time order between A and B is swapped in all reference frames.

The example above simply illustrates that in general relativity
causal structure is dynamical and depends on the stress-energy
tensor of the matter DOFs: preparing different matter distribu-
tions on a space-like hypersurface can result in different causal
relations between events in its causal future.

Quantum control of temporal order. When A is in the past light
cone of B, a physical system can in principle be transferred
from A to B. Consider a quantum system S initially prepared in
state |ψ〉S, which undergoes a unitary UA at event A (at the space-
time location where the clock of agent a marks proper time τ*)
and a unitary UB at event B. Such ordered events can therefore
result in the following state of S:

~ψ1

�� �S¼ UBUA ψj iS: ð2Þ
If B is before A, and S is prepared in the same initial state, the

final state of S is

~ψ2

�� �S¼ UAUB ψj iS: ð3Þ
A situation can therefore be arranged such that state (2) is

produced for configuration KA�B and (3) is produced for KB�A.
(We ignore a possible additional time evolution between the two
events for simplicity.) Different mass configurations can result in
different temporal orders of local operations, which holds in
quantum as well as in classical theory. Let us make the following
assumptions:

(a) Macroscopically distinguishable states of physical systems
can be assigned orthogonal quantum states.

(b) Gravitational time dilation in a classical limit reduces to that
predicted by general relativity.

(c) The quantum superposition principle holds (regardless of
the mass or nature of the involved system).

Even though the above assumptions hold in the standard
quantum and general relativistic frameworks, it is not known if a
fundamental theory of quantum gravity satisfies them. Our aim is

t

r

A

B

B

A

t

r
a ab

a b

b

KB   AKA   B

Fig. 1 General relativistic engineering of causal relations between space-
time events using a massive body. Initially synchronised clocks a and b are
positioned at fixed distances from a far-away agent whose time coordinate
is t. Event A (B) is defined by the clock of a (b) showing proper time τ*. In
configuration KA�B (left) a mass is placed closer to b than to a. Due to
gravitational time dilation, event A can end up in the causal past of event B:
for a sufficiently large τ* the time difference between the clocks becomes
greater than it takes light to travel between them. Light emitted at event A
reaches clock b before the event B occurs. Configuration KB�A (right) is
fully analogous to KA�B: the mass is placed closer to clock a and the event B
can end up in the causal past of the event A
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to investigate their consequences for the notion of
temporal order.

The coordinates introduced in the previous section define a
foliation of space-time into equal-time slices. As long as no
horizons are present in any of the considered configurations, such
slices define space-like hypersurfaces. With each hypersurface one
can associate a Hilbert space, containing the quantum states of
interest at the given time. The time coordinate corresponds to the
time t in Fig. 1 and is operationally defined as the time measured
by the local clock of the far-away agent (not affected by the mass
configurations). These quantum states can be understood
operationally as states assigned by the far-away agent. However,
as discussed in the previous section, such an interpretation is not
strictly necessary but is merely a convenient way to define the
relevant mathematical objects and to carry out the calculations.

The two mass configurations KA�B;KB�A can thus be assigned

quantum states KA�B

�� �M
, KB�A

�� �M
. By assumption (a) these

states are orthogonal. Since each state individually satisfies the
classical limit (mass is sufficiently localised around a single world
line), following assumption (b), the system S will evolve as in Eqs.

(2) or (3) depending whether the mass is in state KA�B

�� �M
or

KB�A

�� �M
, respectively. Finally, by assumption (c), a superposition

Kþ
�� �M

:¼ 1ffiffi
2

p KA�B

�� �Mþ KB�A

�� �M� �
is a physically allowed mass

configuration, and will yield the following final state of the joint
system:

ψsup

��� EMS
¼ 1ffiffiffi

2
p KA�B

�� �M
UBUA ψj iSþ KB�A

�� �M
UAUB ψj iS

� �
:

ð4Þ
An explicit calculation showing how this state arises is

presented in Methods. We note that not only classical gravity
but also semi-classical14 and stochastic gravity32 theories would
not yield Eq. (4) since these frameworks describe gravitational
interactions in terms of classical, possibly stochastic, variables,
thus violating assumption (c).

Note that, given a specific physical system used as a clock, it is
possible to simulate its time dilation using non-gravitational
interactions. For example, an electric field can shift atomic energy
levels and thus “time dilate” a clock based on atomic transitions.
Therefore, one can produce a state analogous to (4) without using
gravity. However, only gravity can alter the relative ordering of
events independently of the nature of the systems and interac-
tions used as clocks, due to the universality of time dilation: the
preparation and manipulation of the massive object can be
carried out without any knowledge of other aspects of the
protocol. Such a universality underpins a fundamental distinction
between our gravitational protocol and other, non-gravitational,
methods to control causal relations between operationally defined
events33–39. (See also Supplementary Note 4 for further
discussion.)

Finally, the state (4) is the result of a process wherein the order
of operations on a target system (S) is determined by the quantum
state of a control system (position of the massive body). Such a
process is known as a quantum switch15 and has been studied as a
possible quantum-information resource40–44. The state |ψsup〉MS is
a superposition of two amplitudes corresponding to different
predefined, classical orders between events A and B. Note that, if
the control system is discarded, the reduced state of S is

1
2

j~ψ1ih~ψ1jS þ j~ψ2ih~ψ2jS
� �

; ð5Þ

which is indistinguishable from a probabilistic mixture of j~ψ1i
and j~ψ2i. The state in Eq. (5) can be interpreted as arising from

events A and B with a classical, albeit unknown, temporal order.
Therefore, any protocol aimed at testing operationally quantum
features of temporal order necessarily requires a measurement of
the control system.

Bell’s theorem for temporal order. The above argument shows
that superpositions of massive objects can in principle result in
a coherent quantum control of temporal order between events.
However, one might question whether such a conclusion has a
direct physical meaning or whether it relies on a particular
interpretation of state (4). Furthermore, the state assignment is
defined in terms of a given coordinate system, while we would
like to base our conclusions on coordinate-independent phy-
sical events. Since the very meaning of quantum states and
measurements might be put into question in the absence of a
classical space-time, a proof of non-classical causal relations
should not rely on the validity of the quantum formalism. In
the following we show that it is possible to probe the nature of
temporal order irrespective of the validity of quantum theory.
We formulate a theory-independent argument—which does not
rely on the quantum framework and provides means to exclude
the very possibility of explaining data from a hypothetical
experiment in terms of a classical temporal order (which can be
stochastic and dynamical) within a broad class of probabilistic
theories, not limited to quantum mechanics. Our formulation is
analogous to Bell’s theorem for local hidden variables1,2 (see
Methods) and we thus refer to the theorem below as Bell’s
theorem for temporal order of events. The core of the argument
is simple: given a bipartite system prepared in a separable state,
it is not possible to violate any bipartite Bell inequality by
performing local operations (transformations and measure-
ments) on the two parts, as long as the local operations are
applied in a definite order.

The scenario involves a bipartite system with subsystems S1
and S2 and a system M that can influence the temporal order of
events. For j= 1, 2, each system Sj undergoes two transforma-
tions, TAj

and TBj
, at space-time events Aj, Bj, respectively. Each

system is then measured at an event Cj according to some
measurement setting ij, producing a measurement outcome oj.
Additionally, M is measured at an event D, space-like separated
from both C1 and C2, producing an outcome z, see Fig. 2. We
now define the notion of classical order between events:

Definition 1: A set of events is classically ordered if, for each
pair of events A and B, there exists a space-like surface and a
classical variable λ defined on it that determines the causal
relation between A and B: for each given λ, either A≼B (A in the
past causal cone of B), B≼A (A in the past causal cone of B) or
A||B (A and B space-like separated).

Classically ordered events do not necessarily form a partially
ordered set: classical order can be dynamical (the order between
two events can depend on some operation performed in the past,
i.e. some agent can prepare λ) and stochastic (λ might be
distributed according to some probability, and not specified
deterministically)45,46.

Bell’s theorem for temporal order. No states, set of transforma-
tions and measurements which obey assumptions 1–5 below can
result in a violation of the Bell inequalities:

1. Local state: The initial state ω of S1, S2 and M is separable (as
defined in Methods).

2. Local operations: All transformations performed on the
systems are local (as defined in Methods).

3. Classical order: The events at which operations (transforma-
tions and measurements) are performed are classically
ordered.
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4. Space-like separation: Events (A1, B1) are space-like sepa-
rated from events (A2, B2); C1, C2, and D are pair-wise space-
like separated.

5. Free-choice: The measurement choices in the Bell measure-
ment are independent of the rest of the experiment. (This is a
standard assumption necessary in Bell-like theorems.)

More formally, let us denote by T ¼ ðTA1
;TB1

;TA2
;TB2

Þ the set
of all local transformations irrespective of their order. The thesis
of the theorem can be rephrased as: the conditional probability

P o1; o2ji1; i2; z;T;ωð Þ ð6Þ
produced under assumptions 1–5 does not violate Bell’s inequal-
ities for any value of z. The proof of the theorem is presented in
Methods.

Violation of Bell inequalities for temporal order. Here we show
how the gravitational quantum control of temporal order from
the first section can result in events whose temporal order is
entangled: a bipartite quantum system, initially in a product state

ψ1

�� �S1 ψ2

�� �S2 , is sent to two different regions of space such that a1,
b1 and c1 only interact with S1, while a2, b2 and c2 only interact
with S2. Agents a1, a2 perform, respectively, the unitaries UA1

, UA2

at the events A1, A2, while agents b1, b2, perform the unitaries
UB1

, UB2
at the events B1, B2. Finally, c1 and c2 measure S1 and S2

at events C1 and C2, respectively, see Fig. 3. Assume that a
massive system can be prepared in two configurations, KA�B and
KB�A, such that A1 � B1 � C1 (A1 in the past light cone of B1,
etc.) and A2 � B2 � C2 for KA�B, while B1 � A1 � C1 and B2 �
A2 � C2 for KB�A, and such that the events are space-like sepa-
rated as per assumption 4, which can always be achieved by
having the groups sufficiently separated. If the mass is prepared in

superposition 1ffiffi
2

p KA�B

�� �Mþ KB�A

�� �M� �
, the joint state of the

mass and the systems after the application of the unitaries is

1ffiffiffi
2

p KA�B

�� �M
UB1

UA1
ψ1

�� �S1UB2
UA2

ψ2

�� �S2þ KB�A

�� �M
UA1

UB1
ψ1

�� �S1UA2
UB2

ψ2

�� �S2� �
:

ð7Þ

Agent d at the event D measures the mass in the superposition
basis j± i ¼ 1ffiffi

2
p jKA�Bi± jKB�Aið Þ. Conditioned on the outcome,

the joint state of S1 and S2 reads

1ffiffiffi
2

p UB1
UA1

ψ1

�� �S1UB2
UA2

ψ2

�� �S2 ±UA1
UB1

ψ1

�� �S1UA2
UB2

ψ2

�� �S2� �
:

ð8Þ
If the states UB1

UA1
ψ1

�� �S1 , UB2
UA2

ψ2

�� �S2 are orthogonal to

UA1
UB1

ψ1

�� �S1 , UA2
UB2

ψ2

�� �S2 , respectively, then the state (8) is
maximally entangled. Local measurements can thus be performed
on subsystems S1, S2 whose outcomes will violate Bell inequalities,
conditioned on the measurement outcome at D (see Supplemen-
tary Note 2 for an example).

The above thought experiment can in principle be realised in a
scenario where it is meaningful to argue that assumptions 1, 2
and 4, 5 are satisfied. Violation of the Bell’s inequality would then
imply that assumption 3 does not hold, proving non-classicality
of temporal order. In order to maximally violate the inequality,
the time-dilated clocks of the agents need to decorrelate from the
systems Si. In the Methods section we present a particular
scenario using photons that satisfies also this requirement. In
Supplementary Note 3 we present two concrete examples of our
thougth experiment, using as the systems Si polarisation states of
photons, depicted in Supplementary Fig. 1, or spatial modes of a
quantum field, depicted in Supplementary Fig. 2.

z

Space

T
im

e

o2o1

i1 i2
C2C1

B1 B2

A2
A1

S2S1

D

M λ

Fig. 2 Bell’s theorem for temporal order. A bipartite system, made of
subsystems S1 and S2, is sent to two groups of agents. Operations on S1 (S2)
are performed at events A1, B1 (A2, B2). At event C1 (C2), a measurement
with setting i1 (i2) and outcome o1 (o2) is performed. Events A1, B1 are
space-like separated from A2, B2 and C1 is space-like to C2; light cones are
marked by dashed yellow lines. The order of events Aj, Bj, j= 1, 2, is
described by a variable λ defined by a system M. The system M is
measured at event D, producing an output bit z. If the initial state of the
systems S1, S2, M is separable, and λ is a classical variable (possibly
dynamical and probabilistic), the resulting bipartite statistics of the
outcomes o1, o2 cannot violate any Bell inequality, even if conditioned on z

1 21 2

UA2UA1

UB1

UB2

UA2

UB1

UA1 UB2

C2C1 D

⎮�2〉S2⎮�1〉S1
⎮KA   B〉 ⎮KB   A〉

Fig. 3 Schematics of a protocol for a violation of Bell’s inequalities for
temporal order. Systems S1, S2 are prepared in a product state ψ1

�� �S1 ψ2

�� �S2
and sent to space-like separated regions. One pair of agents performs
unitary operations UA1

, UB1
on S1 at the correspondingly marked space-time

events; another pair acts on S2 with unitary operations UA2
and UB2

. Each
operation is applied only once, at an event defined by the specific proper
time of the local clock of the agent. A massive body is prepared in a
superposition of two configurations jKA�Bi and jKB�Ai, which define
different causal structures for future events. For the amplitude jKA�Bi, the
operations UAi

i= 1, 2 applied on Si are in the causal past of the operations
UBi

(orange dots); and vice versa for jKB�Ai (blue dots). The operations can
be chosen such that UAi

UBi
ψi

�� �Si is orthogonal to UBi
UAi

ψi

�� �Si (for both i= 1
and i= 2), resulting in a maximally entangled final state. Bell measurements
are performed at events C1 and C2 on S1 and S2, respectively. At event D the
mass is measured in a superposition basis. Conditioned on the outcome of
this measurement, the results of the measurements at C1, C2 can maximally
violate Bell’s inequalities, which would not be possible if the order of events
was classical (even if probabilistic)
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Discussion
The non-classical causal structures discussed in this work arise in
a semi-classical, albeit non-perturbative, regime where no explicit
quantisation of the gravitational field is needed (which is com-
plementary to the regime of most quantum gravity frame-
works14). Our approach shows that general relativity and
standard quantum mechanics are sufficient to analyse scenarios
involving superpositions of macroscopically different classical
backgrounds. Not only is there no tension between the two fra-
meworks, but there is also no ambiguity in the prediction of
physical effects that arise: for each probability amplitude, the
time-dilation effects introduced by the mass can be treated clas-
sically. The considered processes involve a simple superposition
of such amplitudes and the final probability amplitude is given by
the usual Feynman sum. Note that, even though no explicit
quantisation of the metric is used, the amplitudes in the Feynman
sum do correspond to macroscopically distinct space-time
metrics: this is because each of these amplitudes contains a dif-
ferent causal structure, which determines the metric up to a
conformal factor17,18. Quantisation of the metric is therefore
implicit in our result, in a similar way as in recently considered
witnesses for quantum gravity in interferometric scenarios47–49.

A practical realisation of the Bell test for time order would be
extremely challenging, even in light of current efforts to prepare
superposition states of massive objects and test their gravitational
interactions50–54. However, there would be far reaching con-
sequences if a such a test were fundamentally impossible: this
would imply that time order, and thus time itself, can be
described with a classical parameter even in space-times origi-
nating from a quantum state of a massive object—with no need to
invoke any other mechanism, such as refs. 9–13, that would
decohere these states (see also Supplementary Note 5 for further
discussion). On the other hand, since these mechanisms postulate
a specific decoherence time of spatial superpositions, one could
think that they preclude the preparation of non-classical causal
structures. This is not the case: the time required to complete our
protocol can be shorter than the decoherence time postulated by
these models (see Methods). Thus, contrary to some motiva-
tions11,13, these models do not enforce fundamentally classical
space-time with a fixed causal structure (i.e. there is a parameter
regime where entangled causal structures could form but deco-
herence postulated by these models is negligible). Finally, classical
temporal order could not be excluded also in a scenario where
massive bodies can be prepared in quantum states but one (or
more) of the assumptions 1, 2, 4, and 5 cannot be satisfied for
some fundamental reason. We note that in particular the notion
of locality may be fundamentally limited in the context of
quantum gravity55,56.

We should note that proof-of-principle realisations of indefi-
nite causal order, analogous to the examples discussed here, have
been realised in the laboratory. However, such realisations cannot
be interpreted as proofs of non-classical space-time in the sense of
general relativity, see Supplementary Note 4 for a discussion of
the key differences between the gravitational and other methods
for a quantum control of temporal order. The full extent of the
relation between gravitational and non-gravitational realisations
of quantum causal structures merits an in-depth study on its own.

A crucial aspect of Bell’s theorem for temporal order is that it
provides a theory independent result—it applies to any frame-
work where causal relations are described classically, such as
classical, semi-classical14 and stochastic gravity32 theories.
Moreover, joint validity of the quantum superposition principle
and gravitational time dilation, assumptions (a)–(c), suffice for a
maximal possible violation of the bound. Therefore, a classical
notion of temporal order is untenable in any theory compatible
with these basic principles. Finally, the way in which a non-

classical causal structure can be engineered exploiting time dila-
tion from a massive body in a quantum state reveals a close
connection between the information-theoretic framework of
quantum combs/process matrices and joint effects of quantum
mechanics and general relativity.

Methods
Quantum gravitational control of temporal order. According to the Einstein
equations, a massive object gives rise to a space-time metric gμν, μ, ν = 0, ..., 3,
which in isotropic coordinates and a post-Newtonian expansion reads31:

g00ðrÞ ¼ � 1þ 2 ΦðrÞ
c2

� �
, gijðrÞ ¼ δij 1� 2 ΦðrÞ

c2

� �
; i, j= , 2, 3, where r denotes the

distance to the location of the mass. In other words, if a test mass or a clock is
positioned at a spatial coordinate Ra as described by a far-away agent (as in Fig. 1)
and the massive object is at a coordinate rM, then r= |Ra− rM|, which for clarity
we denote below by Ra− rM. It is important to note that the same coordinates
describe scenarios where the mass is placed at different locations at a finite distance
from rM, as long as it remains far from an asymptotic region so that the spatial and
temporal coordinates of the far-away agent remain unaffected (i.e. are those of flat
Minkowski space-time). In these coordinates, the Hamiltonian of a clock—a par-
ticle with internal DOFs—reads

Ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g00ðRa � rMÞðΩ2

a þ c2gijðRa � rMÞPiPjÞ
q

; ð9Þ

(see e.g. refs. 57–59) where Pi, i= 1, 2, 3 are the components of the momentum
operator, and Ωa is the internal Hamiltonian, describing the local time evolution of
the internal DOFs. Note that we can restrict ourself to an effectively one-
dimensional scenario, so only one of the spatial coordinates has been kept in the
above expression. In the first post-Newtonian expansion and considering that both
the mass and the clock follow fixed world lines at constant Ra and rM, respectively,
Eq. (9) becomes

Ha � Ωa 1þΦðRa � rMÞ
c2

� �
: ð10Þ

The asymptotic time coordinate t defines space-like hypersurfaces that are
independent of the location of the mass and on which one can define states of all
the involved systems (the clocks, the target systems and the mass itself) and
Hamiltonian (10) describes their time evolution of with respect to t. Due to the
interactions between the mass and the clocks—effected by the space-time metric,
which contains the potential Φ(Ra− rM)—the time evolution of the clocks depends
on their relative distance Ra− rM to the mass. Crucially, by the definition of t and
the Hamiltonian our description includes both considered different mass
configurations: the mass can be semi-classically localised around a single spatial
coordinate r or in superposition of different spatial coordinates and the associated
states belong to the same Hilbert space associated with a space-like hypersurface
labelled by t. We thus have all the tools to analyse time evolution in the presence of
a superposition state of the mass, even though it leads to a quantifiably non-
classical causal structure.

With respect to t and the associated foliation of space-time, the evolution of the
clock, which at t= 0, is in an internal state |sa(τ0)〉, where τ0 denotes the clock’s
proper time at t= 0, reads

e�iΩa t 1þΦðRa�rM Þ
c2

	 

jRaijsaðτ0Þi ¼ jRaijsaðτ0 þ τðRa � rM ; tÞÞi; ð11Þ

where τðRa � rM ; tÞ :¼ t 1þ ΦðRa�rM Þ
c2

� �
is the proper time elapsing for the clock at

a radial distance |Ra− rM| from the mass when the elapsed coordinate time is t; and
for clarity we set ħ= 1.

Before continuing on to the gravitational quantum control, we give an example
of an internal Hamiltonian, state, and evolution. Let us take Ωa = E0|0〉〈0|+ E1|1〉
〈1| and jsaðτ0 ¼ 0Þi ¼ 1ffiffi

2
p ðj0i þ j1iÞ, which describe, for example, an atom in an

equal superposition of some two electronic energy levels |0〉,|1〉 with energies E0,
E1, respectively. Under Ha from Eq. (10) internal state |sa(0)〉 from Eq. (11) evolves
as

e�iΩat 1þΦðRa�rM Þ
c2

	 

sað0Þj i ¼ 1ffiffi

2
p e�iE0 t 1þΦðRa�rM Þ

c2

	 

0j i þ 1ffiffi

2
p e�iE1 t 1þΦðRa�rM Þ

c2

	 

1j i

� 1ffiffi
2

p e�iE0τðRa�rM ;tÞ 0j i þ 1ffiffi
2

p e�iE1τðRa�rM ;tÞ 1j i;
ð12Þ

which is simply |sa(τ(Ra− rM, t))〉.
We now use the above to show how the quantum superposition principle and

general relativity lead to the prediction that quantised matter acts as a quantum
control of temporal order. To this end, we assume conditions (a)–(c) from the
Results section and consider two clocks positioned at RA and RB, respectively. The
Hamiltonian of clock a is thus Eq. (10) and fully analogously for b,

Hb � Ωb 1þ ΦðRb�rM Þ
c2

� �
. The clocks are initially synchronised with each other and

with a clock of the distant agent so that at t0= 0 both clocks are at τ0= 0. We
further consider a target system, for example, a mode of the electromagnetic field,
initially in a state |ψ〉S, on which an operation OA is performed at an event A= (Ra,
τa= τ*) and an operation OB at an event B= (Rb, τb= τ*), where τa, τb refer to the
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proper times of the clock A, B, respectively. We effectively represent these
operations as OA ¼ δðτa � τ�; r � RaÞOA, where δ(τA− τ*, r− Ra) is a Dirac delta
distribution and OA is an operator (e.g. describing rotation of the polarisation of an
electromagnetic field mode by a particular half-wave plate) independent of time
and location. The total Hamiltonian reads

Htot ¼ Ha þ Hb þOA þOB; ð13Þ
which for simplicity assumes trivial time evolution of the mass and of the target
system between the application of the operations. We furthermore consider the
following initial (at t0= 0) state of the mass, clocks and the target system:

ψð0Þj iMSab¼ jRaijRbijsaðτ0 ¼ 0Þijsbðτ0 ¼ 0Þi ψj iS rLj iMþ rRj iM	 

; ð14Þ

where positions rL, rR of the mass refer to the configurations in the left and the right
panel of Fig. 1, respectively, that is, they realise configurations KA�B and KB�A: for
|rL〉 the mass is at a distance ra = rL− Ra from clock a and at rb= ra− h from b,
while for |rR〉 the relative distances are swapped and the mass is at a distance ra− h

from a and at ra from b. After coordinate time t such that τ(ra, t) > τ* (where τ�> 2r2bc
GM,

see main text) the state evolves to

jψðtÞiMSab ¼ jRaijRbi jsaðτðra; tÞÞijsbðτðra � h; tÞÞie�iOB e�iOA ψj i rLj iM	
þjsaðτðra � h; tÞÞijsbðτðra; tÞÞie�iOA e�iOB ψj iS rRj iM
: ð15Þ

The order of applying unitary transformations UA ¼ e�iOA and UB ¼ e�iOB to
the target system is controlled by the position of the mass, which due to time-
dilation changes causal relations between events A and B. Swapping the mass
distribution: |rL〉→ |rR〉, |rR〉→ |rL〉 and letting the state evolve for another time
interval t results in the final state where the clocks become synchronised again

ψðtÞj iMSab¼ jRaijRbijsaðτf Þijsbðτf Þi UBUA ψj iS rRj iMþUAUB ψj iS rLj iM	 

; ð16Þ

where τf= τ(ra, t)+ τ(ra− h, t). Measuring the mass in a superposition basis |rL〉M

± |rR〉M prepares the target system in the corresponding superposition state UBUA|
ψ〉S ±UAUB|ψ〉S.

The above example demonstrates that under very conservative assumptions a
spatial superposition of a mass generates a quantum-controlled application of
unitary operations. More fundamentally, this effect stems from the superposition of
different causal structures associated with the superposed states of the mass.

Proof of Bell’s theorem for temporal order. Bell’s theorem in general asserts that,
under certain assumptions, the correlations between the outcomes of independent
measurements on two subsystems must satisfy a class of inequalities. The two
measuring parties are referred to as Alice and Bob. In every experimental run, each of
them measures one of two properties of the subsystem they receive. For each of the
properties, one of two outcomes is obtained, for convenience chosen to be ±1. Bell’s
inequalities follow from the conjunction of the following assumptions: (1) mea-
surement results are determined by properties that exist prior to and independent of
the experiment (hidden variables); (2) results obtained at one location are inde-
pendent of any measurements or actions performed at space-like separation (local-
ity); (3) any process that leads to the choice of which measurement will be carried out
is independent from other processes in the experiment (free choice). The outcomes
of Alice A(i, λ) and Bob B(i, λ) thus only depend on their own choice of setting,
index i, and on the property of the system, variable λ. The correlation between
outcomes A(i, λ) and B(i, λ) for the measurement choices i, j is described by
EðAi;BjÞ ¼

R
dλPðλÞAði; λÞBðj; λÞ, where P(λ) is the probability distribution over the

properties of the systems. It is straightforward to check that one possible inequality
satisfied by the correlations E(Ai, Bj) is the so-called Clauser–Horne–Shimony–Holt
inequality: |E(A1, B1)+ E(A1, B2)+ E(A2, B1)− E(A2, B2)| ≤ 2. Crucially, quantum
theory allows for the left-hand side of this inequality to reach a value >2, and
experimental measurements of this (and other inequalities) have confirmed such a
violation3–6. The significance of the violations of Bell’s inequalities is in showing that
neither nature nor quantum mechanics obey all three assumptions mentioned above.

The assumption of classical order is sufficient to derive Causal Inequalities16,60:
tasks that, without any further assumptions, cannot be performed on a classical
causal structure. However, it is not possible to violate causal inequalities using
quantum control of order45,61, this is why additional assumptions were required in
the present context. It is an open question whether a gravitational implementation
of a scenario that does allow for a violation of causal inequalities is possible.

The theorem we have formulated is theory independent, but not fully device-
independent, as it requires the notions of a physical state and a physical
transformation (in addition to the measured probability distributions), which we
introduce below and then proceed to the proof. Discussion of the present work in
the context of the theory-dependent framework of causally non-separable quantum
processes16,45,61 and the fully theory- and device-independent approach of causal
inequalities16,60 is presented in Supplementary Note 1.

We consider a sufficiently broad framework to describe physical systems that
can undergo transformations and measurements, similar to generalised
probabilistic theories62–64. This framework is more general than quantum or
classical theory and we thus need to define key notions required in the proof. In
this framework, a state ω is a complete specification of the probabilities P(o|i, ω)
for observing outcome o given that a measurement with setting i is performed
on the system. We are interested in situations where a system can be split up

in subsystems, say S1 and S2, with space-like separated agents performing
independent operations on S1 and S2. We say ω is a product state, and write ω=
ω1 ⊗ ω2, if probabilities for local measurements factorise as P(o1, o2|i1, i2, ω) =
P(o1|i1, ω1)P(o2|i2, ω2). If state ωf

1 is prepared for system S1 and state ωf
2 is

prepared for system S2, according to a probability distribution P(f) for some

variable f, we write ω ¼ Rdf Pðf Þωf
1 	 ωf

2 and say the state is separable.
Probabilities are then given by the corresponding mixture:

Pðo1; o2ji1; i2;ωÞ ¼
R
dfPðo1ji1;ωf

1ÞPðo2ji2;ωf
2ÞPðf Þ. Note that for such a

decomposition Bell inequalities cannot be violated1,65.
A physical transformation of the system is represented by a function ω 7!TðωÞ.

To make our arguments precise we need a notion of local transformations, namely,
realised at the time and location defined by a local clock. If S1 is the subsystem on
which a local transformation T1 acts, and S2 labels the DOFs space-like separated
from T1, then, by definition, T1 transforms product states as ω1 	 ω2 7!T1ðω1Þ 	
ω2 and separable states by convex extension. How local operations act on general,
non-separable states can depend on the particular physical theory; however, action
on separable states will suffice for our purposes. We further need to define how the
local transformations combine. This depends on their relative spatio-temporal
locations: if transformations T1, T2 are space-like separated they combine as (T1 ⊗
T2)(ω1 ⊗ ω2)= T1(ω1) ⊗ T2(ω2), which follows from the definition above; if T1 is
in the future of T2, we define their combination as T1 ο T2(ω)= T1(T2(ω)). (For
simplicity, we omit possible additional transformations taking place between the
specified events, as they are of no consequence for our argument.)

Proof Assumption (1) says that there is a random variable f determining the

local states ωf
1, ω

f
2 of systems S1, S2, respectively. Assumption (3) says there is a

random variable λ that determines the order of events. In general, the two variables
can be correlated by some joint probability distribution P(λ, f). By assumption (4),
events labelled A1, B1 are space-like separated from events A2, B2 and the order
between events within each set (Aj, Bj), j= 1, 2 can be defined by a permutation σj.
Most generally, there is a probability P(σj|λ) that the permutation σj is realised for a
given λ. By assumption (2), for each given order the system undergoes a
transformation Tσ1 	 Tσ2 , where Tσ1 is the transformation obtained by composing
TA1

and TB1
in the order corresponding to the permutation σ1 and similarly for

Tσ2 . (For example, if σ1 corresponds to the order A1 � B1, then Tσ1 ¼ TB1

 TA1

.)
Furthermore, at event D an outcome z is obtained with a probability P(z|λ, f, σ1, σ2).
Finally, using assumption (1), we write the probabilities for all outcomes as

P o1; o2; zji1; i2;T;ωð Þ ¼X
σ1σ2

Z
dλ dfPðo1ji1;Tσ1 ðωf

1ÞÞPðo2ji2;Tσ2 ðωf
2ÞÞPðσ1jλÞPðσ2jλÞPðzjλ; f ; σ1; σ2ÞPðλ; f Þ: ð17Þ

A simple Bayesian inversion P(σ1|λ)P(σ2|λ)P(z|λ, f, σ1, σ2)P(λ, f)= P(λ, f, σ1, σ2|z)
P(z), where we used P(σj|λ)= P(σj|λ, f), gives the desired probabilities

P o1; o2ji1; i2; z;T;ωð Þ ¼ P
σ1σ2

R
dλ dfPðo1ji1;Tσ1 ðωf

1ÞÞPðo2ji2;Tσ2 ðωf
2ÞÞPðλ; f ; σ1; σ2jzÞ

¼ Rd~f Pðo1ji1;Tσ1 ÞPðo2ji2;Tσ2 ÞPð~f jzÞ;
ð18Þ

where ~f is a short-hand for the variables λ, f, σ1, and σ2. The above probability
distribution satisfies the hypothesis of Bell’s theorem and thus cannot violate any
Bell inequality.

Exemplary scenario realising Bell test for temporal order of events. The
protocol allowing for the violation of Bell’s inequalities for temporal order exploits
correlations between the clocks of the agents a1, b1 and the agents a2, b2, created
due to time dilation induced by the mass. It should be noted that the protocol
allows maximal violation of the Bell inequality if the joint state of the systems S1
and S2 is pure (and maximally entangled) when the Bell measurements are realised.
Thus, for a maximal violation, the clocks need to decorrelate from the mass after
the application of the unitaries. Below we sketch a scenario that can achieve this.

The space-time arrangement of the mass and the agents in this example is
presented in Fig. 4. It can be realised in one spatial dimension: agents acting on the
system S1 are located at distance h from each other, and the mass is placed at
distance r (configuration KB�A) or r+ L (configuration KA�B) from agent a1.
Agents acting on system S2 are placed symmetrically on the opposite side of the
mass, such that the mass is at a distance r+ L from a2 in configuration KB�A and r
in configuration KA�B. Here, events Aj are defined by the local time τa that differs
from the local time τb defining Bj, j= 1, 2. In such a case, even though the mass is
always closer to aj than to bj, the two mass configurations can lead to different
event orders—as they induce different relative time dilations. (Equivalently, one
can introduce an initial offset in the synchronisation of the clocks.) Note that the
time orders between the two groups are here “anti-correlated”: A1 � B1 and B2 �
A2 for KA�B, and vice versa for KB�A. Since otherwise the scenario is the same for
S1 and S2, we focus on the operations performed on S1. The key observation is that
swapping the mass distribution, as depicted in Fig. 4, will eventually disentangle the
clocks from the mass, and since the clocks must be suitably time dilated when the
operations are performed, the operations must not take place in the future light
cone of the swapped mass state.
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The proper time τa that has to elapse for the clock of a1 such that the order of
events is A1 � B1 for jKA�Bi and B1 � A1 for jKB�Ai for the present case reads

τa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g00ðrÞ

p Tcðr; hÞ þ Tcðr þ L; hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrþLþhÞ
g00ðrþhÞ

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞg00ðrþLþhÞ
g00ðrþhÞg00ðrþLÞ

q ; ð19Þ

where Tc(r, L/2) is the coordinate travel time of light between radial distances r and
r+ L/2 from the mass. The coordinate time corresponding to τa is
Ta ¼ τa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðrÞ
p

. The proper time of event B1 is then defined as:

τb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g00ðr þ Lþ hÞ

p τaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g00ðr þ LÞp þ Tcðr þ L; hÞ
 !

: ð20Þ

It can directly be checked that when the mass is placed in configuration KA�B—
at a distance r+ L from a1—the event A1 defined by local clock of a1 showing
proper time τa from Eq. (18) is in the past light cone of event B1, which is defined
by the local clock of b1 showing proper time τb from Eq. (19). When the mass is
placed in configuration KB�A, event B1 ends up in the past of the event A1. The
coordinate time required for the application of the operations can be estimated as
twice the travel time of light between the agents, To= 2Tc(r + L/2, h).

The world lines of the mass can be arranged such that: (a) the mass is moving
slow so that the two amplitudes of the mass are swapped in a time interval longer
than To; (b) during the application of the operations the distance of each agent to
the mass is approximately the same for both mass configurations (as in Fig. 4). The
first guarantees that there is enough time to apply the operations after the clocks
get correlated, the second—that the slow-down of light in curved space-time, the
Shapiro delay66,67, can be neglected.

The coordinate-time duration of the entire protocol can be estimated as Tp=
2Ta+ 4L/2c, where L/2c is the minimal time required to put the mass in
superposition of amplitudes separated by the distance L/2. Taking as an example
M ~ 0.1 μg, L= h ~ 0.1 μm, r ~ 1 fm, the protocol in Fig. 4 takes Tp ~10 h.
Furthermore, we note that a quantum treatment of the local clocks is central to our
protocol since the application of the operations on the target systems is conditioned
on the states of the clocks. The time-energy uncertainty68,69 thus poses a limitation
to a single-shot precision with which space-time events can be defined with
physical clocks. The optimal clock state in this context—evolving the fastest—is a
balanced superposition of energy eigenstates; for an energy gap ħ ⋅ 2πνc, where νc is
the clock frequency, the smallest time that can be resolved by a single quantum
system is the so-called orthogonalisation time70–72 t⊥= 1/2νc. For the values of
parameters quoted above, the coordinate-time difference between the superposed
locations of the events Ai, i= 1, 2 is ~10−15 s, and we thus need a system with
frequency νc ≥1015 Hz such as a clock based on optical transitions in ytterbium73 or
mercury74, which both give t⊥ ~10−16 s. While this ideal limit is not reached with
practical systems, the resolution of current atomic clocks based on such atoms far
exceeds this theoretical bound due to averaging over many atoms, with 2.5 × 10−19

uncertainty of the clock frequency recently demonstrated in ref. 75. We further note
that by using n entangled atoms, the orthogonalisation time of the entire system
becomes t⊥/n and can thus be even a few orders of magnitude smaller76 than
required. Finally, such atoms have masses ~10−25 kg and their back action on the
metric produced by M ~ 10−7 kg would thus be negligible. Since the mass
difference between the atom in the two involved energy levels is 2πħνc/c2 ~10−35 kg

also quantum effects from the clocks’ mutual gravitational interactions58 can be
neglected.

We conclude that it is in principle possible to achieve the required
entanglement of orders, swap the mass distribution so as to finally disentangle the
clocks from the mass, and satisfy the locality conditions on the events. Although a
direct experiment in such a regime is not practical, the above example surprisingly
shows that the regime where entangled temporal order arises is in no way related
to the Planck scale. It is usually assumed that the Planckscale marks the regime
where quantum gravity effects become relevant (first discussed in this context by
Bronstein77), but this is not the case for the superposition of temporal order. In
terms of a potential experiment, one could also take a different (theory-
dependent) approach and explore possible witnesses of entangled temporal
order61, in analogy to witnesses of entanglement in quantum-information
theory78. A witness would probe the quantum nature of temporal order indirectly
and under further assumptions, but in a relaxed parameter range. Such an
approach may lead to more feasible experiments, which will be explored in a
future study.

A spatial superposition state of a mass such as used in our protocol is
postulated to decohere in various gravity-inspired collapse models9–13 (which
thus violate assumption (c) in the first section). However, even if endorsed, these
models do not immediately preclude realisation of our protocol: the decoherence
time scale in those models is the Diosi–Penrose time10,11 TDP ¼ 2δ3�h

GðMLÞ2, where
δ is a free parameter. For every value of δ one can find the mass and the relevant
distances (M, r, L, h) so that the duration of our entire protocol is shorter than
TDP. For example, following the recent ref. 79 and taking δ = 10−7 m, for r=
1010RSch, L= 5r, h= r and M= 1 g, where RSch ≈10−30 m, the protocol from
Fig. 4 takes Tp ≈7 × 10−18 s, while TDP ≈0.5 s. Taking instead the originally
proposed value δ= 10−15 m10, the desired regime is achieved, for example,
for M= 10−7 kg, r= 107RSch, L= 5 × 105r, h= 105r; with Tp ~10−23 s and
TDP ~10−13 s. Thus, the above models in principle still allow for events with
entangled temporal order, and do not enforce the classicality of the causal
structure of space time.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author upon reasonable request.
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