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If time is described by a fundamental process rather than a coordinate, it interacts with any physical
system that evolves in time. The resulting dynamics is shown here to be consistent provided the
fundamental period of the time system is sufficiently small. A strong upper bound TC < 10−33 s of the
fundamental period of time, several orders of magnitude below any direct time measurement, is obtained
from bounds on dynamical variations of the period of a system evolving in time.
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Dimensional arguments are often used to suggest that
time has a fundamental period, given by the Planck time
tP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c5

p
¼ 5.39 × 10−44 s using the speed of light c,

Newton’s constant G, and Planck’s constant ℏ. Resolving
this timescale is far beyond currently available technology.
Nevertheless, it may be possible to obtain indirect infor-
mation about physics near this scale, much like Brownian
motion helped to confirm the atomic nature of matter using
light microscopy, able to resolve only distance scales much
larger than the atomic size. In order to devise indirect
measurements, a detailed physical model must be available
to derive effects that could magnify the sensitivity of a
direct measurement. Here, we show that quantum mechan-
ics of a physical model of time, described not as a
monotonic external parameter but rather as a dynamical
and oscillating variable that can model a physical clock,
reveals a surprising magnification effect. The resulting
upper bound on a potential fundamental period of time is
about 10 orders of magnitude above the Planck time, but
much closer than any direct measurement could provide.
Formulating quantum mechanics with a physical, oscil-

lating time variable may at first sight seem in conflict with
the requirement of unitarity, which implies that the evolu-
tion operator between two states, ψð0Þ and ψðtÞ, is given by
ÛðtÞ ¼ expð−iĤt=ℏÞ using the self-adjoint Hamiltonian Ĥ
of the evolving system. If this condition must be maintained
for all t, it is impossible to make sense of a dynamical,
oscillating time variable which turns back to its initial value
after each clock cycle while the system does not, in general,
evolve back. Moreover, even during phases in which the
expectation value of a physical, and therefore quantum,
time variable changes monotonically, the variable should be
subject to quantum fluctuations which do not have a
preferred direction. These problems are especially acute
in quantum gravity and quantum cosmology, two fields
which aim to quantize generally relativistic systems in
which there is no absolute time [1–3].
A proposal to formulate a meaningful notion of physical

time goes back to an investigation by Dirac [4] that

analyzed general properties of quantum constrained systems
relevant for generally relativistic systems. Dirac briefly
suggested a construction, now called deparametrization,
which, with hindsight, can be interpreted as a solution to
the problem of quantum fluctuations of a physical time
variable by showing that physical time requires constrained
dynamics: If both time and the system of interest are
quantized in an extended model that includes all relevant
degrees of freedom, the energies of the time variable and the
system have to be exactly balanced. Otherwise, a nonzero net
energy would imply nontrivial evolution of the extended
model in an external absolute time parameter, violating the
assumption that time is described by an internal degree of
freedom.
A specific example from cosmology is the Friedmann

equation,

�
1

a
da
dt

�
2

¼ 8πG
3c2

ρ; ð1Þ

for the scale factor a > 0, with the energy density ρ of
matter. In canonical form, this equation can be rewritten as
an energy-balancing constraint,

C ¼ −HmatterðVÞ þ
6πG
c2

Vp2
V ¼ 0; ð2Þ

where V ¼ a3 is the spatial volume and pV ¼ −c2 _a=
ð4πGaÞ its momentum. By virtue of the constraint, the
matter energy HmatterðVÞ ¼ Vρ always equals the gravita-
tional contribution 6πGVp2

V=c
2.

A common matter system in cosmological models is a
scalar degree of freedom ϕ with momentum pϕ and energy
density

ρ ¼ 1

2

p2
ϕ

V2
þWðϕÞ; ð3Þ

whereWðϕÞ is the scalar potential, such asWðϕÞ ¼ 1
2
m2ϕ2

for a scalar of mass m. It is then possible to describe
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the expansion of the Universe by a function VðϕÞ that
determines the volume with reference to the value of the
scalar, rather than using a time coordinate not described by
a physical subsystem. To derive VðϕÞ classically, one first
writes Hamilton’s equations of motion by interpreting the
constraint C as the total Hamiltonian, such as dϕ=dϵ ¼
∂C=∂pϕ ¼ pϕ=V, and then eliminates the auxiliary param-
eter ϵ from the solutions ϕðϵÞ and VðϵÞ, also using solutions
for the momenta. (Systematic expansions that do not
require intermediate ϵ-dependent functions have been
derived in Refs. [5,6]).
Deparametrization, in cosmological models following

the constructions of Ref. [7], assumes that the scalar used as
time is massless and without self-interactions, WðϕÞ ¼ 0.
Hamilton’s equations derived from the constraint C then
imply that pϕ is conserved, while the rate of change of ϕ, as
just derived, is proportional to pϕ. As long as pϕ ≠ 0, such
that there is in fact energy in the time variable, ϕ is always
monotonic in ϵ. The assumption of zero scalar potential
therefore does not allow one to describe oscillating clocks,
but it shows how standard evolution as in quantum
mechanics can formally be recovered: If we solve the
constraint for pϕ, we can quantize the resulting equation
−pϕ ¼ ffiffiffiffiffiffiffiffiffiffiffi

12πG
p

VjpV j=c by a Schrödinger equation:

iℏ
∂ψ
∂ϕ ¼

ffiffiffiffiffiffiffiffiffi
3πG

p

c
ðV̂jp̂V j þ jp̂V jV̂Þψ : ð4Þ

On solutions of the constraint, therefore, quantum fluctua-
tions of ϕ do not present an obstacle to unitary evolution
because they are no longer independent of the system
degrees of freedom [8–11].
However, deparametrization, in spite of its widespread

use in quantum cosmology, is not a realistic description of a
fundamental process underlying our measurements of time
because it would require fine-tuned interactions that pre-
vent one variable from oscillating. The description of an
oscillating motion would require the presence of a back-
ground time, such as the gauge parameter ϵ used above.
Referring to such a monotonic background parameter
might seem to render our logic circular. However, our
construction will make use of a more general definition
of an oscillating variable as one that enters a basic
Hamiltonian with a standard kinetic energy and a mass
term or some (self-)interaction potential that is unbounded
from above. If one were to solve such a system in a
background time, one would obtain oscillating motion, but
we will require only the stated condition on the generic
functional dependence of a Hamiltonian.
While monotonic readings can be constructed in spe-

cifically designed clocks or calendars, accounting for the
fine-tuning required for a monotonic time variable to
emerge, they do not refer to fundamental variables that
would appear in a basic Hamiltonian with some potential or
interaction term. Our model below will, in fact, describe a

construction that shows how a monotonic time variable (τ)
can emerge from an oscillating fundamental variable (ϕ).
For instance, if we include a mass term in the cosmological
model,WðϕÞ ¼ 1

2
m2ϕ2, ϕ is an oscillating variable, and pϕ

is no longer constant on solutions of the constraint (2). The
time variable ϕ has turning points whenever pϕ equals zero.
A procedure to formulate quantum evolution with respect

to such an oscillating time variable has only recently been
given [12]. We illustrate and evaluate this procedure for a
more familiar system from quantum mechanics rather than
quantum cosmology, using a constraint,

C0 ¼ p2
ϕ þ λ2ϕ2 −Hðx; pÞ2; ð5Þ

whereHðx; pÞ is the Hamiltonian of a standard system such
as the harmonic oscillator. For λ ¼ 0, we can use depar-
ametrization, such that the quantized solution −pϕ ¼
Hðx; pÞ of C0 ¼ 0 is equivalent to the Schrödinger equation
of quantum mechanics. For λ ≠ 0,

−pϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − λ2ϕ2

q
ð6Þ

is set equal to a time-dependent Hamiltonian which becomes
problematic if we try to interpret ϕ as a global time that can
take any real number because pϕ would not always be real.
In order to address this problem, one first constructs a

global time variable τ such that ϕðτÞ ¼ �τ þ A, where
constant A is linear in τ, with unit rate, between any two
turning points of ϕ. Different phases of ϕ, separated by
turning points, are related by choosing constants A in each
phase such that ϕðτÞ is continuous with alternating
dϕ=dτ ¼ �1. Without changing the dynamics, τ then
provides a global, monotonically increasing time parameter
that unravels the motion of ϕ, just like standard clocks
unfold the circular motion of the minute hand by moving
forward the hour hand after one minute cycle has been
completed. (A similar procedure has been applied to a
related case in which nonmonotonic behavior is a conse-
quence of nontrivial topology rather than turning points
[13,14].) In the example of C0, Eq. (5), we use

ϕðτÞ ¼
� ð4nþ 2Þϕt − τ if 4nþ 1 ≤ τ=ϕt ≤ 4nþ 3

τ − 4nϕt otherwise;

ð7Þ

where ϕt ¼ H=λ characterizes turning points (pϕ ¼ 0).
The integer

n ¼
�
1þ τ=ϕt

4

�
ð8Þ

determines the number of cycles of ϕ the fundamental
clock goes through between time 0 and time τ. Evaluating
Eq. (6) in ϕðτÞ always gives a real number, for any τ.
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In the second step, we formulate quantum evolution with
respect to τ by concatenating evolution operators for
monotonic phases of ϕ. The Schrödinger equation implied
by Eq. (6) can be solved in the energy eigenbasis ψk of the
system with Hamiltonian Ĥ with energy eigenvalues Ek:
ψkðq;ϕÞ ¼ ψkðq; 0Þ exp½iΘkðϕÞ� with the phase

ΘkðϕÞ ¼ −
1

2λℏ

�
λϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k − λ2ϕ2

q
þ E2

k arcsin
�
λϕ

Ek

�	
: ð9Þ

This phase is real only for ϕ between its turning points, and
therefore, as expected, ϕ does not provide global evolution.
However, Θk½ϕðτÞ� is always real and implies global evo-
lution with respect to τ. Because dϕ=dτ ¼ �1 is not
constant, however, we should alternate the sign of
Θk½ϕðτÞ� in order to describe evolution with respect to τ
instead of ϕ. [The correct equation is a slight modification
of Eq. (4), changing iℏ∂ψ=∂ϕ ¼ Ĥψ to iℏ∂ψ=∂τ ¼
ðdϕ=dτÞĤψ].
The construction just described introduces well-defined,

unitary evolutionwith respect to τ, implying a realisticmodel
of time in which a system evolves relative to an oscillating
quantum clock. The clock and the system are interacting
through the energy-balance conditionC0 ¼ 0, Eq. (5), which
implies rather complicated time-dependent Hamiltonians for
λ ≠ 0. Numerical simulations can, however, be performed
and reveal several interesting and surprising properties. In
order to bring these out most clearly, we now specify the
system Hamiltonian to be given by the harmonic oscillator,
but the relevant features have been confirmed numerically
also for anharmonic and atomic systems.
For the harmonic oscillator, we expect that the strong

coherence of the standard system, realized for λ ¼ 0, dis-
appears for λ ≠ 0, in which case the quadratic Hamiltonian is
replaced by Eq. (6). This expectation is confirmed in Fig. 1.
However, the same figure shows that coherence remains
intact for large λ, defined as values of λ such that the clock
period TC ¼ 4ϕt ¼ 4H=λ is much smaller than the system
period. When the clock goes through many cycles during a
single system period, therefore, the dynamics is almost
indistinguishable from what is known from standard quan-
tummechanics.Theonly visible difference is a systemperiod
rescaled by a factor of π=4, which can always be absorbed in
a redefinition of system parameters.
The rescaled period can be explained as follows.

During each clock cycle, while ϕ runs from −ϕt ¼
−Ek=λ to ϕt and back, the wave function accumulates a
phase difference of

ΔΘk ¼ 2½ΘkðϕtÞ − Θkð−ϕtÞ� ¼ −
πE2

k

ℏ
n
λ

ð10Þ

in each stationary state. Moreover, for large λ, the number
of cycles, n given in Eq. (8), divided by λ can be
approximated by

n
λ
¼ 1

4
b1=λþ τ=Ekc ≈

τ

4Ek
: ð11Þ

Therefore, the phase accumulated over many cycles is
approximately given by

ΔΘk ∼ −
πEkτ

4ℏ
; ð12Þ

which is π=4 times the standard phase −Ekt=ℏ.
Our first result is therefore an unexpected revival of

coherence for small periods of a fundamental clock.
Differences between deparametrization with a monotonic
time variable and the realistic implementation of a physical
and oscillating clock are tiny, providing justification for the
deparametrization procedure as a simplified mathematical
method that is nevertheless able to describe implications of
an oscillating clock. Deparametrization, as envisioned by
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FIG. 1. Density plots of the wave function for small λ (top) and
large λ (bottom), respectively, using a harmonic-oscillator Ham-
iltonian Ĥ ¼ 1

2
ðp̂2 þ q̂2Þ and a coherent initial state.
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Dirac, is therefore viable as a procedure that allows one to
understand qualitative features of relativistic quantum
systems. (Other aspects of the problem of time are still
being studied, mainly related to transforming observables
obtained with different time or frame choices [15–20]).
However, our second result, to be described in the remain-
der of this Letter, shows that there are small effects of a
physical, periodic clock that can be relevant for sensitive
observations.
Additional deviations from the standard behavior can be

uncovered by detailed numerical analysis. In particular,
because the phase (9) is not linear in τ, the system does not
go through its cycles in a uniform manner, as would be
the case with the standard linear phase −Ekt=ℏ for each
stationary contribution. As a consequence, the distribution
of system periods taken over large evolution times has
a nonzero standarddeviation, as shown inFig. 2. Importantly,
the plot shows a simple 1=λ dependence of the standard
deviation, which can be used in an extrapolation to periods
that would be too small for accurate numerical evaluations.
Also the 1=λ behavior can be derived analytically for

large λ. We average the squared deviation of the phase (9)
from the linear limit of λ → ∞, Θ∞

k ðτÞ ¼ ΔΘk given in
Eq. (12), over a half-cycle of ϕ:

σ2 ¼ 1

ϕt

Z
ϕt

0

�
Θk(ϕðτÞ) − Θ∞

k ðτÞ
	
2

dτ

¼ E4
kð21π2 − 1024=5Þ

242λ2ℏ2
: ð13Þ

Therefore, the clock period TC ¼ 4ϕt ¼ 4Ek=λ in a
stationary state is related to the system period TS ¼
2πℏ=Ek by

TC ¼ 48σTS

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21π2 − 1024=5

p ≈ 9.7σTS: ð14Þ

Before we evaluate this result, we note that the quali-
tative behavior is robust and does not depend much on the
precise dynamics of the fundamental clock. For a clock
Hamiltonian other than p2

ϕ þ λ2ϕ2, the phase Θk would be
different, implying changes in the scaling factor of π=4 in
the system period and in the coefficients of Eq. (14).
However, results analogous to our specific equations would
still be obtained. As long as we are interested in an upper
bound on the fundamental period of time, therefore, the
clock details do not matter. Considering systems other than
a harmonic oscillator, for the same fundamental clock, does
not change our results becausewe referred only to genericEk
and ψk. They may be more difficult to obtain for non-
harmonic systems, but their specific form is not required for
our equations such as (13).Anonharmonic example is shown
in Fig. 3.
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FIG. 2. Relative standard deviation σ of the system period over
many system cycles as a function of λ. The analytical approxi-
mation (13) agrees well with the upper limit of a numerical
computation of many system periods, both confirming a 1=λ
behavior of σ.
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FIG. 3. Radius expectation values as multiples of the Bohr
radius a0 for small λ (top) and large λ (bottom), respectively,
using a superposition of hydrogen eigenstates. The example of
large λ is visually indistinguishable from λ ¼ 0.
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Given the relative precision σ of a time measurement,
such as σ ≈ 10−19 for recent atomic clocks [21] working at
a system period of TS ≈ 2 fs (corresponding to the wave-
length 698 nm of the 3P0 → 1S0 transition of strontium), we
therefore obtain the upper bound TC < 10−33 s: The
measured precision could not be maintained if TC were
greater, implying a nonuniform system period. This upper
bound is about 10 orders of magnitude above the Planck
time, but it is much smaller than could be achieved with any
direct measurement.
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