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Quantum asymmetry between time and space

Joan A. Vaccaro
Centre for Quantum Dynamics, Griffith University, Nathan 4111 Australia

In special relativity, time and space are necessarily interconvertible in order that the speed of
light is an invariant. This places time and space on an equal footing which, perplexingly, does not
carry over to other areas of physics. For example in quantum mechanics, time is treated classically
whereas space is associated with a quantum description. Differences between time and space are
also found in the violation of the discrete symmetries of charge conjugation, parity inversion and
time reversal—the violations are inferred from the decay of particles over time irrespective of their
position in space, and so they are associated with translations in time but not in space. Although
these violations are clearly important, their wider implications are unknown. We show here that
when the violations are included explicitly in a quantum formalism, remarkable differences arise
between the character of quantum states in time and space. In particular, despite time and space
having an equal footing at a fundamental level, we find that quantum states can be localised in space
and yet have unbounded evolution in time. As such, the violations are shown to play a defining role
in the asymmetry between time and space in quantum mechanics.

I. INTRODUCTION

There is nothing unphysical about matter being lo-
calised in a region of space; matter can simply exist at
one location and not another. But for it to be localised
in a finite period of time is altogether different. Indeed,
as the matter would exist only for that period and no
other, the situation would be a direct violation of mass
conservation. In conventional quantum mechanics, this
undesirable situation is avoided axiomatically by requir-
ing matter to be represented by a quantum state vector
whose norm is fixed over time. Time then becomes a clas-
sical parameter whereas the location of matter in space
is treated by quantum variables and, as a consequence,
the status of time and space are quite different from the
very outset.

However, time and space could have an equivalent foot-
ing in quantum mechanics if their differences were to arise
phenomenologically rather than being imposed axiomat-
ically on the theory. Such a prospect is well worth pursu-
ing because it would help us to understand the relation-
ship between time and space. It would require finding
an underlying mechanism that allows matter to be lo-
calised in space but not in time. As localisation entails
a constraint on the corresponding translational degree of
freedom, we need to look for the mechanism in terms of
translations. The generators of translations in space and
time are given by the momentum and Hamiltonian oper-
ators, respectively, and with them lies a difference that
sets space and time apart in the quantum regime. In
fact, the last fifty years [1–6] has shown that the Hamil-
tonian is not invariant to particular combinations of the
discrete symmetry operations of charge conjugation (C),
parity inversion (P) and time reversal (T), whereas the
momentum operator is. The violations are accounted
for in the Standard Model of particle physics by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix [7, 8] and
the violation of CP invariance, in particular, is believed
to have played a crucial role in baryogenesis in the early
universe [9]. Here we explore the potential impact the

violations may have for giving quantum states different
representations in space and time.

Given the fundamental character of the issues involved,
one should not be surprised to find that to make any
progress we need to pay due attention to quite subtle
mathematical details. For instance, while the concept
of the limit of an infinite sequence has rigorous meaning
in a mathematical context, there is no a priori reason
to suppose that it automatically carries corresponding
meaning in a theory that is designed to underpin exper-
imental physics. After all, the accuracy of observations
made in experimental physics are always restricted by fi-
nite resources. For example, consider a theory in which
the limit point a of the convergent sequence a1, a2, a3,
. . . (i.e. where an → a as n → ∞) represents an exper-
imental parameter, and let ε represent the experimental
accuracy of measuring a for a given level of resources.
The convergence of the sequence implies that there ex-
ists a natural number N that depends on ε for which
|a − an| < ε for all n > N , and so it is not possible
to physically distinguish (using the given resources) the
limit point a from any of the terms an for n > N . Un-
der such circumstances, the set {an : n > N} would
be a more complete representation of the physical situ-
ation than just the limit point a. Another mathemat-
ical subtlety concerns the violation of the C, P and T
discrete symmetries. The C, P and T symmetry opera-
tions do not appear in conventional quantum mechanics
in any fundamental way. If we wish to see how the associ-
ated violations can give rise to differences between space
and time, then we need to take care not to inadvertently
exclude the C, P and T symmetry operations from the
quantum formalism, even if in some circumstances they
appear to be redundant. Likewise, we need to take care
not to overlook situations where the generators of trans-
lations in space and time might play a role, even if that
role appears to be irrelevant in the conventional quantum
formalism.

With this in mind, we begin in section II by consid-
ering the mathematical construction of quantum states
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FIG. 1: Sketches illustrating the translation of wave functions
along (a) the x axis and (b) the time axis. In (a) the wave
functions represent the position eigenket |x〉x and an arbitrary
state |χ〉 and the translation is by a distance δx. In (b) the
wave function represents the state |f〉 and the translation is
by an interval t.

that are distributed over space. We incorporate the par-
ity inversion operation and translations in space into the
construction and pay due consideration to fundamental
limits of precision. This construction forms the basis of
a new quantum framework that is used in the remainder
of the paper. In section III, we replace parity inversion
with time reversal, translations in space with those in
time, and then apply the construction to quantum states
that are distributed over time. We show that the pres-
ence of the violation of time reversal symmetry dramat-
ically changes the quantum states from being localised
in time to having unbounded time evolution. Follow-
ing that, in section IV, we show how the conventional
Schrödinger equation emerges as a result of coarse grain-
ing over time, and explore how the new formalism might
be tested experimentally. We end with a discussion in
section V.

II. MATHEMATICAL CONSTRUCTION OF
QUANTUM STATES

We first need to find a mathematical construction of
quantum states that is expressed explicitly in terms of
the respective generator of translations and the C, P or
T symmetry operations. We begin by considering a sim-
ple 1-dimensional model universe composed of a single
“galaxy” and described by non-relativistic quantum me-
chanics. The galaxy is representative of any spatially
localised physical system with mass and could in fact be
a star, a planet or just a single particle; its details are

not important for this study. Imagine that some precon-
dition ensures that the centre of mass of the galaxy is
described by a Gaussian wave function as follows:

|ψ〉 ∝
∫
dx exp(− x2

2σ2
x

)|x〉x (1)

where |x〉x is an eigenstate of the x component of the cen-
tre of mass position with eigenvalue x and σx is a width
parameter. Such a state gives the minimum of the prod-
uct of the uncertainties in the centre of mass position and
total momentum. It can be written explicitly in terms of
spatial translations as

|ψ〉 ∝
∫
dx exp(− x2

2σ2
x

) exp(−iP̂ x)|0〉x (2)

where operator representing the total momentum of the
galaxy, P̂ , generates spatial translations according to

exp(−iP̂ δx)|x〉x = |x+ δx〉x

as illustrated in Fig. 1(a). Here, and throughout this pa-
per, we use units in which ~ = 1. Inserting the resolution
of the identity 1̂ =

∫
dp|p〉pp〈p| into Eq. (2) gives

|ψ〉 ∝
∫∫

dx dp exp(− x2

2σ2
x

) exp(−ipx)|p〉pp〈p|0〉x ,

where {|p〉p : P̂ |p〉p = p|p〉p} is the momentum basis.
On carrying out the Fourier transform with respect to
x, yields |ψ〉 ∝ exp(− 1

2 P̂
2σ2

x)|0〉x and making use of the
result

exp(−A2/2) = lim
N→∞

cosN (A/
√
N) (3)

then leads to

|ψ〉 ∝ lim
N→∞

1

2N

[
exp(i

P̂ σx√
N

) + exp(−i P̂ σx√
N

)

]N
|0〉x . (4)

Expanding the N -fold product in Eq. (4) gives a se-
ries of terms each of which comprise N translations (or

“steps”) of ±σx/
√
N along the x axis. For example, a

term of the form

· · · exp(−iP̂ a) exp(−iP̂ a) exp(iP̂ a) exp(−iP̂ a)|0〉x ,

where a = σx/
√
N , describes a path on the x axis from

the origin 0 through the sequence of points a, 0, a, 2a and
so on, as illustrated in Fig. 2(a). Equation Eq. (4) can
be viewed, therefore, as a superposition of random paths
away from the origin |0〉x in the limit of infinitely small
steps, and shares similarities with both quantum walks
[10] and Feynman’s sum over paths [11]. Note that here,
however, the random path is traversed without reference
to time, and so it should be considered to be traversed in
a zero time interval. Each random path is, therefore, a
generalisation of the virtual displacements used in classi-
cal mechanics [12]. For this reason each individual path
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FIG. 2: Binary tree diagrams representing virtual paths in (a)
space and (b) time. Each edge (white dashed line) in the tree
represents a virtual displacement along the black horizontal
axis. The thick blue edges in (a) represents a virtual path
that passes through the sequence of points 0, a, 0, a, 2a on
the x axis. In (b) four different virtual paths from 0 to 2δt on
the tc axis are represented in the tree by thick edges coloured
yellow, red, blue and purple.

shall be called a random virtual path and the superposi-
tion of a set of random virtual paths like that in Eq. (4)
shall be called a quantum path.

As N →∞ the step length σx/
√
N in Eq. (4) will even-

tually breach the fundamental lower bound, say δxmin,
that is expected for physically distinguishable positions.
For example, there are reasons [13] to believe that points
in space are indistinguishable at the scale of the Planck

length `P ≈ 1.6 × 10−35 m. Let N
(space)
min be the value of

N where the step length σx/
√
N becomes equal to δxmin,

i.e. N
(space)
min = σ2

x/δx
2
min. This implies that the limit on

the right side of Eq. (4) can be replaced by a term corre-

sponding to any value of N larger than N
(space)
min without

any physically meaningful consequences. There are an
infinite number of such terms, each of which has an equal
status in representing the state of the universe. They
form the set

Ψ = {|ψ〉N : N ≥ N (space)
min } (5)

where

|ψ〉N =
1

2N

[
P̂−1exp(−i P̂ σx√

N
)P̂ + exp(−i P̂ σx√

N
)

]N
|0〉x .

(6)
In Eq. (6) we have written the translations explicitly in

terms of the parity inversion operator P̂. It has the prop-
erty that

exp(iP̂ x′) = P̂−1exp(−iP̂ x′)P̂ (7)

which expresses the fact that a translation along the x
axis by −x′, corresponding to the left side of Eq. (7),
can be produced by first performing a parity inversion,
translating by x′ and then reversing the parity inversion,
as shown on the right side. Every element in the set Ψ
can serve equally well as a representation of the state
in Eq. (1) as far as the physically-distinguishable spatial
limit allows; they all have equal status in this respect.

The mathematical construction represented by Eq. (5)
and Eq. (6) is in the form of the explicit translations
and discrete symmetry operations that we need for com-
paring the difference between quantum states in space
and time. Although being equivalent to Eq. (1), we shall
henceforth regard Eq. (5) and Eq. (6) as being a more
fundamental description of the state of the galaxy due
to this explicit form. Accordingly, any precondition for
Eq. (1) now becomes a precondition for this construc-
tion. Note that the interpretation of Eq. (6) in terms
of quantum paths does not hinge on the state |0〉x be-
ing the eigenstate of position with zero eigenvalue. In
fact any state |χ〉 with a variance in position very much
smaller than σ2

x/2 (and, correspondingly, a variance in
total momentum very much larger than 1/2σ2

x) could be
used in its place, in which case the steps in a path rep-
resent translations of |χ〉 along the x axis, as illustrated
in Fig. 1(a), rather than steps along the x axis itself.

III. APPLYING THE CONSTRUCTION TO
QUANTUM STATES IN TIME

We now use our construction to explore the temporal
analogy of Eq. (1) in which the galaxy is represented
in time rather than space. We begin by recalling that
the Hamiltonian Ĥ generates translations through time
according to

exp(−iĤt)|f〉 = |f ′〉

where |f〉 and |f ′〉 represent states at times differing by
t, as illustrated in Fig. 1(b). Next, we construct a set
of states analogous to Eq. (5) but with each state repre-
senting a superposition of random virtual paths through
time as

Υλ = {|Υλ〉N : N ≥ N (time)
min , λ} (8)

where

|Υλ〉N ∝
1

2N

[
T̂−1exp(−i Ĥσt√

N
)T̂ + exp(−i Ĥσt√

N
)

]N
|φ〉 .

(9)
Here λ distinguishes different physical situations that will

be specified later, N
(time)
min = σ2

t /δt
2
min is the value of



4

N for which the step size σt/
√
N reaches some funda-

mental resolution limit in time δtmin (e.g. taking the
resolution limit as the Planck time would mean that
δtmin = 5.4 × 10−44 s), and T̂ is Wigner’s time rever-
sal operator [14]. The state |φ〉 plays the role of |0〉x in
Eq. (6) and is assumed to be sharply defined in time and,
correspondingly, to have a broad distribution in energy
[15]. More specifically, |φ〉must have a variance in energy
that is very much larger than 1/2σ2

t in analogy with the
requirement for any state |χ〉 to be used in place of |0〉x.
Other details of |φ〉 are not crucial for our main results.

The violation of T invariance is expressed by T̂−1ĤT̂ 6=
Ĥ which implies that there are two versions of the Hamil-
tonian [16]. It is convenient to label the two versions as

ĤF = Ĥ and ĤB = T̂−1ĤT̂, and set δt = σt/
√
N as the

step in time. Using these definitions together with the
fact [14] that T̂−1iT̂ = −i then gives

|Υλ〉N ∝
1

2N

[
exp(iĤBδt) + exp(−iĤFδt)

]N
|φ〉 (10)

which shows that ĤF and ĤB are responsible for trans-
lations in opposite directions of time.

This is an important point that warrants particular
emphasis: in Eq. (10) a translation in time in the opposite

direction to that given by exp(−iĤFt) is not produced by

its inverse exp(iĤFt) but rather by its time reverse:

exp(iĤBt) = T̂−1exp(−iĤFt)T̂ .

Evidently we need to associate the operators exp(−iĤFt)

and exp(iĤBt) with physical evolution in different direc-
tions of time according to Eq. (10). This leaves their

respective inverses exp(iĤFt) and exp(−iĤBt) to be as-
sociated with the mathematical operations of rewinding
that physical evolution. In short, physical time evolution
is described by the former pair of operators, and not the
latter.

In fact, this result follows from conventional quantum
mechanics. For example, let |f(t)〉 represent the state
of an arbitrary closed system at time t. Unitary evolu-

tion implies that |f(t)〉 = exp(−iĥt)|f(0)〉 where |f(0)〉
is the state at t = 0 and ĥ is the corresponding Hamil-
tonian. Recall that Wigner’s time reversal operator T̂
reverses the direction of all momenta and spin [14]. Let
the time-reversed states at times 0 and t be |b(0)〉 =

T̂−1|f(0)〉 and |b(−t)〉 = T̂−1|f(t)〉, respectively. Us-

ing T̂T̂−1 = 1̂ and rearranging shows that |b(−t)〉 =

exp(iT̂−1ĥT̂t)T̂−1|f(0)〉 = exp(iT̂−1ĥT̂t)|b(0)〉 and so

the time-reversed state |b(−t)〉 = T̂−1|f(t)〉 represents
the evolution from the time-reversed state |b(0)〉 =

T̂−1|f(0)〉 according to the Hamiltonian T̂−1ĥT̂ for the
time −t. That is, evolving from the state |f(0)〉 for the

time t with the Hamiltonian ĥ is equivalent to evolv-
ing from the time-reversed state |b(0)〉 for the time −t
with the Hamiltonian T̂−1ĥT̂. In other words, ĥ gen-

erates translations in one direction of time and T̂−1ĥT̂

generates translation is the opposite direction, which is
consistent with Eq. (10).

If our model universe satisfied T invariance, ĤF and
ĤB would be commuting operators and the terms in
Eq. (10) would be able to be manipulated algebraically
in exactly the same way as those in Eq. (6). Thus, for
the temporal quantum path to be qualitatively distinct
from the spatial one, the model universe must violate T
invariance to the extent of giving a non zero commuta-
tor [ĤF, ĤB]. We could model such a commutator using
details of the T violation that has been observed in the
decay of mesons [3–6] or that has been speculated for a
Higgs field [17, 18]. However, the potential repercussions
of T violation will be manifest most clearly for the sim-
plest departure from time reversal invariance. Accord-
ingly we shall imagine that our model universe contains
an unspecified T-violating mechanism that is consistent
with the commutator i[ĤF, ĤB] = λ for real valued λ.
This is the origin of the parameter λ that appears in
Eq. (8) and Eq. (9).

We have previously [16] shown that the operator on
the right side of Eq. (10) can be expanded and reordered
using the Zassenhaus formula [19] as follows[
exp(iĤBδt) + exp(−iĤFδt)

]N
(11)

=

N∑
n=0

exp[iĤB(N − n)δt] exp(−iĤFnδt)

×
m∑
v=0

· · ·
s∑
`=0

∑̀
k=0

exp
[
(v + · · ·+ `+ k)(δt2[ĤF , ĤB ] + Q̂)

]
where Q̂ is of order δt3, in general. In the specific case
here, [ĤF , ĤB ] = −iλ, from which it can be shown that

Q̂ = 0. After these replacements have been made, the re-
sulting expression can be further simplified using results
in Ref. [16] to yield

|Υλ〉N ∝
N∑
n=0

IN−n,n(δt2λ) exp[iĤB(N−n)δt] exp[−iĤFnδt]|φ〉

(12)
where

IN−n,n(z) = exp[−in(N−n)z/2]

n∏
q=1

sin[(N + 1− q)z/2]

sin(qz/2)

(13)
is an interference function that takes account of the non-
commutativity of ĤF and ĤB.

To relate this to what an observer in the galaxy would
see, imagine that the galaxy contains a clock that is con-
structed from T-invariant matter. We will refer to any
time shown by the clock as “clock time” and use the sym-
bol tc to represent its value. Let the state |φ〉 represents
the clock showing the time tc = 0. The state

exp[iĤB(N − n)δt] exp[−iĤFnδt]|φ〉 (14)
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represents evolution by exp[−iĤFnδt] in one direction of

time followed by exp[iĤB(N−n)δt] in the opposite direc-
tion which, by convention, first increases tc by nδt and
then decreases it by (N −n)δt, respectively. The state in
Eq. (14) would therefore represent the clock showing the
net clock time of

tc = (2n−N)δt . (15)

A. Time reversal invariance

It is useful to first consider the special case where the
universe is invariant under time reversal. For this we
set λ = 0, ĤF = ĤB = Ĥ in Eq. (12). The interference
function for λ = 0 is the binomial coefficient IN−n,n(0) =(
N
n

)
which is approximately proportional to the Gaussian

function exp[−(N − 2n)2/2N ] for large N . Substituting

λ = 0 and ĤF = ĤB = Ĥ into Eq. (12) and using this
result yields

|Υ0〉N ∝∼
N∑
n=0

exp[−(N−2n)2/2N ] exp[i(N−2n)Ĥδt]|φ〉 .

Re-expressing the summation in terms of the index m =
2n−N and using the definition δt = σt/

√
N then yields

|Υ0〉N ∝∼
∑
m∈S

exp[− (mδt)2

2σ2
t

] exp(−iĤmδt)|φ〉 (16)

where S = {−N,−N + 2, . . . , N}. This state is a Gaus-
sian weighted superposition of the time-translated states
exp(−iĤmδt)|φ〉. It represents the galaxy existing in
time only for a duration of the order of σt and is anal-
ogous to Eq. (2) which represents the centre of mass of
the galaxy existing only in a spatial region with a size
of the order of σx. Our construction, therefore, allows
for the same kind of quantum state in time as in space,
in the absence of T violation. In other words, there is a
symmetry between time and space for quantum states in
this special case.

B. Violation of time reversal invariance

Next we examine the quite-different situation of T vi-
olation where λ 6= 0 and ĤF 6= ĤB. In that case the
amplitudes for different virtual paths to the same point
in time, as illustrated in Fig. 2(b), can interfere leading to
undulations in IN−n,n(z) as a function of n. To find the
values of n where the modulus of the interference func-
tion IN−n,n(z) is maximized it is sufficient to look for the
position where |IN−n,n(z)| is unchanged for consecutive
values of n, i.e. where |IN−(n−1),n−1(z)| = |IN−n,n(z)|.
This condition reduces, on using Eq. (13) and performing
some algebraic manipulation, to | sin[(N + 1− n)z/2]| =
| sin(nz/2)|. Note that Eqs. (12) and (13) imply z = δt2λ

and recalling δt = σt/
√
N shows that z is inversely pro-

portional to N ; thus z = θ/N where

θ = σ2
tλ

is the coefficient of proportionality (i.e. θ is independent
of N). Hence we wish to know the values of n that satisfy
| sin[(N + 1 − n)θ/2N ]| = | sin(nθ/2N)|. Writing x =
θ(N + 1)/2N and y = nθ/2N transforms this equation
into | sin(x − y)| = | sin(y)| which has the solutions y =
(x−π)/2+mπ for integer m. Re-expressing the solutions
in terms of n then gives

n =
N + 1

2
+
N(2m− 1)π

θ
.

The modulus of the interference function reaches a max-
imum value at this value of n and one less (i.e for n− 1).
Taking the midpoint and choosing the particular values
m = 0, 1 then gives the positions of two maxima (or
“peaks”) at n = n± where

n± = N
(
1
2 ±

π
θ

)
. (17)

Substituting n± for n in Eq. (15) gives the corresponding
clock times as

± t(peak)c = (2n± −N)δt = ±2πσt
√
N

θ
(18)

where t
(peak)
c is defined to be positive.

The modulus of the interference function Eq. (13) is
shown in Appendix 1 to be approximately Gaussian
about these maxima, which allows us to write |Υλ〉N in
Eq. (12) as a superposition of two states as follows:

|Υλ〉N ∝ |Υ(+)
λ 〉N + |Υ(−)

λ 〉N (19)

where

|Υ(±)
λ 〉N ∝

N∑
n=0

f (±)n g(±)n exp[iĤB(N−n)δt] exp[−iĤFnδt]|φ〉

(20)
for 2π < θ < 4π. Here

f (±)n = exp{−i[n+n− − (n− n±)2]θ/2N} , (21)

g(±)n = exp[−(n− n±)2|θ tan(θ/4)|/2N ] (22)

are a complex phase function and Gaussian weighting
function, respectively. Figure 3 illustrates the accuracy
of the approximation for different values of N . Keep-
ing in mind the definition of the clock time Eq. (15) for

the state Eq. (14), we find that |Υ(±)
λ 〉N is a Gaussian-

weighted superposition of states over a range of clock

times with a mean of tc = ±t(peak)c and a variance of
(∆tc)

2 ≈ 2/|λ tan(θ/4)|. In other words, the states

|Υ(+)
λ 〉N and |Υ(−)

λ 〉N represent the universe localised in
time for a duration of the order of ∆tc about the mean

times tc = t
(peak)
c and tc = −t(peak)c , respectively.
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FIG. 3: |IN−n,n(z)| plotted as a function of the scaled clock

time (tc − t
(peak)
c )/σt where tc = (2n − N)δt. The points

(|IN−n,n(z)|, (tc−t(peak)c )/σt) are generated parametrically by
varying n. The dots represent the exact values from Eq. (13)
and the solid curves represent the approximation given by
|f+

n g
+
n | in Eq. (20). The numerical values used are z = θ/N

where θ = 2.23π and N = 100 (red curve), N = 1000 (green)
and N = 10000 (blue). For clarity, the functions have been
scaled to give a maximum of unity, and the green (N = 1000)
and blue (N = 10000) curves have been displaced vertically
by 0.2 and 0.4, respectively.

The symmetry of the clock times associated with

|Υ(+)
λ 〉N and |Υ(−)

λ 〉N about the time tc = 0 reflects
the symmetry of the construction Eq. (8) and Eq. (9)
which has no bias toward one direction of time or the
other. Moreover, if the state |φ〉 is T invariant (i.e.

if T̂|φ〉 ∝ |φ〉) and we shall assume that it is, then

T̂|Υ(+)
λ 〉N ∝ |Υ

(−)
λ 〉N and T̂|Υλ〉N ∝ |Υλ〉N . This sym-

metry also arises in time symmetric cosmological and
gravitational studies of the direction of time [20, 21]. As
the time evolution in one component of the superposi-
tion in Eq. (19) is mirrored in the other, it suffices for us

to consider just |Υ(+)
λ 〉N and its corresponding value of

t
(peak)
c = 2π

√
Nσt/θ. Accordingly, we will call this value

of t
(peak)
c the representative clock time and use it to la-

bel the whole state |Υλ〉N . The minimum representative
clock time of a state in the set Υλ is found, using Eq. (18)

with N = N
(time)
min = σ2

t /δt
2
min and θ = σ2

tλ, to be

t
(peak)
c,min =

2π

λδtmin
. (23)

A discussion of the values of λ and δtmin in relation to

t
(peak)
c,min is given in Appendix 3.

Figure 4 illustrates the properties of |IN−n,n(z)| as a
function of the clock time tc = (2n − N)δt. The black
curve corresponds to the time reversal invariance case
where λ = 0 (and so θ = σ2

tλ = 0). All other curves
correspond to the violation of time reversal invariance
(i.e. λ 6= 0) and have been generated for θ = 2.23π
which gives the minimum uncertainty in energy and time
(see Appendix 2 for details). Clearly the inclusion of the

FIG. 4: |IN−n,n(z)| as a function of the scaled clock time tc/σt

where tc = (2n−N)δt for different values of λ and N . As in
Fig. 3, the points (|IN−n,n(z)|, tc/σt) are generated paramet-
rically by varying n. For clarity, in each case straight lines
connect consecutive discrete points of |IN−n,n(z)| to form a
continuous curve. The black curve represents the T invariant
case (i.e. λ = 0) and has been generated for N = 1000. It
does not visibly change with increasing values of N . The re-
maining curves represent the T violation case (i.e. λ 6= 0) for
θ = 2.23π and a range of N values as follows: red curve for

N = 300 and t
(peak)
c = 15.5σt, green curve for N = 1200

and t
(peak)
c = 31.1σt, light blue curve for N = 2600 and

t
(peak)
c = 45.7σt, and dark blue curve for N = 4600 and

t
(peak)
c = 60.8σt. All curves have been scaled to give a maxi-

mum of unity.

violation of time reversal invariance dramatically changes
the set Υλ in (8) from one containing states that are all
localised around the same time tc = 0 to one containing
states that are diverging in time.

For clarity, |IN−n,n(z)| is plotted in Fig. 4 only for a
select few values of N for which the peaks in the corre-
sponding curves are widely separated. To see how close

they can be, consider the difference δt
(peak)
c in the rep-

resentative clock times t
(peak)
c of states |Υλ〉N with con-

secutive values of N , which is found from Eq. (18) to
be

δt(peak)c =
2πσt

√
N + 1

θ
− 2πσt

√
N

θ
≈ σtπ

θ
√
N

for large N . Noting that N ≥ N
(time)
min = σ2

t /δt
2
min gives

δt
(peak)
c ≤ (π/θ)δtmin and as 2π < θ < 4π we find

δt(peak)c <
1

2
δtmin .

Hence, for any given time t > t
(peak)
c,min , there is a state in

the set Υλ given by Eq. (8) whose representative clock

time t
(peak)
c is equal to t to within the resolution limit

δtmin.
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C. Impact for quantum states in time and space

These remarkable results manifest a fundamental dif-
ference between quantum states in time and space. Any
one element of the set Ψ in Eq. (5) can represent the
state of the universe in space and so, presumably, any
one element of the set Υλ in Eq. (8) can likewise rep-
resent the state of the universe in time. All the states
in the set Υλ=0 associated with T invariance represent
the galaxy existing only for a duration of order σt near
tc = 0. The fact that the states in the set Υλ=0 don’t
conserve mass is testament to mass conservation not be-
ing an explicit property of the construction defined by
Eq. (8) and Eq. (9). But for a set Υλ′ associated with T

violation with λ′ 6= 0, for any given time t ≥ t
(peak)
c,min we

have just seen that there is a state |Υλ′〉N ∈ Υλ′ , whose

representative clock time t
(peak)
c is equal to t to within the

resolution limit δtmin. In other words, the set Υλ′ con-
tains a state that represents the galaxy’s existence at each
corresponding moment in time. That being the case, it
would not be unreasonable to regard the set as represent-
ing a history of the universe. It follows that the set Υλ′

represents the persistence of the mass of the galaxy over
the same period of time, in so far as the Hamiltonians
ĤF and ĤB conserve mass. This raises a subtle point
regarding conservation laws; while they may be due to
deep principles (such as Noether’s theorem) they are not
manifested in quantum mechanics unless the state per-
sists over a period of time. The crucial point being that
in conventional quantum mechanics, the persistence of
the state is essentially axiomatic and ensured by adopt-
ing a compliant dynamical equation of motion whereas
here it arises phenomenologically as a property of the set
of states Υλ′ . Finally, on comparing the two sets Υλ=0

and Υλ′ 6=0 one could even venture to say that T violation,
in effect, causes the contents of the universe to be trans-
lated or, indeed, to evolve, over an unbounded period of
time.

IV. EMERGENCE OF CONVENTIONAL
QUANTUM MECHANICS

A. Coarse graining over time

The spread of the state |Υλ〉N along the time axis, as
illustrated by the plots of |IN−n,n(z)| in Fig. 4, represents
a significant departure from conventional quantum me-
chanics for which states have no extension in time. Nev-
ertheless, the conventional formalism can recovered in the
following way. Imagine that observations of the galaxy
are made with a resolution in time that is much larger
than the width of the Gaussian weighting function g±n in
Eq. (20). Under such coarse graining, the summation in
Eq. (20) can be replaced by the term corresponding to
the maximum in g±n and so, for example,

|Υ(+)
λ 〉N ∝∼ exp[iĤB(N − n+)δt] exp(−iĤFn+δt)|φ〉 .

We can re-express this state in terms of its representa-

tive clock time, t
(peak)
c , which we shall shorten to tc for

brevity, as

|Υ(+)
λ 〉N ∝∼ exp(iĤBtca−) exp(−iĤFtca+)|φ〉 (24)

where a± = n±/(n+−n−) and we have used tc = (2n+−
N)δt = (n+ − n−)δt and N − n+ = n−. At this level of
coarse graining, the time step δt is effectively zero and
tc is effectively a continuous variable. Making use of the
Baker-Campbell-Hausdorff formula [19] in Eq. (24) yields

|Υ(+)
λ 〉N ∝∼ exp( 1

2 ia+a−t
2
cλ) exp[−i(ĤFa+−ĤBa−)tc]|φ〉 .

(25)
The complex phase factor can be accommodated by

transforming to a new state, |Υ̃(tc)〉, as follows

|Υ̃(tc)〉 = exp(− 1
2 ia+a−t

2
cλ)|Υ(+)

λ 〉N
∝ exp[−i(ĤFa+ − ĤBa−)tc]|φ〉 . (26)

On taking the derivative with respect to tc we recover
Schrödinger’s equation,

d

dtc
|Υ̃(tc)〉 ∝∼ − i(ĤFa+ − ĤBa−)|Υ̃(tc)〉 . (27)

Here, the coarse-grained Hamiltonian (ĤFa+ − ĤBa−)

is a linear combination of ĤF and ĤB owing to the
fact that the quantum path involves contributions from
both. It is useful at this point to divide the galaxy into
two non-interacting subsystems, one whose Hamiltonian
Ĥ(i) = T̂−1Ĥ(i)T̂ is T-invariant and the remainder whose
Hamiltonian Ĥ

(v)
F = T̂−1Ĥ

(v)
B T̂ 6= Ĥ

(v)
B is T-violating; in

that case we can write

ĤF = Ĥ(i)⊗1̂(v)+1̂(i)⊗Ĥ(v)
F , ĤB = Ĥ(i)⊗1̂(v)+1̂(i)⊗Ĥ(v)

B
(28)

where the superscripts “i” and “v” label operators as-
sociated with the state space of the T-invariant and T-
violating Hamiltonians, respectively, and 1̂(·) is an ap-
propriate identity operator. Equation Eq. (27) can then
be rewritten as

d

dtc
|Υ̃(tc)〉 ∝∼ − i(Ĥ

(i)⊗ 1̂(v) + 1̂(i)⊗ Ĥ(v)
phen)|Υ̃(tc)〉 (29)

where Ĥ
(v)
phen = Ĥ

(v)
F a+−Ĥ(v)

B a− is the phenomenological
Hamiltonian for the T-violating subsystem.

It is straightforward to show that the commutator of

Ĥ
(v)
phen = Ĥ

(v)
F a+− Ĥ(v)

B a− with its time reversed version
is

[Ĥ
(v)
phen, T̂

−1Ĥ
(v)
phenT̂] = −i θ

2π
λ

which is θ/2π times the commutator [Ĥ
(v)
F , Ĥ

(v)
B ]. Thus,

in principle, the commutation relation could be used

to distinguish the phenomenological Hamiltonians Ĥ
(v)
phen

and T̂−1Ĥ
(v)
phenT̂ from the more elementary versions Ĥ

(v)
F

and Ĥ
(v)
B .
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B. Conventional formalism and potential
experimental test

These results are important because they not only
show how the conventional formalism of quantum me-
chanics is recovered, but they also show how the con-
struction introduced here may be verified experimentally.
To see this consider the following three points. First,
Eq. (29) shows that the T-invariant subsystem behaves

in accord with the conventional Hamiltonian Ĥ(i) with
respect to clock time tc. This means that conventional
quantum mechanics is recovered for this subsystem. Sec-
ond, Eq. (29) shows that, due to the coarse graining, the
role of the clock time tc has been reduced from being a
physical variable that describes the location and uncer-
tainty of the galaxy with respect to time as illustrated in
Fig. 4, to being simply a parameter that labels a differ-

ent state in the set Υλ according to the time t
(peak)
c = tc

of the maximum in g+n . Indeed, its demoted role is the
very reason we are able to recover Schrödigner’s equation.
Third, any experiments involving T-violating matter that
are performed by observers in the galaxy would give re-
sults that are consistent with Eq. (29) and so they would
provide evidence of the phenomenological Hamiltonian

Ĥ
(v)
phen in the same way that experiments in our universe

give evidence of the Hamiltonian associated with meson

decay. Any demonstration that Ĥ
(v)
phen differs from the

more elemental Hamiltonians Ĥ
(v)
F and Ĥ

(v)
B represents a

“smoking gun” that verifies the construction introduced
here. Of course, this specific result can not be used in
practice because it applies to the simple model of T viola-
tion chosen here for its clarity rather than accuracy, and
also because present knowledge of T violating Hamilto-
nians is based on empirical results and so it is limited to
the phenomenological version of the Hamiltonians. More
realistic models of the universe and T violating mecha-
nisms may provide experimentally testable predictions,
such as novel deviations from exponential decay for T vi-
olating matter or local variations in clock time. But these
are beyond the scope of the present work whose aim is to
show, in the clearest way possible, how T violation may
underlie differences between time and space.

V. DISCUSSION

We began by noting that conventional quantum me-
chanics assumes an asymmetry between space and time
to the extent that space is associated with a quantum de-
scription whereas time is treated as a classical parameter.
We set out to explore an alternate possibility by intro-
ducing a new quantum formalism that gives both space
and time analogous quantum descriptions. In develop-
ing the formalism, we paid particular attention to sub-
tle mathematical details that play no significant role in
conventional quantum mechanics. These details involve
explicitly taking into account the C, P and T symmetry

operations, translations of states in space and time, and
fundamental limits of precision. We incorporated them
in a mathematical construction where quantum states
are represented as a superposition of random paths in
space or time. We found that with no C, P or T symme-
try violations, quantum states had analogous representa-
tions in space and time. However with the violation of T
symmetry, dramatic differences between the representa-
tion of quantum states in space and time arise through
the quantum interference between different paths. The
Schrödinger equation of conventional quantum mechan-
ics, where time is reduced to a classical parameter, then
emerges as a result of coarse graining over time. As such,
T violation is seen in the new formalism as being respon-
sible for the differences between space and time in con-
ventional quantum mechanics.

The new formalism may also help resolve other per-
plexing issues associated with space and time. For ex-
ample, the arrows of time indicate a preferred direction
from “past” to “future” [22], but there is no analogous
preferred direction of space. The new formalism appears
to offer a basis for understanding why. Indeed the set of
states in time, Υλ for λ 6= 0 in Eq. (8), has a natural
order over time in the following sense. First recall that
our interpretation of Eq. (10) is that exp(−iĤFt) and

exp(iĤBt) are associated with physical evolution in dif-

ferent directions of time, whereas the inverses exp(iĤFt)

and exp(−iĤBt) are associated with the mathematical
operations of rewinding that physical evolution. Within

this context, the coarse-grained state |Υ̃(tc)〉 in Eq. (26)
is interpreted as resulting from evolution by tca+ in the
positive direction of time and tca− in the reverse direc-
tion, giving a net evolution of tc(a+ − a−) = tc in time

from the state |φ〉. Correspondingly, the state |Υ̃(t′c)〉
with t′c > tc represents a more-evolved state than |Υ̃(tc)〉.
In fact writing

|Υ̃(t′c)〉 ∝ exp[−i(ĤFa+ − ĤBa−)δt]|Υ̃(tc)〉 (30)

where δt = t′c − tc > 0 shows that |Υ̃(t′c)〉 evolves from

|Υ̃(tc)〉. One might be tempted to argue that we could

equally well regard |Υ̃(tc)〉 as evolving from |Υ̃(t′c)〉 be-
cause

|Υ̃(tc)〉 ∝ exp[i(ĤFa+ − ĤBa−)δt]|Υ̃(t′c)〉 , (31)

but doing so would be inconsistent with our interpre-
tation of Eq. (10). According to that interpretation,
Eq. (31) represents the mathematical rewinding of the
physical evolution represented by Eq. (30). Note that

the state |Υ̃(tc)〉 is a coarsed-grained version of the com-

ponent |Υ(+)
λ 〉N of |Υλ〉N in Eq. (19); an analogous ar-

gument also applies to the coarse-grained version of the

other component |Υ(−)
λ 〉N , and thus to the whole state

|Υλ〉N . Hence, the set of states Υλ for λ 6= 0 are ordered
by the degree of time evolution from the state |φ〉. This
gives two preferred directions of time away from the ori-
gin of the time axis and so represents a symmetric arrow
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of time. Time-symmetric arrows have also been explored
by Carroll, Barbour and co-workers [20, 21]. In stark
contrast, there is no analogous ordering for the set, Ψ in
Eq. (5), of states distributed over space. Indeed, all the
states in Ψ are physically indistinguishable. Also the or-
dering of the set Υλ vanishes at λ = 0 which corresponds
to T symmetry. It appears, therefore, that T violation is
also responsible giving time a direction (in the sense of
orientating time away from the occurrence of |φ〉).

In addition to these conceptual results, the new for-
malism was also found to have potential experimentally-
testable consequences. Indeed, for a subsystem asso-
ciated with T violation, the formalism predicts that

the experimentally-determined Hamiltonian, Ĥ
(v)
phen in

Eq. (29), will be different to the Hamiltonians, Ĥ
(v)
F or

Ĥ
(v)
B in Eq. (28), associated with conventional quantum

mechanics. Further work is needed to develop feasible
experiments for testing predicted departures from con-
ventional theory like this. An experimental verification
of the new formalism would have profound impact on our
understanding of time.

In conclusion, the importance of Feynman’s sums over
paths for describing quantum phenomena is well beyond
doubt [11]. A distinctive feature of the quantum paths
in the new formalism is that they explicitly take into ac-
count the violation of the C, P and T symmetries. The
new formalism has the advantage of giving time and space
an equal footing at a fundamental level while allowing fa-
miliar differences, such as matter being localised in space
but undergoing unbounded evolution in time, to arise
phenomenologically due to the fact that violations of the
C, P and T symmetries are a property of translations in
time and not space. As such, the violation of the dis-
crete symmetries are seen to play a defining role in the
quantum nature of time and space.
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Appendix

1. Approximate shape of the maxima

An approximate form of the interference function near its maxima can be found by retaining terms of order 1/
√
N

or larger as follows. Substituting n = n± + k, where k is an integer, into Eq. (13) and using N − n± = n∓ gives

IN−n,n(z) = |IN−n±,n±(z)| exp[−i(n± + k)(n∓ − k)z/2]

k∏
r=1

sin[(N + 1− r − n±)z/2]

sin[(r + n±)z/2]
. (32)

Next, substituting for n± and z using Eq. (17) and z = θ/N , respectively, using trigonometric identities and performing
some algebraic manipulations eventually shows that the iterated product in Eq. (32) can be written as

k∏
r=1

sin[(N + 1− r − n±)z/2]

sin[(r + n±)z/2]
= (−1)k

k∏
r=1

cos(A) cos(B) + sin(A) sin(B)

cos(A) cos(C)− sin(A) sin(C)
(33)

with A = θ/4, B = (r−1)θ/2N and C = rθ/2N . Note that k represents the number of steps in time, each of duration

δt = σt/
√
N , from the position of the maximum. To retain only features that are a finite distance in time from the

maximum in the limit N → ∞, we need to keep terms where k, and thus r, are of order
√
N . It follows that in

Eq. (33) we can use the approximations cos(B) ≈ 1, cos(C) ≈ 1, sin(B) ≈ B and sin(C) ≈ C to first order in 1/
√
N

and so

k∏
r=1

sin[(N + 1− r − n±)z/2]

sin[(r + n±)z/2]
≈ (−1)k

k∏
r=1

1 +B tan(A)

1− C tan(A)
.

As B ≈ C ≈ rθ/2N � 1 to the same order of approximation, we can further approximate this as

k∏
r=1

sin[(N + 1− r − n±)z/2]

sin[(r + n±)z/2]
≈ (−1)k

k∏
r=1

exp

[
rθ

N
tan

(
θ

4

)]
,
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and then on ignoring a term in the exponent of order 1/N we eventually find

k∏
r=1

sin[(N + 1− r − n±)z/2]

sin[(r + n±)z/2]
≈ (−1)k exp

[
k2θ

2N
tan

(
θ

4

)]
.

Substituting into Eq. (32) then gives

IN−n,n(z) = |IN−n±,n±(z)| exp

[
−i(n−n+ − k2)

θ

2N

]
exp

[
k2θ

2N
tan

(
θ

4

)]
.

The right-most factor is a Gaussian function of k provided θ tan(θ/4) is negative. To ensure that this is the case
we set 2π < θ < 4π. It follows from N − n+ = n− and the symmetry property IN−m,m(z) = Im,N−m(z) that
IN−n+,n+(z) = IN−n−,n−(z). Thus, noting k = n− n±, we find

IN−n,n(z) ∝ f (+)
n g(+)

n + f (−)n g(−)n

where f
(±)
n and g

(±)
n are defined by Eq. (21) and Eq. (22), respectively. Substituting this result into Eq. (12) then

leads to Eq. (19).

2. Minimum uncertainty in energy and time

We have defined tc as the time measured by clock devices that are constructed from T-invariant matter to avoid
any difficulties that might arise in defining clocks that are constructed from T-violating matter. However, for the
particular case here where i[ĤF, ĤB] = λ there are no such difficulties and a clock constructed from both T-invariant
and T-violating matter will consistently register the same clock time tc irrespective of the path, and the value of tc
will be the same as for a clock that is entirely constructed from T-invariant matter. To see this, consider the two
paths represented by ÂB̂|φ〉 and B̂Â|φ〉 where Â = exp(−iĤFnδt) and B̂ = exp[iĤB(N − n)δt]. It is straightforward
to show using the Baker-Campbell-Hausdorff formula that [19]

ÂB̂|φ〉 = exp[−iλn(N − n)δt2]B̂Â|φ〉 (34)

and so both paths result in the same state apart from a complex phase factor. If we regard the whole universe as
being a device that registers clock time tc and if |φ〉 represents tc = 0 then Eq. (34) implies that both ÂB̂|φ〉 and

B̂Â|φ〉 represent it registering the clock time tc = (2n − N)δt. The clock time tc is therefore representative of the
whole universe in this case.

Although we do not have an operator corresponding to the clock time tc, we can still estimate the uncertainty in tc
for the state |Υ(±)

λ 〉N using the following heuristic argument. The sum over n in Eq. (20) means that, in addition to any
intrinsic uncertainty in the time represented by clocks due to the state |φ〉, there is an additional contribution due to

the finite width of the Gaussian weighting function g
(±)
n . In fact, taking into account the relationship tc = (2n−N)δt,

the variance in possible clock time values tc will be at least (2δt)2 times the variance in n due to |g(±)n |2. Thus we can

bound the uncertainty in clock time as (∆tc)
2 & 4(∆n)2δt2 where (∆n)2 = N/2|θ tan(θ/4)|, and so using δt = σt/

√
N

and θ = σ2
tλ we find

(∆tc)
2 &

2

|λ tan(θ/4)|
(35)

where (∆tc)
2 = t2c − tc

2
for averages calculated using |g(±)n |2 as the probability distribution.

The variance in Eq. (35) depends on the value of θ. Rather than use any value in the allowed range 2π < θ < 4π,
it would be useful to have one that has a particular physical meaning. One such value corresponds to minimal
uncertainties in tc, HF and HB. The first step in finding it is to use the Robertson-Schrödinger uncertainty relation
[23] for the Hamiltonians ĤF and ĤB:

(∆HF)2(ĤB)2 ≥ 1
4 |〈{ĤF, ĤB}〉 − 2〈ĤF〉〈ĤB〉|2 + 1

4 |〈[ĤF, ĤB]〉|2

where {Â, B̂} = ÂB̂ + B̂Â and (∆A)2 = 〈Â2〉 − 〈Â〉2 is the variance in Â. As [ĤF, ĤB] = −iλ, the minimum of the
right side occurs when the covariance is zero:

〈{ĤF, ĤB}〉 − 2〈ĤF〉〈ĤB〉 = 0 . (36)
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Thus the minimum uncertainty is given by

(∆HF)2(∆HB)2 =
|λ|2

4
. (37)

With no bias towards one direction of time or the other, there is correspondingly no bias towards one version of the
Hamiltonian or the other and so we take the minimum uncertainty condition for the energy as

(∆HF)2 = (∆HB)2 =
|λ|
2
. (38)

Next we need to determine the relationship between ∆tc, ∆HF and ∆HB. Unfortunately, there has not been any
previous study of the time-energy uncertainty relation for the case of T violation where two versions of the Hamiltonian
operate, and it would be beyond the scope of this work to analyse it in detail here. Nevertheless, we can glean some
insight into the problem as follows. Consider the operator defined by

Ĥ = 1
2 (ĤF + ĤB);

it is straightforward to show that T̂−1ĤT̂ = Ĥ and so Ĥ is T invariant. We know from the discussion of Eq. (34) that

the state |ψ〉 = exp(−iĤFt1) exp[iĤBt2]|φ〉 represents the time tc = t1 − t2. Rearranging using the Baker-Campbell-

Hausdorff formula [19] shows that |ψ〉 ∝ exp[−iĤF(t1+t2)] exp[iĤ2t2]|φ〉 and so it follows that the state exp[iĤ2t2]|φ〉
represents the time tc = −2t2. Thus Ĥ is clearly a generator of translations in time. A similar argument shows that
the operator 1

2 (ĤF − ĤB) does not generate translations in time. This implies that there is a meaningful uncertainty

relation for the clock time tc and Ĥ. The uncertainty in Ĥ is related to that of HF and HB by

(∆H)2 = 1
4

[
(∆HF)2 + (∆HB)2 + 〈{ĤF, ĤB}〉 − 2〈ĤF〉〈ĤB〉

]
,

and if Eq. (38) holds, then so does Eq. (36) and we find

(∆H)2 =
|λ|
4
. (39)

It is easy to calculate the product of variances in tc and Ĥ for a state like Eq. (16). In the limit N → ∞ the sum
over m in Eq. (16) becomes an integral over t = mδt and so

lim
N→∞

|Υ0〉N ∝
∫
dt exp(− t2

2σ2
t

) exp(−iĤt)|φ〉 (40)

which is the temporal analogy of Eq. (2). Replacing σ2
t with 2(∆tc)

2 and performing the integral in Eq. (40) in the

eigenbasis of Ĥ yields

lim
N→∞

|Υ0〉N ∝ exp[−Ĥ2(∆tc)
2]|φ〉 .

The state |φ〉 is assumed to have a large variance in energy; in the limit that |φ〉 is a uniform superposition of the

eigenstates of Ĥ, the probability distribution for Ĥ for the state on the right side becomes a truncated Gaussian
[24] with a variance of (∆H)2 ≈ (1− 2/π)/4(∆tc)

2. Hence an approximate energy-time uncertainty relation for this
particular class of states is

(∆H)2(∆tc)
2 ≈ 1

4
(1− 2

π
) .

We will presume that this result also applies to the states |Υ(±)
λ 〉N in Eq. (20) without significant modification. In

that case using Eq. (39) to replace (∆H)2 gives

(∆tc)
2 ≈ 1

|λ|
(1− 2

π
) . (41)

This gives the least uncertainty in clock time for the case where the uncertainty in energy is minimized; to be clear,
the uncertainty in ∆tc can be smaller than that given by Eq. (41) provided the uncertainty in energy is higher than
the minimum represented by the equality in Eq. (37). Comparing Eq. (35) and Eq. (41) and keeping in mind that
2π < θ < 4π shows that the minimum uncertainty in energy and time is given by tan(θ/4) ≈ −2/(1 − 2/π), i.e. for
θ ≈ 2.23π.

Note that the uncertainty ∆tc is for each of the components |Υ(±)
λ 〉N and not for the whole state |Υλ〉N in Eq. (19).

This uncertainty is appropriate from the point of view of an observer within the galaxy for whom the states |Υ(±)
λ 〉N

equally describe the state of the universe up to the symmetry given by T̂|Υ(+)
λ 〉N ∝ |Υ

(−)
λ 〉N .
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3. Quantifying the T violation

The minimum representative clock time t
(peak)
c,min for the set Υλ defined in Eq. (23) and the uncertainty in the clock

time ∆tc defined in Eq. (35) give important physical parameters. To estimate their values we need to quantify the
minimum physically resolvable time given by δtmin and the degree of T violation represented by the value of λ. The
Planck time, tP = 5.4× 10−44 s, is widely used as the minimum resolvable time and so we will adopt it here and set
δtmin = tP.

Quantifying λ is a rather more difficult. One possibility is to assume that it has of the same order of magnitude
as that of meson decay in our universe. The eigenvalue spectrum of the commutator i[ĤF, ĤB] for meson decay has
been estimated to have a Gausian distribution with a mean of zero and a standard deviation of

√
f × 1057 s−2 where

f is the fraction of the estimated 1080 particles in the visible universe that contribute to kaon-like T violation [16].
Accordingly we set λ =

√
f × 1057 s−2. Using Eq. (23) with these values of λ and δtmin then gives the minimum

representative clock time as

t
(peak)
c,min ≈ f

−1/2 × 10−13 s .

Thus Eq. (27) and Eq. (29) describe the coarse-grained time evolution of the model universe from this time onwards.
The corresponding value of the uncertainty in the clock time ∆tc is, from Eq. (41),

∆tc ≈ f−1/4 × 10−29 s .

Another way to quantify λ is to treat it as if its value is chosen by nature in order that the minimum representative

clock time is equal to the minimum time resolution, i.e. to make t
(peak)
c,min = δtmin. In that case we find, using Eq. (23),

that

λ =
2π

δt2min

(42)

which becomes λ ≈ 1087 s−2 for δtmin = tP. Then using Eq. (41) we find the corresponding uncertainty in the clock
time is

∆tc ≈ 1
4δtmin . (43)

This represents the most extreme situation where Eq. (27) and Eq. (29) describe the coarse-grained time evolution
for all times from tc = 0 and the uncertainty in clock time is undetectable.

Finally, we should add that any non-zero value of λ will give rise to the qualitative behaviour described in the main

text. However, according to Eq. (23), as the value of λ approaches zero, the minimum representative clock time t
(peak)
c,min

becomes correspondingly large and so the results are confined to ever larger times t
(peak)
c .
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