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A pressing issue for modern physics is the possibility of extra dimensions of space–time.
Here, a novel approach to this question is put forward, with three facets:
First, an integral transform is introduced into Einstein’s general relativity that is non-local

and spinorial. For Minkowskian space–time, the transform intertwines three spaces of six
dimensions, which a priori are on an equal footing, linked by the octavic triality of Cartan.
Two of these spaces are interpreted as null twistor spaces; the third may be regarded as
giving space–time two extra time-like dimensions, for which the ordinary space–time is an
axis of symmetry.
Second, it is suggested that the extra dimensions perdure for a general space–time: the

overall structure is controlled by a generalized Fefferman tensor. Accordingly, it is posited
that the additional time-like dimensions arise naturally and constitute an aspect of space–
time reality that ultimately will be amenable to experimental investigation. Conceivably,
devices such as the Large Hadron Collider will uncover this reality.
Third, it is argued that the structure hints at a synthesis of ideas deriving from general

relativity, string theory, condensed matter physics, category theory and non-commutative
geometry.

Keywords: integral transforms; triality; twistor theory
*sp

Rec
Acc
1. Introduction

Since antiquity, from Pythagoras of Samos and Euclid of Alexandria to Galileo
Galilei to Isaac Newton to Immanuel Kant to Hermann Minkowski to Albert
Einstein and David Hilbert, the question of the nature of space and time has
occupied scientists and philosophers (Euclid 300BC; Galilei 1638; Newton 1687;
Kant 1783; Malchus 1886; Minkowksi 1908; Einstein 1916; Hilbert 1916). At least
since Pythagoras, the squared interval between spatial points was expressed as
the sum of squares of the increments in three perpendicular directions. Following
Einstein, Minkowski added a new concept, that of event, a new dimension, that
of time, and expressed the squared interval between events in terms of a sum of
the three squared displacements of Pythagoras, combined with a new term
representing the square of the time displacement, which enters with an overall
negative sign and which utilizes the absolute character of the speed of light/
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gravity to convert dimensions appropriately. In particular, non-zero displace-
ments with squared interval zero are allowed and determine the future and past
light cones and the causal properties of space–time, which is now hyperbolic
rather than Euclidean or Riemannian.

One possible path to a unified theory of the physical interactions of nature
going beyond Einstein’s theory of gravity involves the use of additional
dimensions (Nordström 1914; Weyl 1918; von Kaluza 1921; Klein 1926; Witten
1981a,b; Moreschi & Sparling 1986; Green et al. 1987, 1988; Antoniadis 1990;
Antoniadis et al. 1998; Arkani-Hamed et al. 1998; Dienes et al. 1998; Randall &
Sundrum 1999a,b; Allanach et al. 2002; Benslama 2005). Typically, the extra
dimensions are taken to be space-like (more squares with positive signs) rather
than time-like (more squares with negative signs), so that the higher-dimensional
theory remains hyperbolic rather than ultra-hyperbolic. But there need be no
contradiction if time-like extra dimensions are used: for example, in the work of
Randall & Sundrum (1999b), consistency can be achieved by replacing their
parameters r 2c and L byKr 2c and KL, respectively. Despite their prevalence in
the physics literature, there are apparently no decisive a priori arguments for
choosing only hyperbolic higher-dimensional theories: ultimately this is an issue
that has to be settled by experiment.

Here, a new spinorial theory of physics is developed, built on Einstein’s general
relativity and using the unifying triality concept of Cartan: the triality links
space–time with two twistor spaces (Brauer & Weyl 1935; Penrose 1967, 1975,
1976, 2005; Penrose & MacCallum 1970; Newman 1976; Penrose & Rindler 1984,
1986; Baez 2002). Each of these twistor spaces is six dimensional with an ultra-
hyperbolic geometry of signature (3, 3). Unification entails that space–time also
have six dimensions of signature (3, 3). Thus, it must acquire two extra time-like
dimensions, each of which must be time-like. Fortunately, the experimental
device known as the Large Hadron Collider, which is just now coming online,
may be sensitive to higher dimensions and, if so, may be able to detect their
signature and thereby put this prediction to the ultimate test (Allanach et al.
2002; Benslama 2005).

In attempting to construct a theory, one sometimes has very little to go on.
One takes strands of thought from different disciplines and has to try to weave
them into a coherent whole, a concinnity. One also has to be prepared to make
major conceptual adjustments on the fly, as one brings in newer seminal ideas.
One should be attuned to the efforts of others and try to incorporate the essence
of their best ideas, even if, in the end, one goes in a slightly different direction.
One should wield William of Ockhamus’s Razor (Ockhamus 1495), but with
parsimony.

Consider the simple act of taking a pencil and throwing it, spinning, into the air, so
that it rotates completely around three times, before catching it again. Common
sense suggests that, ceteris paribus, the pencil is the same at the end of this
experiment as at the beginning. However, one knows that the pencil is composed
mostly of a variety of fermions and that under an odd number of complete rotations,
amazingly, the wave function of each of these fermions changes sign. Only if the
experiment is rerun, can one be sure to restore the pencil to its pristine state.

Mathematically, this behaviour depends on the fact that the rotation group
in three dimensions is not simply connected, but has a simply connected double
Proc. R. Soc. A (2007)



Figure 1. Cartan’s triality symbol links two twistor spaces and space–time.

1667Extra dimensions of space–time
cover, the group SU(2, C) of 2!2 unitary matrices, with complex entries, of
unit determinant, whose topology is that of the real three-sphere, S3. The lift of
a single complete rotation to the group SU(2, C) is a curve connecting its
identity element to its negative. A second complete rotation is then required to
return to the identity. Quantities that transform with respect to the group
SU(2, C) are called spinors; in particular, the most known elementary particles
are spinorial; these somehow transcend space and time (Cartan 1925; Dirac
1928a,b).

Conventionally, spinors arise locally in space–time as elements of a fibre
bundle. It has been a long-term goal to construct a theory which uses spinors in
an essentially non-local way. This was partially achieved by the twistor theory of
Sir Roger Penrose, Roy Kerr, Ivor Robinson, Ted Newman, Sir Michael Atiyah
and a small band of others, including the present author (Brauer & Weyl 1935;
Penrose 1967, 1975, 1976, 2005; Penrose & MacCallum 1970; Newman 1976;
Penrose & Rindler 1984, 1986; Baez 2002). However, the twistor theory never
fully encompassed general relativity. Also its underlying philosophy was to
replace space–time by twistor space, which was to be regarded as more
fundamental. In the present work, the philosophy is modified: the guiding
ontology is the one present in many philosophies from the earliest times: it is the
trinity, three entities, which combine harmoniously, forming the concinnity. The
three entities are initially conceptualized as space–time, twistor space and dual
twistor space (figure 1).

In the earlier manuscript ‘A primordial theory’, written by the present author
and Philip Tillman, relevant geometrical and algebraic ideas were developed, the
principal objects being the exceptional algebra of twenty-seven dimensions of
Pascual Jordan, associated to the split octaves, and the associated fifty-six
dimensional phase space of Freudenthal (Jordan et al. 1934; Freudenthal 1985;
Sparling & Tillman 2004). Surprisingly, it emerges that there is a vast analytical
component that until now seems to have been overlooked, although, for the case
of flat space, Hughston (1990) had a similar approach.
Proc. R. Soc. A (2007)
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2. The X-transform

The analytic structure in question is a transform, which will be named the
X-transform. It is perhaps most easily expressed using the two-component
complex spinor formalism for relativity. The constituents of the transform are
as follows.

—The space–time M, which is a smooth real manifold of dimension four.
—The phase space of M is the cotangent bundle T*M of M, consisting of all pairs

(x, p) with x in M and p a co-vector at x. Denote by aZq$p, the contact one-
form on T*M; here q is the vector-valued canonical one-form of M, pulled back
to T*M. Also p is the tautological co-vector-valued function on T*M, whose
value at (x, p) is p and the dot denotes the dual pairing of a vector with a
co-vector.

—A Lorentzian metric g for M, of signature (1, 3), such that M is space and time
orientable and has a chosen spin structure.

—The co-spin bundle S
� is the set of all pairs (x, p), where p is a primed

co-spinor at the point x in M; so S
� is a complex vector bundle of two complex

dimensions over M (so as a real vector bundle S� has four-dimensional fibres).
Recall that S� is equipped with a complex symplectic form e, a global section
of the exterior product of S�, with itself, such that gZe5C�e.

—Assume given the spin connection (a covariant exterior derivative), denoted as
d, which is real, torsion free and annihilates e and g.

—Each co-spinor p gives rise to a real co-vector ppZp5C �p, which is zero if p is
zero and is otherwise null and future-pointing. Thus, S� behaves like a ‘square
root’ of the bundle of future-pointing null cotangent vectors.

Note that ptpZjtj2pp, for any spinor p and any complex number t, so that the
co-vector pp is insensitive to the overall phase of the spinor p. Very few
constructions directly depend on this phase, the Fefferman tensor F, to be
described below, being the most crucial (Fefferman 1974; Witten 1981a,b;
Sparling 2001).

Henceforth delete the zero section from S
�, so that all spinors are taken to be

non-zero.

—The bundle of co-spin frames, B, consists of all ordered triples (x, pC, pK),
where x is in M and the pG are primed co-spinors at x, which are normalized
against each other by the equation pC5pKKpK5pCZe. Note that B is a
principal SL(2, C)-bundle over M.

—Note also that if the non-zero co-spinor pK is given at x2M, the space of all
normalized pairs (pC, pK) at x2M is a one-dimensional complex affine space,
and so has two real dimensions. If (p0, pK) is normalized, for some co-spinor
p0, then the general normalized pair (pC, pK) can be written as (p0C
lpK, pK), with l an arbitrary complex number.

—There are natural maps PG : B/S
�, which map (x, pC, pK)2B to

(x, pG)2S
�.

—The (future-pointing) null geodesic spray on the null cotangent bundle lifts
naturally to the space S

� to give a vector field N. The trajectories of N
represent an affinely parametrized future-pointing null geodesic on M,
Proc. R. Soc. A (2007)
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together with a co-spinor p, parallelly propagated along the geodesic, such
that gK1(pp) is the (normalized) tangent vector to the geodesic.

—A quantity on S
� that is invariant along the vector field N is called a twistor

quantity. In particular, a function f(x, p) killed by N is called a twistor
function. Such a function is said to be real homogeneous of (integral) degree k
in p, if f(x, tp)Ztkf(x, p) for any non-zero real number t. If f is complex-
valued, one says that f(x, p) is complex homogeneous of degree k in p, if
f(x, tp)Ztkf(x, p) for any non-zero complex number t. Then the real
homogeneous twistor functions depend on six real variables, whereas the
complex homogeneous twistor functions depend on five real variables.

—The space B naturally carries two horizontal vector fields, NG, corresponding
to the (horizontal) lifts of the vector field N along the maps PG. The
trajectories of these vector fields represent an affinely parametrized null
geodesic in space–time, together with a normalized spin frame (pC, pK),
parallelly propagated along the null geodesic, such that for NG, the vector
gK1ðppGÞ is a normalized tangent vector to the null geodesic.

Now one can proceed to the X-transform.

—Let b be a given differential three-form on the space S
�.

—Let g be a given horizontal future-pointing null geodesic curve (i.e. an integral
curve of the vector field N) in S

�.
—Pull b back to the space B along the natural projection PC to give the three-

form bCZP�
CðbÞ on the space B.

—Let gKZPK1
K ðgÞ denote the inverse image under the map PK of the horizontal

curve g. One thinks of the space gK as a ‘fattened’ version of the null geodesic
g, in that a two-real-dimensional affine space is located at each point of the
null geodesic, rather than just the spinor pK itself. In particular, gK has real
dimension three.

— Integrate the three-form bC over the space gK to give a number, denoted
X(b)(g). As the curve g varies, this yields, by definition, the X-transform X(b)
of the three-form b as a function on the space S�, which is invariant along the
null geodesic spray N, so X(b) is a twistor function.

This completes the general description of the X-transform.
The special case that is relevant for the remainder of this work is the case that

bZ ifðx;pÞeK1ðp; dpÞ�eK1ð�p; d �pÞqpp, where f (x, p) is a real-valued twistor
function, a real homogeneous of degree minus four in the variable p. For this
case, one writes the transform as f/X( f ). Then one can show that X( f ) is itself
a real twistor function, which is real homogeneous of degree minus two and that
the transform is conformally invariant. Note that b can be written also as the
multiplication of the function f by the pull back to S

� of the three-form
1/2u(p, g(q), dp, dp), where u is the contravariant alternating orientation tensor
associated to the metric g and dp is the tautological co-vector valued one form on
the cotangent bundle of M that incorporates the Levi-Civita connection of M.

Summarizing this key particular case of the X-transform gives a conformally
invariant operator taking twistor functions of degree minus four to twistor
functions of degree minus two. In particular, both the input and output functions
are functions with six real degrees of freedom.
Proc. R. Soc. A (2007)



=

Figure 2. The basic identity obeyed by the O(4, 4)-triality symbol.

G. A. J. Sparling1670
Consider now the specialization to the conformally flat case. To understand
this more fully, the transform that has just been constructed will be called,
temporarily, X1 and two other transforms, denoted X2 and X3, at first sight
unrelated to X1, will be introduced.
—The transform X2 is given by the following integral formula:

X2ðf Þðg; hÞZ
ð
p2G

f ðp; gK1phÞup:

—Here g, h and p belong to a compact Lie group, G, up is Haar measure for G
and f is a smooth function on G!G. The integral is taken over all p2G. For
the present purposes, one restricts to the case that GZSU(2, C). Then G is
topologically a real three-sphere S3, so X2 maps functions of six real variables,
specifically functions on the product space S

3!S
3, to themselves.

The transform X3 explicitly uses O(4, 4)-triality, which will first be outlined
briefly (Cartan 1925; Baez 2002; Sparling & Tillman 2004). It uses three real
eight-dimensional vector spaces A, B and C, say, each equipped with an O(4, 4)
dot product, together with a certain real trilinear form mapping A!B!C to the
reals, denoted by (xyz), for (x, y, z)2A!B!C.

Dualizing this trilinear form gives rise to three real bilinear maps A!B/C,
B!C/A and C!A/B, denoted by parentheses, such that, for example,
((xy)x)Zx$xy, and (xy)$zZ(zx)$yZ( yz)$xZ(xyz), for any x, y and z in A, B and
C, where the dot product is the appropriate O(4, 4) inner product (figure 2). The
whole theory is then symmetrical under permutations of the three vector spaces.

One says that x in A and y in B are incident if both are non-zero and yet
(xy)Z0 (note that this concept does not arise in the context of O(8) triality).
Then both x and y are null; also given a null ys0 in B, the space of all x in A,
such that (xy)Z0 is a real, totally null, self-dual, four-dimensional vector space.

—The transform X3 now proceeds as follows. Let f(x) be a smooth real-valued
function homogeneous of degree minus four, defined for all non-zero null x2A.
Then f(x)xodxodxodx is a closed three-form on the null cone of A taking
values in U4(A), the fourth exterior product of A with itself. Then define a
function x3( f ), on the null cone of B, taking values in U4(A), by the formula,
valid for any null vector ys0 in B

x3ðf ÞðyÞZ
ð
x incident with y

f ðxÞxodxodxodx:

Here, the integral is taken over the natural homology three-sphere in the
complement of the origin of the space of all x such that (xy)Z0.
Proc. R. Soc. A (2007)



–2

–2

– 4

– 4

–2

– 4

Figure 3. The six transforms.
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For this transform, there is a beautiful additional subtlety. First, one shows
that the output takes values in the self-dual part of U4(A). Next, one observes
that U4(A) has real dimension 70, so the self-dual part has real dimension 35.
But this is exactly the real dimension of symmetric trace-free tensors of valence
two in B and one shows that there is a natural isomorphism between the two
spaces. For y2B, which is null, the tensor y5y is symmetric and trace-free. Let
e( y5y)2U4(A) denote the (self-dual) image of y5y under this isomorphism.
Then one shows that the output x3( f )( y) naturally factorizes

x3ðf ÞðyÞZX3ðf ÞðyÞeðy5yÞ:

Since x3( f )( y) is, from its definition, homogeneous of degree zero in y, it
follows that X3( f ) is a real-valued function on the space of all null non-zero
vectors y in B, homogeneous of degree minus two in y.

Note that there is one such transform for each ordered pair from the set
{A, B, C}, giving six such transforms in all (three of these initially take values in
self-dual forms and the other three take values in anti-self-dual forms) (figure 3).

The following results hold (Sparling 2006a).

—The transforms X1, X2 and X3 coincide, mutatis mutandis. This means that
one can prove results for one of the transforms and deduce analogous results
for the others, which might be harder to get at directly. For the transform X2,
introduce the Casimir operator ,2ZCCKCK, where each of CC and CK is
the standard Casimir operator of SU(2, C) acting on the first and second
Proc. R. Soc. A (2007)
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factors of the product SU(2, C)!SU(2, C), respectively. So ,2 is a
differential operator of the second order. Then the key result is

,2+X2 ZX2+,2 Z 0:

—Equivalently, the kernel of X2 contains the image of ,2 and vice-versa. It is
probably true that the kernel of X2 exactly matches the image of ,2 and vice-
versa, but at the time of writing, this has only been proved fully under the
restriction that the functions involved are finite sums of spherical harmonics.
Note that ,2 is the (ultra-hyperbolic) wave operator in six dimensions for the
natural metric on S

3!S
3 of signature (3, 3).

—Using the translation principle, one can reformulate these results at the level
of the other operators X1 and X3. For X3, the space of all null non-zero vectors
y in B, where y is identified with ty, for tO0, is a space of topology S

3!S
3,

which now has only a (natural) conformal structure, rather than a fixed metric
structure, as in the case of X2. At this point the work of Graham et al. (1992)
comes into play: it shows (among other results) that there is a natural
conformally invariant second-order wave operator, denoted ,3, for con-
formally flat geometries in six dimensions, which maps functions of conformal
weight minus two to functions of conformal weight minus four. These are the
correct weights for the transform X3 and we have:

,3+X3 ZX3+,3 Z 0:

—Finally, for the spin bundle, the appropriate operator can be defined as
follows. Let f(x, p) be a given twistor function of degree minus two. Then,
using abstract spinor and vector indices, since f is constant along the null
geodesic spray, its gradient, vaf, with respect to the variable x, may be
expressed as vafZpA0�f AC �pAfA0 , where fA0 is of degree minus three. Denote by
vA

0
the (complex) gradient with respect to the spinor pA0 . Then write

,1fZ iðvB 0
fB 0K�v

B�f BÞ. Then it can be shown that ,1 f is a twistor function of
degree minus four. Now the basic result is

,1+X1 ZX1+,1 Z 0:

What can be said in curved space–time? Recall the stumbling blocks that
prevented progress from the direction of twistor theory, in the past. Twistor
theory worked beautifully in the cases of self-dual gauge fields and self-dual
gravity and related equations (Mason & Woodhouse 1996). It seems clear, in
retrospect, that the reason for this success is that these systems of equations were
integrable; the methods of the theory always used this fact implicitly or
explicitly. Nevertheless, for ordinary non-self-dual gravity, there were significant
successes: the H-space (self-dual) theory of Newman and Penrose, although valid
only for analytic space–times, arises out of the gravitational radiation data of a
real non-self-dual space–time (Newman 1976; Penrose 1976). Also the equations
of Frederick Ernst for stationary axisymmetric space–times were shown by Ward
(1983) to admit a twistor interpretation. These include the basic physical metrics
of Schwarzschild (1916) and Kerr (1963). However, it is believed that neither the
source-free, gauge-field equations, nor the vacuum equations of gravity are
integrable in general, so ordinary twistor theory is inapplicable.
Proc. R. Soc. A (2007)
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In particular, chaos, perhaps the antithesis of integrability, seems to appear
near a generic future singularity according to the work of Belinski et al. (1970).
For the first time, the X-transform appears likely to give a precise criterion
sorting out the more tractable space–times from the rest, according to the nature
of its image. One says that the space–time is coherent, if and only if the image of
the X-transform obeys a pseudo-differential equation. If not, one says that the
space–time is chaotic. Then, in this language, the results described above show
that conformally flat space–time is coherent. One would conjecture that all the
real space–times, that have proved to be amenable to twistor-type treatments in
the past, are coherent.

As of the time of writing, the author has been able to show by direct
calculation that the prototypical space–times of Kapadia & Sparling (2000) are
coherent, at least for complex homogeneous input functions, giving the first
known example of a curved space–time that is such. Note that this proposed
classification is inherently non-perturbative and potentially gives a coordinate-
independent definition of dynamical chaos (Cvitanović et al. 2004).
3. Going up to six dimensions

At the level of space–time, there is a disparity of dimensions: space–time is four
dimensional, whereas the twistor spaces depend on functions of six real variables.
Is there a realm in physics in which the triality is more manifest? This would
require enlarging space–time from four to six real dimensions. This should be
done in a natural way building directly from the conventional space–time.
Remarkably, it emerges that this is do-able. There are two clues: first consider
the conformally flat case. The basic triality spaces have the symmetry group
O(4, 4). This group is too big for the twistor spaces to relate to ordinary physics
to reproduce the standard successful quantization of massless particles, using
(holomorphic) sheaf cohomology, due to Hughston, Penrose and the author. One
has to implement the standard twistor commutation relations, which form the
algebra of Werner Heisenberg: [Za, Zb ]Z iuab; here the indices run from 1 to 8
(Penrose & Rindler 1986). This entails a symplectic form uab; to recover the
standard theory, uab must give a complex-structure for the eight-dimensional
vector space, such that its symmetry group is reduced from O(4, 4) to the group
U(2, 2). A similar story applies to the other twistor space. However, for the
space–time triality space, space–time needs to separate out: this entails reducing
the symmetry group from O(4, 4) to O(4, 2). This is essentially distinct from the
reductions for the twistor spaces: although the groups SO(4, 2) and SU(2, 2) are
locally isomorphic, the latter being a double cover of the former, they sit inside
the group O(4, 4) in different places.

Surprisingly, it emerges that a single technique does the job simultaneously for
all three triality spaces. For the case of the triality space that one wants to be
space–time, say the space A, one simply selects an oriented two-dimensional
subspace J of the eight-dimensional vector space with a positive definite induced
metric. Then the orthogonal subspace is six dimensional, which intersects the
null cone of the triality space in a five-dimensional space, whose real
projectivization gives the four-dimensional space–time, conformally compacti-
fied, with a natural conformal structure and the correct conformal symmetry
Proc. R. Soc. A (2007)
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group. Let j1 and j2 be unit orthogonal elements in the subspace J, such that
{j1, j2} is an oriented basis for J. For b2B and for c2C, denoted by J(b) in B and
K(c) in C, the quantities J(b)Z( j1( j2b)) and K(c)Z( j2( j1c)), respectively. Then
it is easy to see from the properties of the triality that J and K are complex
structures for the spaces B and C, giving these spaces the desired reduction from
O(4, 4) to U(2, 2). Also the structures J and K are invariant under rotations of
the basis {j1, j2}.

The second clue comes from the structural spin tensor of the spin-bundle of
space–time. This takes the form FZ iqa5ð�pAdpA0KpA0d �pAÞ. It has three
fundamental properties, which encode precise details of the space–time: first, its
skew part gives the two-form used by Witten (1981a,b) in his argument for
positive energy; second, properties of the exterior derivative of the skew part can
be used to analyse the Einstein field equations; third, its symmetric part, when
restricted to any hypersurface, gives the conformal structure of the type of
Fefferman (1974) for the twistor theory of that hypersurface, as shown by the
author (Sparling 2001). In particular, it provides the central fact of twistor
theory, from which everything else follows. In moving to a higher-dimensional
framework, one would like to extend this tensor to maintain that same control
over the field equations and over the twistor theory.

Remarkably, it emerges that in extending to six dimensions, with a conformal
structure of signature (3, 3), the tensor F has a beautiful, completely natural
extension, which actually looks better than the original: it is the tensor, still
called F, given by the formula FZqab5padpb; note that complex numbers do not
appear. Here, d represents the spin connection in six dimensions and one exploits
the fact that the spin group for the group (3, 3) is the group SL(4, R). The basic
spinor pa is then four real dimensional, carrying the fundamental (dual)
representation of SL(4, R). This means that the spinors restrict naturally,
without any loss of information, to four-dimensional submanifolds: the
correspondence with the spinors of Brauer & Weyl (1935) is just pa/ðpA0 ; �pAÞ.

The canonical one-form qab is skew, so has the required six degrees of freedom.

Decomposing into the spinors of relativity, gives a quartet ðqAB; qAB 0

1 ; qA
0B

2 ; qA
0B 0 Þ.

Here qABZqeAB may be construed as giving a kind of complex ‘dilaton’ field and

has qA
0B 0

Z �q
A0B 0

e as its complex conjugate. To recover the standard four-
dimensional metric one would want the one-form q to vanish on restriction to the
four-manifold. Then for the rest of the canonical one-form qab, one has the

relations qAA
0

1 ZqA
0A

2 and qAA
0

1 ZKqA
0A

2 . These relations, taken together, mean

that qAA
0

1 Z iqAA
0
ZKqA

0A
2 , where qAA

0
is self-conjugate, giving, on restriction, the

required real canonical one-form of relativity. Then FZqab5padpb restricts to

iqAA
0
5ð�pAdpA0KpA0d �pAÞ, exactly the Fefferman tensor, the necessary factors of

i emerging naturally, even though the spinors of the ambient space–time are
entirely real.

However, there is a subtle catch, from where the two clues need to be brought to
bear simultaneously: when the ambient spin connection is restricted to the four-
dimensional space–time submanifold, there is no reason that it should preserve the
complex structure of the space–time spinors. From the ambient viewpoint, if D is
the space–time spin connection, which does preserve the complex structure, the
restricted spin connection, d, reads dpA0ZDpA0CGA

A0 �pA. This is a disaster, since
Proc. R. Soc. A (2007)



1675Extra dimensions of space–time
the field GA
A0 is a vector-valued one-form, so has spin-two components, giving

gravity extra spin-two degrees of freedom, that are probably unphysical.
The resolution is beautifully simple: one postulates that the conformal

geometry has a conformal Killing vector, or if the actual metric is specified that it
has a Killing vector. Recall that if a metric gab has a Killing vector ta, then its
tensor covariant derivative vatbZFab is skew. Here, indices are abstract and va is
the Levi-Civita connection of gab (Penrose & Rindler 1984). A standard formula
gives the full covariant derivative of the tensor Fab: vaFbcZ2R d

bcatd. Here, R
d

bca is
the Riemann tensor of va. Now, if the Killing vector vanishes on space–time, then
the restriction of Fbc is covariantly constant, so becomes part of the space–time
structure. Thus, here one demands that the metric in six dimensions have a
Killing symmetry, whose orbits are circles, such that the space–time is the set of
fixed points of the symmetry (one thinks of the symmetry as a rotation in the
‘two-plane’ perpendicular to the four-dimensional ‘axis’). Reviewing the
construction given above in the conformally flat case, one sees that it is exactly
what one has: the rotation is simply the ordinary rotation in the space J, keeping
the orthogonal space fixed: this ‘axis’ then provides the space–time. The
derivative of the Killing field provides the invariant complex structure needed for
the spinors and twistors in the space–time.

Thus, it is suggested that space–time extends naturally and conformally into
six dimensions, where it is the set of fixed points of an appropriate conformal
Killing vector field. The signature of the six dimensions is, quite unambi-
guously, (3, 3). So the extra dimensions are quite definitely time-like. Here, a
perilous philosophical principle has been invoked, that in the context of
physics, could perhaps be attributed to Dirac (1928a,b): if it is elegant, then it
must be right! This approach has three pay-offs: first, space–time seems to be a
kind of ‘brane’, allowing the ideas of Polchinski (1995) to enter. Second, there
is a natural place for arguments of the type given by Randall & Sundrum
(1999a,b), who make the case that the extra dimensions can compensate for the
apparent weakness of gravity. Third, on factoring out by the Killing field, the
signature becomes (2, 3), giving a suitable arena to apply the ideas of
Maldacena (1997).
4. The concinnity

Finally, consider the proposed concinnity. Here, there is not yet a definitive
theory. However, there are some constraints which are as follows.

— It must provide an arena for the fundamental fermionic quantum liquid of
Zhang & Hu (Zhang & Hu 2001; Zhang 2002; Sparling 2002). Indeed, the
desire to construct such an arena which is applicable to general non-analytic
space–times is one of the main motivations behind the present work.

— It must be geometrical, analytical and algebraic (Hopf ).
— It must encode the concepts of sheaves and sheaf cohomology that are critical

in twistor theory (Penrose & Rindler 1984, 1986; Penrose 2005) and in string
theory (Candelas et al. 1985).

— It must unify quantum mechanics and geometry.
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—It would be desirable that it include the main ideas of current physics, apart
from those already mentioned.

For the last, some ideas will be proffered. The famous Calabi-Yau theory of
Candelas et al. (1985), as discussed in earlier work, seems to find a home in the
null hypersurface twistor spaces, where the hypersurface has no vertex, but
terminates in a singularity (Calabi 1954; Yau 1977; Candelas et al. 1985; Sparling
2000). Thus, essentially it would appear that their theory classifies the structure
of certain space–time singularities. Similarly, the counting of black hole states
works with horizons, which are null hypersurfaces (Horowitz & Strominger
1996). The manifolds of Joyce (2000) are more problematic, probably living
outside the usual space–time arena and in the ambient six-dimensional space, the
Calabi–Yau theory for space–time being a limiting case. Support here comes
from the breakthrough work of Nurowksi (2005) and the author on the structure
of third-order differential equations.

The structure needed is so powerful that it must involve deep mathematics.
One conjectures that it is a coherent topos (a generalized approach to sheaf
theory due to William Lawvere and Myles Tierney), with a triangulated
structure of the type developed by Jean Louis Verdier and Alexandre
Grothendieck to provide the cohomology (Lawvere 1971).

Hints of such a triangulated structure appear in the cohomological character of
the X-transform for conformally flat space–time found above. Where can one begin
to look for this structure in space–time? Conjecturally, it lies in the ensemble of all
conformally invariant hyperbolic differential or even pseudo-differential operators
on the space–time, together with the ‘modules’ that they act on. These somehow
express the non-analytic essence of hyperbolicity, which is the key new feature
introduced into physics by James Clerk Maxwell and Albert Einstein.

The full structure should be a non-commutative geometry, probably derived
from string theory, as in the work of Connes (1994). It should have the property
that looked at (‘observed!’) one way, involving ‘going to the boundary’, one
recovers the basic quantum twistor structure, describing massless particles,
whereas looked at another such way, one recovers the relevant space–time phase
space (the null cotangent bundle). Note that the very fact that there are twistor
and space–time-based descriptions of the same basic physical reality, that of
massless particles, hints at a common ontology. The structure would not be in
itself dynamical, owing to the lack of a preferred time concept, but would create
the required dynamics at the ‘edge’, following Zhang & Hu (2001).

Then the fundamental ‘seat of pants’ picture of string theory could be recovered
as a generalization of the X-transform: a method of transferring information
between the various edges. However, unlike conventional string theory, where the
strings at the boundary of the pants are much of a muchness, here the three
boundary strings belong to three different spaces (Green et al. 1987).

The concepts presented here should have analogues in other areas. There may
be a direct application in the context of superfluid helium three, which has a
natural SU(2, C)!SU(2, C) structure; if this materializes, one may be able to
probe the present theory using superfluids and incorporate some of the ideas of
Volovik (Volovik 2003; Bain 2006). Finally, there should be a close analogue for
the theory of solitons, extending the deep recent work of Le Brun & Mason
(2007) and linking it with the ideas of Bondal & Orlov (2002).
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