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Quantum superposition of thermodynamic
evolutions with opposing time’s arrows
Giulia Rubino1,2✉, Gonzalo Manzano 3,4 & Časlav Brukner1,4

Microscopic physical laws are time-symmetric, hence, a priori there exists no preferential

temporal direction. However, the second law of thermodynamics allows one to associate the

“forward” temporal direction to a positive variation of the total entropy produced in a ther-

modynamic process, and a negative variation with its “time-reversal” counterpart. This

definition of a temporal axis is normally considered to apply in both classical and quantum

contexts. Yet, quantum physics admits also superpositions between forward and time-

reversal processes, whereby the thermodynamic arrow of time becomes quantum-

mechanically undefined. In this work, we demonstrate that a definite thermodynamic

time’s arrow can be restored by a quantum measurement of entropy production, which

effectively projects such superpositions onto the forward (time-reversal) time-direction when

large positive (negative) values are measured. Finally, for small values (of the order of plus or

minus one), the amplitudes of forward and time-reversal processes can interfere, giving rise

to entropy-production distributions featuring a more or less reversible process than either of

the two components individually, or any classical mixture thereof.
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In spite of it being seemingly straightforward, physics is still
nowadays seeking to provide a comprehensive understanding
of the apparent passage of time1. The concept of time flow is

intimately related to the observation of a change in physical
systems. However, the recognition that, at their most funda-
mental level, physical systems generally obey time-reversible laws
led to the realisation that systems’ evolutions do not intrinsically
differentiate between forward and backward time directions.
Attempts to uphold with physical arguments the evidence of the
time flow are being made on multiple fronts, mainly on the basis
of empirical observations: we see that entropy in the universe
increases (thermodynamic time’s arrow), that the universe
expands (cosmological time’s arrow), that causes always precede
their effects (causal time’s arrow). Likewise, there have been
several proposals as to the explanation of the time’s arrow in a
quantum-mechanical contexts2–6. The peculiarity of the quantum
framework is that it enables processes to be placed in quantum
superposition. Applied to the notion of thermodynamic time’s
arrow, this implies that quantum mechanics can allow the
superposition of thermodynamic processes (namely, dynamic
processes wherein a system of interest exchanges either heat,
work, or both with other systems, the environment and/or
external agents) producing opposite variations in the entropy.
This raises the question of how a well-defined thermodynamic
arrow of time can be established in the quantum framework when
such superpositions are in place. To address this question, in this
work we show that a measurement of the entropy production has
a decisive role in restoring a definite thermodynamic time’s
arrow, and we investigate interference effects in such super-
positions. Our investigations bear a conceptual similarity to the
field of indefinite quantum causality, wherein the order of
operations is placed in a quantum superposition7–9. Note, how-
ever, that there is a crucial difference between these two types of
studies. In indefinite quantum causality, operations are performed
in the same temporal direction (here referred to as “forward”) in
each amplitude of the superposition. In contrast, in the present
case, we analyse superpositions of thermodynamic processes with
opposing thermodynamic arrows of time.

In thermodynamics, the time’s arrow is introduced by the
second law of thermodynamics, according to which the total
entropy of the universe can only either increase or remain con-
stant. Consequently, one might think that observations of entropy
changes are all we need to distinguish the past from the future: an
overall increase in entropy shall be identified with the direction of
time “forward”, while an overall decrease in entropy with its
“time-reversal” counterpart. Yet, for a microscopic system, fluc-
tuations blur the direction of the time’s arrow, and the time
flow is only defined on average. More specifically, in this
regime, the time’s arrow cannot be inferred, as both positive and
negative entropy changes can be observed with comparable
probability in a single experimental run. As a consequence, for
such systems, the two opposite time’s arrows become classically
indistinguishable. The extension of this indistinguishability to the
quantum domain gives rise to quantum superpositions between
opposite time’s arrows, whose investigation is the focus of the
present work.

In what follows, we will explore how a definite time’s arrow
arises in quantum superpositions between “forward” and “time-
reversal” processes (i.e., thermodynamic processes whose quen-
ches are related by time-inversion symmetry). In particular, we
will show that quantum measurements of the dissipative work
Wdiss (or, equivalently, entropy production ΔStot) can restore the
time directionality of the process. The dissipative work Wdiss=
W− ΔF is the amount of work W invested in a thermodynamic
transformation between equilibrium states having a free energy

difference ΔF, which cannot be recovered by reversing the pro-
cess. Furthermore, the relation between the dissipative work and
the entropy production (or total entropy) ΔStot in the process is
established through the relation: ΔStot= βWdiss, where β ¼
ðkBTÞ�1 is the inverse temperature, with kB being the Boltzmann
constant and T the temperature of the bath10–12. We will then
show that, when the measured dissipative work equals βWdiss≫
1, the superposition is effectively projected onto the forward
process, whereas when βWdiss≪−1, it is effectively projected
onto the time-reversal one, hence recovering a definite thermo-
dynamic arrow of time (albeit, in each individual execution of the
experiment, the outcome “forward" or “time reversal" is random).
Conversely, when β∣Wdiss∣ is of the order of one, the forward and
the time-reversal thermodynamic processes can quantum
mechanically interfere under certain conditions, resulting in a
work probability distribution describing work fluctuations that
have no classical counterpart. More precisely, in the case of
interference, the probabilities take on values that cannot be
obtained by any classical (convex) mixture of the forward and the
time-reversal processes.

Results
Superposition of forward and time-reversal dynamics. We start
by defining the framework used to characterise thermodynamic
processes and work fluctuations. First, we will introduce all the
necessary elements to formally construct a state representing the
quantum superposition of a thermodynamic process evolving in
the forward temporal direction, and one evolving in the opposite
(time-reversal) direction. Then, we will discuss how to char-
acterise work and entropy-production fluctuations in such
superposition states using an extended two-point-measurement
(TPM) scheme, and we illustrate how the outcomes achieved
through processes with well-defined time directions can be
recovered inside our framework.

We consider a thermodynamic system S being, in both forward
and time-reversal processes, initially in equilibrium with a
thermal reservoir at inverse temperature β. The process occurring
in the forward direction will be realised by a quench U(t, 0)
induced by the time-dependent Hamiltonian H λðtÞð Þ executing a
controlled protocol Λ≡ {λ (t); 0 ≤ t ≤ τ} in the time-frame
t∈ [0, τ], followed by a final thermalisation in contact with the

reservoir at β. Here, Uðt1; t2Þ ¼ ~T exp � i
_

R t2
t1
dν H λðνÞð Þ

h i
, where

~T is the so-called “time-ordering” operator resulting from the
Dyson decomposition. Its time-reversal twin will be described by
a quench ~Uðτ � t; 0Þ associated to the implementation of the
operational time-reversal protocol ~Λ � fλðτ � tÞ; 0≤ t ≤ τg, where
in both cases λ is a control parameter, and again the quench is
followed by a final thermalisation step. The micro-reversibility
principle for non-autonomous systems establishes a strong
relation between forward and time-reversal quenches lying at
the core of fluctuation theorems13,14:

~Uðτ � t; 0Þ ¼ Θ Uyðτ; tÞ Θy; ð1Þ

where Θ denotes the (anti-unitary) time-reversal operator acting
on the system’s Hilbert space, which flips the sign of observables
with odd parity under time-reversal. This operator verifies the
relations Θ 1i ¼ �1i Θ, and Θ Θy ¼ Θy Θ ¼ 1.

In order to describe superpositions of forward and time-
reversal processes, the initial equilibrium states of the system S
can be purified by including some environmental degrees of
freedom E with a generic Hamiltonian HE in the description.
These purifications are not unique, and they can be represented
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by joint states of the system and the environment of the form

ψ0

�� �
S;E

¼ ∑
k

ffiffiffiffiffiffiffiffiffiffiffiffi
e�βEð0Þ

k

Z0

s
Eð0Þ
k

��� E
S

εð0Þk

��� E
E
; ð2aÞ

~ψ0

�� �
S;E

¼ ∑
k

ffiffiffiffiffiffiffiffiffiffiffiffi
e�βEðτÞ

k

Zτ

s
Θ EðτÞ

k

��� E
S

εðτÞk

��� E
E
; ð2bÞ

where Eð0Þ
k and EðτÞ

k are the eigenvalues of the Hamiltonian at

times t= {0, τ}, i.e., H[λ(0)] and H[λ(τ)], whereas jEð0Þ
k iS and

jEðτÞ
k iS are the corresponding eigenvectors (for the sake of brevity,

we will henceforth omit the subscript S in the system’s energy
eigenvectors). Furthermore, jεð0Þk iE, jε

ðτÞ
k iE represent the corre-

sponding sets of states of the environmental degree of freedom,
which can always be chosen as sets of orthogonal states. Notice
that the environment may possess further degrees of freedom that
are not entangled with the system under consideration, and which
we will thus not explicitly account for.

The state jψ0iS;E above corresponds to the initial state of the
process evolving in the forward direction as defined by Λ, whereas
j~ψ0iS;E is the initial state of the time-reversed process as defined

by ~Λ. Notice that, by tracing out the environmental degrees of
freedom, we recover the corresponding Gibbs thermal states for
the system ρ th

0 � TrEðjψ0ihψ0jS;EÞ ¼ e�βH½λð0Þ�=Z0 and ~ρ th
0 �

TrEðj~ψ0ih~ψ0jS;EÞ ¼ Θ e�βH½λðτÞ�Θy=Zτ , being Z0 ¼ Tr e�βH½λð0Þ�� �
,

and Zτ ¼ Tr e�βH½λðτÞ�� �
the partition functions.

Moreover, we introduce an auxiliary system A whose two
orthogonal states f 0j iA; 1j iAg govern the evolution of the process
in the two temporal directions. This is a quantum analogue of the
coin tossed to decide classically which process to run (forward or
time reversal). With this in place, the global Hamiltonian of
the system, the environment, and the auxiliary qubit reads HðtÞ �
0j i 0h jA � H½λðtÞ� þ 1j i 1h jA � ΘH½λðτ � tÞ�Θy� �� 1E þ 1S;A�

HE. We then entangle each orthogonal auxiliary state to one of the
initial states in Eq. (2). The overall initial state of thermodynamic
system, environment and auxiliary system reads therefore:

Ψ0

�� �
S;E;A

¼ α0 ψ0

�� �
S;E

� 0j iA þ α1 ~ψ0

�� �
S;E

� 1j iA; ð3Þ
with arbitrary coefficients α0; α1 2 C, ∣α0∣2+ ∣α1∣2= 1. If, subse-
quently, in each branch of the superposition in Eq. (3) the forward
and time-reversal quenches are respectively applied, the evolved state
at some arbitrary instant of time t∈ [0, τ] is given by jΨðtÞiS;E;A ¼
α0 ½Uðt; 0Þ �1E;A�jψ0iS;E�j0iAþα1j½~Uðt; 0Þ� 1E;A�j~ψ0iS;E�j1iA:
In this expression, the first and the second amplitudes correspond to
the forward and the time-reversal processes, respectively. Further-
more, we assume that the system does not interact with the
environment during the timescale of the quenches (however, after
the quench, the system thermalises through the interaction with the
thermal reservoir). This is verified whenever the quenches are
implemented in a fast timescale as compared to the characteristic
relaxation time of the system in interaction with the environment15,
or when the system is artificially disconnected from the environment
during the quench implementation and reconnected after it.
Furthermore, we will consider the quenches U(t, 0) and ~Uðt; 0Þ in
the superposition to be implemented by some external (classical)
control. As we discuss in the Supplementary Note 116–20, this limit is
adequate in our setup, and it corresponds to the case in which the
control mechanism acts approximately as an ideal reservoir of
energy and coherence21–24, as is the case, for instance, with lasers or
radiofrequency pulses.

Taking a gas enclosed in a vessel as a pictorial example, the
aforementioned state can be constructed by entangling the
position of the piston with a further auxiliary quantum system,
thereby establishing a quantum superposition of the following
two processes: (i) a process wherein the gas particles are initially
in thermal equilibrium confined in one half of the vessel by a
piston, and the piston is pulled outwards, and (ii) the reverse
process, in which the piston is pushed towards the gas, starting
from an initial state where the gas occupies the entire vessel in
thermal equilibrium.

Extended two-point measurement scheme. We will now mea-
sure the work of the system undergoing the above-mentioned
superposition of forward and time-reversal dynamics. In order to
implement such a measurement, we formally construct a proce-
dure described by a set of measurement operators forming a
completely positive and trace-preserving (CPTP) map. In this
regard, we will refer to a standard TPM procedure to measure
work in quantum thermodynamic processes13. Implementations
of the TPM in quantum setups25–29, as well as suitable
extensions30–33, have recently received increasing attention. Our
procedure can be seen as a generalisation of the TPM scheme to
situations where different thermodynamic processes are allowed
to be superposed, and can consequently interfere.

In the TPM scheme, work is defined as the energy difference
between the initial and final states of the system, which are
measured through ideal projective measurements of the system
Hamiltonian implemented before and after the thermodynamic
process associated with the protocol Λ34,35. This measurement
scheme can be performed, individually, both for the forward and
the time-reversal processes, enabling the construction of the work
probability distributions P(W) and ~PðWÞ, respectively.

As far as the forward process is concerned, the probability to
observe a transition Eð0Þ

n

�� � ! EðτÞ
m

�� �
is given by pn;m ¼ pmjn pð0Þn ,

where pð0Þn ¼ e�βEð0Þ
n =Z0 is the probability of observing the energy

Eð0Þ
n at t= 0, and pmjn ¼ hEðτÞ

m jUðτ; 0ÞjEð0Þ
n i

�� ��2 is the conditional

probability of measuring EðτÞ
m at t= τ after having measured Eð0Þ

n
at the beginning of the process. Similarly, for the time-reversal

process one has ~pm;n ¼ ~pnjm ~pð0Þm , where ~pð0Þm ¼ e�βEðτÞ
m =Zτ is the

probability to obtain the energy EðτÞ
m at the beginning of the time-

reversal process, and ~pnjm ¼ hEð0Þ
n jΘy ~Uðτ; 0ÞΘjEðτÞ

m i
�� ��2 is the

corresponding conditional probability for observing the inverse
transition Θ EðτÞ

m

�� � ! Θ Eð0Þ
n

�� �
given that one obtained EðτÞ

m in the
first measurement. The micro-reversibility principle in Eq. (1)
relates the conditional probabilities in the forward and time-
reversal processes as ~pnjm ¼ pmjn

13,14.
The TPM scheme allows one to compute the stochastic work

invested by the external driver in a single realisation of the
protocol Λ, Wn;m � EðτÞ

m � Eð0Þ
n , associated to the outcomes of

initial and final energy measurements. Its probability distribution
reads:

PðWÞ ¼ ∑
n;m

pn;m � δðW �Wn;mÞ: ð4Þ
Analogously, the probability distribution associated to the work

invested in the time-reversal protocol, ~Wn;m ¼ Eð0Þ
n � EðτÞ

m ¼
�Wn;m, is given by:

~PðWÞ ¼ ∑
n;m

~pn;m � δðW � ~Wn;mÞ: ð5Þ
Hereafter, we consider an extension of the TPM scheme in

which we include energy measurements at t= 0 and t= τ in both
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branches of the superposition between a forward and a time-
reversal processes, as illustrated in Fig. 1. More precisely, starting
with the initial state in Eq. (3), and conditionally on the auxiliary
state, we consider the application of the projectors Eð0Þ

n

�� �
Eð0Þ
n

� ��
and Θ EðτÞ

m

�� �
EðτÞ
m

� ��Θy to the initial states ψ0

�� �
S;E

and ~ψ0

�� �
S;E
,

respectively. Subsequently, the unitary quenches U(τ, 0) and
~Uðτ; 0Þ are implemented in each branch, after which the
projectors EðτÞ

m

�� �
EðτÞ
m

� �� and Θ Eð0Þ
n

�� �
Eð0Þ
n

� ��Θy are respectively
applied. Consequently, given the outcomes Eð0Þ

n and EðτÞ
m , a work

Wn,m is invested in the forward-dynamics branch by applying the
protocol Λ, whereas the work invested in its time-reversal
counterpart ~Λ is ~Wn;m ¼ �Wn;m (i.e., the same amount of work
as in the forward dynamics is here extracted).

The operator representing the application of the scheme
through which the work Wn,m is obtained can be written as:

Mn;m ¼ EðτÞ
m

�� �
EðτÞ
m

� ��Uðτ; 0Þ Eð0Þ
n

�� �
Eð0Þ
n

� ��� 1E � 0j i 0h jA
þ Θ Eð0Þ

n

�� �
Eð0Þ
n

� ��Θy ~Uðτ; 0ÞΘ EðτÞ
m

�� �
EðτÞ
m

� ��Θy � 1E � 1j i 1h jA
ð6Þ

The set of operators {Mn,m} forms a CPTP map, EðρÞ �
∑n;mMn;mρM

y
n;m, acting on the composite system S, E,A and

fulfilling ∑n;mM
y
n;mMn;m ¼ 1S;E;A. The map E describes the average

effect of the measurement scheme on an arbitrary initial state of the
composite system ρ, while the operations En;mðρÞ � Mn;mρM

y
n;m

provide the probability PðWÞ � ∑n;mTr ½En;mðρÞ�δðW �Wn;mÞ to
measure the work W.

It is important to stress that the operations EW preserve the
coherence between the forward and time-reversal thermodynamic
processes. Indeed, performing a standard quantum measurement
on the process would destroy the coherence, as it would reveal the
time at which the measurement has been performed, and, from
this, also whether the outcome Em was observed before (in the
forward process) or after the outcome En (in the time-reversal
process). In other words, such a measurement would reveal the
time direction, and it would be equivalent to the measurement of

the auxiliary qubit in the basis f 0j iA; 1j iAg. However, there exist
also measurement schemes in which the result is encoded in an
auxiliary system through its entanglement with the measured
system, and the result is then read-only at the end of the whole
evolution, thereby preserving its coherence. (Such a measurement
scheme was recently used to measure the system undergoing
superposition of causal orders36) In such a scheme, the system on
which the thermodynamic quenches act and the auxiliary system
can be encoded on two different degrees of freedom of the same
quantum system. If the auxiliary degree of freedom is of sufficient
dimension, it is possible to encode the results of each
measurement taking place within the process in a state of this
system. More precisely, suppose that the auxiliary system has two
additional registers A0 which can store the results of the two
energy measurements. When the auxiliary system is in the 0j iA
( 1j iA) state, the thermodynamic system is subject to an unitary U1

(~U1) that couples the energy of the system to the first (second)
register of the auxiliary system. This results in an overall unitary
that entangles the thermodynamic system with the auxiliary
system:

0j iA 0h j � U1 þ 1j iA 1h j � ~U1; ð7Þ
where

U1 Eð0Þ
n

�� �
S x; y
�� �

A0 ¼ Eð0Þ
n

�� �
S x � n; y
�� �

A0 ; ð8Þ

~U1Θ EðτÞ
m

�� �
S
x; y
�� �

A0 ¼ Θ EðτÞ
m

�� �
S
x; y �m
�� �

A0 ; ð9Þ
for any basis state x; y

�� �
A0 of the two registers. Here, the

symbol⊕means the sum modulo the total number of different
energy values. Subsequently, the thermodynamic system is subject
to a quench, followed by another entangling unitary

0j iA 0h j � U2 þ 1j iA 1h j � ~U2; ð10Þ
with

U2 EðτÞ
m

�� �
S
x; y
�� �

A0 ¼ EðτÞ
m

�� �
S
x; y �m
�� �

A0 ; ð11Þ

~U2Θ Eð0Þ
n

�� �
S x; y
�� �

A0 ¼ Θ Eð0Þ
n

�� �
S x� n; y
�� �

A0 ; ð12Þ
which now couples the energy of the thermodynamic system after
the quench in the second (first) register when the auxiliary system
is in the state 0j iA ( 1j iA). If the two registers are initially prepared
in the state 0; 0j iA0 , their final state n;mj iA0 will encode both
energy values. The coherence of the overall state has to be
maintained until the end of the entire thermodynamic process
when the auxiliary system is measured in the basis
fð 0j iA ± 1j iAÞ=

ffiffiffi
2

p g to erase any information as to whether the
system has gone through the “forward” or “time-reversal” process
(which might be encoded, for instance, in the temporal or
directional mode of the auxiliary system). A sketch of a possible
experimental realisation of the extended TPM scheme is shown in
Fig. 2 in the case of two measurements outcomes for Eð0Þ

n , EðτÞ
m . For

simplicity, in this study we consider only two states of the
auxiliary system (Fig. 1). Nevertheless, all the conclusions drawn
herein can be extended to the case of more than two states.

In order to evaluate the work probability distribution in the
extended TMP scheme, it is also crucial to take into account the
mutual phases between the conditional probabilities. We thus
write, in general

hEðτÞ
m j Uðτ; 0ÞjEð0Þ

n i :¼ ffiffiffiffiffiffiffiffi
pmjn

p
eiΦn;m ; ð13aÞ

hEð0Þ
n j Uyðτ; 0ÞjEðτÞ

m i :¼
ffiffiffiffiffiffiffiffi
~pnjm

q
e�i~Φm;n ; ð13bÞ

Fig. 1 Superposition of a forward thermodynamic quench with its time-
reversal counterpart. A thermodynamic system S and its environment are
coupled to an auxiliary system A in a suitable entangled state. Depending
on the state of the auxiliary system, 0j iA or 1j iA, when the state of the
environment is traced out, the system S is initially prepared in a thermal
state of the initial or final Hamiltonians, H(0) and H(τ), respectively. This is
then sent through a thermodynamic quench U(t, 0) or its time reversal
~Uðt;0Þ in the time-frame t∈ [0, τ]. Before and after each quench, the
system’s energy is measured. The measurement outcomes Eð0Þn and EðτÞm are
found when the auxiliary system is in 0j iA, whereas the outcomes Eð0Þm and
EðτÞn are obtained when the auxiliary system is in 1j iA. After these
measurements, the system may eventually undergo a second
thermalisation with the environment. Note that the first (second)
measurement when the auxiliary system is in 0j iA, and the second (first)
measurement when it is in 1j iA are physically one and the same
measurement. A possible implementation of this scheme is reported in
Fig. 2.
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and we notice that

ffiffiffiffiffiffiffiffi
~pnjm

q
e�i~Φm;n ¼

D
Eð0Þ
n j Uyðτ; 0ÞjEðτÞ

m

E
¼ ffiffiffiffiffiffiffiffi

pmjn
p

eiΦn;m

� 	�
¼ ffiffiffiffiffiffiffiffi

pmjn
p

e�iΦn;m ;

from which we get Φn;m ¼ ~Φm;n, since ~pnjm ¼ pmjn.
We now consider the concatenation of the operationMn,m with

a projection of the auxiliary qubit onto an arbitrary state ξj iA. By
applying this sequence of operations to the initial state in Eq. (3),
we derive the (unnormalized) state of the composite system
associated to the work outcome Wn,m and projection of the

auxiliary qubit onto ξj iA:

Ψξ
n;m

��� E
S;E;A

� 1S;E � ξj i ξh jA
� 	

	Mn;m Ψ0

�� �
S;E;A

¼ jΞξ
0i þ jΞξ

1i;
ð14Þ

where we identified the two branches of the superposition
corresponding to the forward ðjΞξ

0iÞ and the time-reversal
dynamics ðjΞξ

1iÞ. They read, respectively:

jΞξ
0i ¼ α0hξj0i

ffiffiffiffiffiffiffiffi
pn;m

p
eiΦn;m EðτÞ

m

�� �
εð0Þn

�� �
E
ξj iA ð15aÞ

jΞξ
1i ¼ α1hξj1i

ffiffiffiffiffiffiffiffi
pn;m

p
e�

β
2ðWn;m�ΔFÞ�iΦn;m

Θ Eð0Þ
n

�� �
εðτÞm

�� �
E
ξj iA

ð15bÞ

where, in the second equation, we made use of ~pn;m ¼
pn;m e�βðWn;m�ΔFÞ (see the Supplementary Note 2), and of the
relation between the forward and time-reversal phases
~Φm;n ¼ Φn;m. The final thermalisation step, which effectively
leads to the irreversible dissipation of work Wdiss, occurs only
after the projection onto the auxiliary qubit, and is thus not
included within the (extended) TPM scheme.

The joint probability of measuring the work W and projecting the

auxiliary state onto ξj iA is given by Pðξ;WÞ ¼ ∑n;mjjjΨξ
n;miS;E;Ajj

2

δðW �Wn;mÞ. Furthermore, from the joint probabilities Pðξ;WÞ,
one can obtain the conditional ones PξðWÞ :¼ PðWjξÞ ¼
Pðξ;WÞ=PðξÞ, which we will hereafter refer to as “post-selected
work probability distributions”, and where PðξÞ ¼ R

dW Pðξ;WÞ.
By introducing the notation qξ0 ¼ jα0j2jhξj0ij2=PðξÞ and qξ1 ¼
jα1j2jhξj1ij2=PðξÞ, we can rewrite PξðWÞ as:

PξðWÞ ¼ qξ0 PðWÞ þ qξ1 ~Pð�WÞ þ 2 Re IξðWÞ� �
; ð16Þ

where we identified the probability distributions for the work in the
forward process P(W), and in the time-reversal one ~Pð�WÞ as given
in Eqs. (4)–(5), respectively. From this, we obtain the interference
term:

IξðWÞ ¼ α�0α1h0jξihξj1i
PðξÞ ∑

n;m
pn;me

�β
2ðWn;m�ΔFÞ

e�2iΦn;m EðτÞ
m

� ��Θ Eð0Þ
n

�� �
εð0Þn jεðτÞm

� � � δðW �Wn;mÞ
ð17Þ

The functional dependence of PξðWÞ onW consists of two parts: (i)
an “incoherent” part, reflecting the fact that each work value W
obtained in the scheme is compatible with running the process in one
or the other temporal direction with a given probability (i.e., investing
the work W when running the protocol Λ, and extracting the same
amount of work−W when executing its time-reversal counterpart
~Λ), and (ii) a “coherent” part, which is a genuinely quantum feature
arising from the superposition of the two temporal directions of the
quench.

In the case jα0j ¼ jα1j ¼ 1=
ffiffiffi
2

p
, the forward state jΞξ

0i and the
time-reversal one jΞξ

1i in Eq. (15) have the same amplitudes in the
superposition. Nevertheless, as in the standard scenario of well-
defined temporal directions, one may use the properties of the
work probability distribution PξðWÞ together with Bayesian
reasoning to infer the time’s arrow of the thermodynamic process.
As we will see shortly, in some cases, the thermodynamic time’s
arrow can be determined even in a single realisation of the
process, which effectively projects the state jΨξ

n;miS;E;A onto either

its forward or its time-reversal component.

Fig. 2 Possible implementation of the extended two-point measurement
scheme. A beam splitter (BS) creates a quantum superposition of the
auxiliary state in j0iA, j1iA as represented by the upper (solid) and lower
(dashed) paths in the left part of the figure, over which the initial state in
Eq. (3) is prepared. Unitary operators U1;2 and ~U1;2 couple the system with
two additional internal registers A0, initially prepared in the state 0;0j iA0

(for simplicity, unitaries U1;2 and ~U1;2 are here imagined to produce binary
results). Encoding pairs of system energy eigenstates (n,m) onto the
registers A0 leads to further subdivisions into different paths (middle part of
the figure), which are recombined and measured only at the final stage of
the interferometer. The unitaries U1;2 and ~U1;2 and the final measurement
replace the initial and final projective measurements of Eð0Þn and EðτÞm in the
TPM scheme in Fig. 1. When the auxiliary system is in the state j0iA (j1iA),
the thermodynamic system is first subjected to a unitary U1 (~U1), then to
the thermodynamic process U(τ, 0) [~Uðτ;0Þ] within the time interval [0, τ],
and finally to a second unitary U2 (~U2), see solid (dashed) paths in the
figure. Unitary U1 encodes the energy of the eigenstates Eð0Þn

�� �
of the

thermodynamic system into the first register n;0j iA0 (n= 0, 1) of the
auxiliary system, while unitary U2 encodes the energy of the eigenstates
EðτÞm

�� �
into the states n;mj iA0 (m= 0, 1) of the second register. The four

possible outcomes are indicated as four solid paths (bottom part of the
figure), each labelled as j0iAjn;miA0 . Similarly, the unitaries ~U1 and ~U2

encode the energies of the thermodynamic system before and after the
quench in the second and the first register respectively, when the auxiliary
system is in 1j iA (four dashed paths labelled as 1j iA m; nj iA0 in the top part of
the figure). This enables to maintain the coherence of the auxiliary system’s
states until the end of the interferometer. There, the states 0j iA n;mj iA0 and
1j i m; nj iA0 are interfered pairwise through further BSs, and measured. The
results of the final measurements over the system A in the diagonal basis
f ±j iAg are indicated by the symbols E ±

n;m .
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Effective projection onto a definite time’s arrow. In the fol-
lowing, we demonstrate that measuring work values such that
W− ΔF≫ β−1, or W− ΔF≪− β−1, in single realisations of the
extended TPM scheme effectively results in projecting the state
jΨξ

m;niS;E;A in Eq. (14) onto either the forward or the time-reversal

components in Eq. (15) (i.e., jΞξ
0i or jΞξ

1i, respectively). In order
to show this, we consider the probabilities for the superposition
state jΨξ

n;miS;E;A to be found in either jjjΞξ
0ijj2 or jjjΞξ

1ijj2,
respectively. In particular, we notice that the term jjjΞξ

1ijj2 is
upper bounded by

jjjΞξ
1ijj2 ¼ jα1j2jhξj1ij2pn;m e�βðWn;m�ΔFÞ

⩽ e�βWdiss ∑
n;m

pn;m ¼ e�βWdiss ;
ð18Þ

where we used the fact that ∣α1∣2∣〈ξ∣1〉∣2⩽ 1, and ∑n,m pn,m= 1.
Consequently, in the limit βWdiss≫ 1, we have jjjΞξ

1ijj2 
 0, and
hence jjjΞξ

0ijj2 
 1, that is, jΨξ
n;miS;E;A ’ jΞξ

0i. Indeed, applying
the detailed fluctuation theorem in Eq. (21) to Eq. (16), we obtain:

PξðWÞ ¼ PðWÞ qξ0 þ qξ1e
�βWdiss

� 	
þ 2 Re IξðWÞ� �


 qξ0 PðWÞ;
ð19Þ

where we made use of the fact that IξðWÞ / e�βWdiss=2. Therefore,
we obtained that, whenever one performs a measurement of the
work in the extended TPM scheme and observes W− ΔF≫ β−1

(or, equivalently, ΔS= βWdiss≫ 1), the state of the system is
projected onto the forward component of the quantum super-
position without measuring the auxiliary qubit (similarly to what
one would obtain, had one projected the joint state ΨðtÞ

�� �
S;E;A

through a projective measurement 0j i 0h jA on the auxiliary sys-
tem, and subsequently observed the work value W). The prob-
ability to observe this work value in the extended TPM scheme is
given by Eq. (19).

Analogously, whenever the result of the extended TPM scheme is
such that W−ΔF≪− β−1 (or, equivalently, ΔS= βWdiss≪− 1),
one can neglect the term jjjΞξ

0ijj2 ≤ eβWdiss , and thus obtain the
projection jΨξ

WiS;E ’ jΞξ
1i. In this case, we correspondingly achieve:

PξðWÞ ¼ ~Pð�WÞ qξ0e
βWdiss þ qξ1

� 	
þ 2 Re IξðWÞ� �


 qξ1 ~Pð�WÞ:
ð20Þ

Hence, here the joint state is projected onto the time-reversal
component of the quantum superposition (as if a projective
measurement 1j i 1h jA on the auxiliary system was performed,
followed by the observation of the work value W). Similarly to the
previous case, Eq. (20) provides the probability to get such an
outcome in an estimation of the work.

Interference effects in the work distribution. In the previous
section, we observed that, for individual runs of the process’
superposition, whenever the observed entropy production is of
the order ∣ΔS∣ ≫ 1 (or, equivalently, ∣W− ΔF∣ ≫ β−1), the system
is effectively projected onto a state with a definite thermodynamic
time’s arrow. Conversely, if the measured entropy production is
∣ΔS∣ ≲ 1 (or equivalently ∣W− ΔF∣ ≲ β−1), the superposition state
Eq. (14) resulting from the application of the extended TPM
scheme lacks a definite time’s arrow, exhibiting interference
effects.

A closer examination of the term Iξ(W) highlights the fact that
the second source of loss of interference effects in the extended
TPM scheme lies in the presence of environmental decoherence,
manifested in a negligible overlap between the environmental

degrees of freedom, i.e., εð0Þn jεðτÞm

� � � 0 for all n,m. This is the case
in all instances where the environment is large and uncontrol-
lable, thus leading the states εð0Þn

�� �
and εðτÞm

�� �
to have scarcely any

significant overlap. However, for small environments or
purposely-engineered environments, such effects can be avoided.
For instance, one way to implement this scheme would be
keeping a sufficiently small path separation in the interferometer
in Fig. 2, such that the particle can be assumed to interact with
the same environmental degree of freedom regardless of the path
it takes. In this specific case, εð0Þn jεðτÞm

� � ¼ δn;m.
As an illustrative example, we study the effect of interference in the

work distribution in the case of a spin-12 system, as illustrated in
Fig. 3. In particular, in the forward quench, the spin system is
subjected to a magnetic field whose direction is rotating within the
x− z plane at constant angular velocity Ω around the y axis (ω being
the spin’s natural frequency) HðΩtÞ ¼ _ω

2 1þ cos Ωtð Þ σzþ



sin Ωtð Þ σx�. In the extended TPM scheme, we superpose the
forward quench and its time-reversal twin, and we project the
auxiliary system onto the diagonal basis ±j iA ¼ ð 0j iA ±

�
1j iAÞ=

ffiffiffi
2

p g. This leads to the work probability distributions
P ± ðWÞ, which illustrates the role played by the interference term.
In the limit of a rapid quench (ω≪Ω) (and hence of a large degree
of irreversibility), the distributions are presented in Fig. 4 (yellow and
blue bars), together with the one corresponding to a classical mixture
of the forward and time-reversal processes (turquoise bars), where
here PðWÞ ¼ ~Pð�WÞ. While the classical mixture displays large
fluctuations in the work probability distributions, the contribution of
the interference term in P ± ðWÞ can sharpen [PþðWÞ] or flatten
[P�ðWÞ] the coherent work distribution, effectively increasing or
decreasing the degree of reversibility, respectively. Specifically, the
probability that the process will occur in a reversible fashion (i.e., that
W= 0) is higher for P+(W= 0) [lower for P−(W= 0)] than for a
classical mixture (see the “Case study: a spin-12 system” subsection in
“Methods”). In this example, reversibility and adiabaticity coincide,
being both reached for slow modulations. In the post-selected case,
we can obtain a probability distribution PþðWÞ corresponding to
that of a slower realisation of the quench. In this sense, through our
protocol, one can achieve a net “speed-up” of the realisation of an
adiabatic quench.

Discussion
Viewed in isolation, a thermodynamic system coupled to a
reservoir undergoes a dynamic which is generally non-unitary,

Fig. 3 Two-point measurement scheme in the forward process for our
spin-12 system. A spin-12 particle in the thermal state of the initial
Hamiltonian is measured in its eigenbasis f z±

�� �g at time t= 0. After the
action of the quench described by the time-dependent Hamiltonian in Eq.
(25), it is measured in the eigenbasis f x±

�� �g of the final Hamiltonian at time
t= τ. Depending on the measured states at the two times, the
thermodynamic quench causes an energy change ΔE= 0, ± ℏω, with ω
being the spin’s natural frequency, and ℏ the reduced Planck constant.
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even though the joint state of the system and the environment
evolves in a unitary, reversible fashion. Depending on whether
this dynamics favours events involving a positive or a negative
change in the total entropy, it is possible to establish the temporal
direction of the quench to which the system has been subjected
to, that is, the time’s arrow is aligned along the direction where
the total entropy increases. (Notice that, under our sign con-
vention, this means that the time’s arrow matches a positive
entropy change in the case of the forward process, and a negative
entropy change for the time-reversal process.) However, it can be
expected that, under some circumstances, the joint state of the
system and the environment may as well evolve in an arbitrary
superposition of the two, whereby the direction of evolution is
controlled by a further quantum system. We note that this
superposition of thermodynamic processes does evolve according
to an external dynamical time (e.g., the time as shown by the
laboratory clock). However, from a quantum-mechanical per-
spective, there is a priori no preferential thermodynamic time’s
arrow (i.e., the forward protocol Λ and the time-reversal one ~Λ
occur in a quantum superposition), and this peculiarity is what
this work has explored. In particular, the core questions behind
this work are (i) how a definite (thermodynamic) arrow of time
can emerge in such a picture, and (ii) what the signature of
quantum interference among the forward-in-time and backward-
in-time thermodynamic processes is.

We showed that the coherence between the two temporal
directions is effectively lost when the entropy production in the
process is measured: the observation of a large increase (decrease)
of dissipative work effectively projects the system in the forward
(time-reversal) temporal direction. It is conceivable to imagine
that such a projection could also result from the interaction of the
system with the environment, which decoheres the system in a
well-defined thermodynamic time’s arrow. Furthermore, when
considering the total-entropy production in our process, one
could consider adding the contribution arising from the irrever-
sibility of the measurement itself. In Supplementary Note 3, we
clarify that the entropy production linked to such a measurement,
however, does not contribute to the definition of the orientation
of the time’s axis associated to the quantum superposition of
forward and time-reversal processes.

Finally, for small values of the observed dissipative work (of the
order of β−1), the system and the auxiliary state may display

interference effects. This aspect bears important implications,
insofar as, by measuring the state of the control, the system can
exhibit a work (entropy-production) distribution which is clas-
sically impossible with the protocols at hand. This feature can be
best observed when both the forward and the time-reversal
processes are, to a high degree, irreversible (i.e., the probability of
zero entropy production is low). In this case, indeed, the quantum
superposition between the two irreversible processes can result in
a dynamics that is no longer such (i.e., the above probability can
be significantly increased due to constructive interference). For-
mally, this means that when the distribution of the work P ± ðWÞ
is affected by interference effects, this can result in a probability
distribution radically different from any classic mixture of PðWÞ
and ~Pð�WÞ. As a consequence, P ± ðWÞ does not generally satisfy
the fluctuation theorem (21). This is not extremely surprising
given that the process generating P ± ðWÞ does not verify the
requirements needed for the work fluctuation theorems. In par-
ticular, the initial state in Eq. (3) is not a thermal state neither of
the system alone, nor of the system together with the control, and
the work performed is defined differently in the two quenches of
the superposition. Nevertheless, this violation has a crucial
implication: it entails that the distribution P ± ðWÞ cannot be
generated by any thermodynamic process starting in equilibrium
with the environment, and being subsequently driven out of it by
means of any given protocol Λ. Consequently, our procedure
provides a recipe to generate thermodynamic processes with a
work probability distribution that cannot be reproduced within
the standard framework of fluctuation theorems.

Methods
Fluctuation theorems and the thermodynamic time’s arrow. The link between
work fluctuations and the thermodynamic time’s arrow can be illustrated in terms
of a “guessing the time directionality game” which was introduced by Jarzynski37.
There, the author supposes to record the motion of a non-equilibrium thermo-
dynamic process, and then to toss a coin. Depending on the outcome of the coin,
he either plays the movie in the order in which it took place, or in the time-reversal
one. In order to determine in which order the movie is being shown, the optimal
guessing strategy for a macroscopic system follows from the second law of ther-
modynamics: if 〈W〉 > ΔF, the movie proceeds in the correct order, while if
〈W〉 < ΔF, the movie is being run backwards. Here, 〈W〉 is the average work
performed on the system by the external driving mechanism, and ΔF the difference
in free energies of the thermodynamic states at the beginning and at the end of the
movie. Conversely, for a microscopic system, the optimal guessing strategy exploits
the so-called “fluctuation theorems”13,38–40, together with Bayesian probabilistic
reasoning41,42. We review this study briefly in Supplementary Note 4.

In one of its most famous versions43–46, the fluctuation theorem describes the
fluctuations of the dissipative work Wdiss associated to the observation of a
particular value of W in a single realisation of a non-equilibrium driving protocol
(i.e., a single shot of the movie):

PðþWÞ
~Pð�WÞ ¼ eβWdiss ; ð21Þ

where P(+W) represents the probability that a work W is invested along the
forward thermodynamic evolution, whereas ~Pð�WÞ is the probability linked to
recovering the same amount of work along the time-reversal evolution, both of
which start in equilibrium with a thermal bath. From this equation, it follows that
both the probability of total-entropy-decreasing events (βWdiss < 0) in the forward
evolution, and that of total-entropy-increasing ones (βWdiss > 0) using the time-
reversal dynamics vanish exponentially with the size of the total-entropy variation:

PðβWdiss<� ξÞ≤ e�ξ ; ð22aÞ

~PðβWdiss>þ ξÞ≤ e�ξ ; ð22bÞ
for any ξ ≥ 0, and where the second inequality (22b) arises from the fact that, in the
time-reversal process, the dissipative work equals−Wdiss. In other words, large
reductions in the total entropy are unlikely in the forward evolution, while events
leading to a large entropy production are unlikely in the time-reversal one. (Notice
that the sign of the entropy change is defined to match that of the dissipative work
in the forward process.) On the other hand, it is evidenced that, when βWdiss is of
the order of one, it is inherently impossible to tell in which of the two orders the
process has occurred. In this region, the directionality of time flow cannot be

Fig. 4 Work probability distribution for a spin-1/2 system in a
superposition of forward and time-reversal processes. The coherent work
probabilities P ± ðWÞ and the work probabilities of a classical mixture
PðWÞ þ ~Pð�WÞ� �

=2 are compared in the limit of the rapid quench ω≪Ω
for φ= π. The results are temperature-independent.
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inferred, and the time’s arrow is, so to say, blurred. A clear temporal directionality
is then reestablished for β∣Wdiss∣ ≫ 1.

We remark that, here, “forward” and “time-reversal” are interchangeable labels
since each process represents the time-inverted version of the other. Moreover, it is
worth noticing that considerations on time-inversion only take on relevance in the
absence of complete time-symmetry, as this latter may lead to ΔStot equal to zero in
every single realisation. In order to exhibit time-asymmetry, in the present study
the two conjugated processes are assumed to start from equilibrium states, a
standard procedure in the derivation of fluctuations theorems13,39. This introduces
a final (implicit) thermalisation step which enables irreversibility to emerge11,47,48.

Case study: a spin-12 system. In this section, we detail on the interference effects
between forward and time-reversal thermodynamic evolution of a spin-12 system. To this
end, we further develop the general expression of Eq. (16). Specifically, we project the
auxiliary system onto the diagonal basis ξj iA ¼ ±j iA ¼ ð 0j iA ± 1j iAÞ=

ffiffiffi
2

p� �
. This

leads to the joint state of the system and the environment
jΨ±

n;miS;E;A � ð1S;E � j± ih± jAÞ 	Mn;mjΨ0iS;E;A.
The corresponding post-selected work probability distribution, conditioned on

the projection of the auxiliary system onto ±j iA, reads:

P ± ðWÞ ¼ q ±
0 PðWÞ þ q±

1
~Pð�WÞ þ 2 Re I ± ðWÞ� �

; ð23Þ

where the interference term I±(W) is given by Eq. (17) with h0j± iA ¼ 1=
ffiffiffi
2

p
and

h± j1iA ¼ ± 1=
ffiffiffi
2

p
. We recall that the states Θ Eð0Þ

n

�� �
in the above expressions are

the eigenstates of the Hamiltonian ΘH½λð0Þ�Θy ¼ H½~λð0Þ�. Moreover, we notice
that the distribution P ± ðWÞ in Eq. (23) differs by the term I±(W) ≠ 0 from what
one would have obtained by applying the extended TPM scheme to a (classical)
convex mixture jα0j2 0j i 0h jA � ρth0 þ jα1j2 1j i 1h jA � ~ρ th

0 of the initial states.
For the outcome W= 0, the interference term in Eq. (17) can be simplified

when ΔF= 0, and the sets of eigenvalues of the initial and final Hamiltonians
coincide, i.e., Eð0Þ

n ¼ EðτÞ
n . In that case:

I ± ðW ¼ 0Þ ¼ ±
α�0α1
2 PðξÞ ∑n pn;n e�2iΦn;n hεð0Þn jεðτÞn i EðτÞ

n

� ��Θ Eð0Þ
n

�� �
: ð24Þ

As a result, it emerges that the interference effects can increase (decrease) the
probability of observing the work value W= 0. This yields to a work probability
distribution P ± ðWÞ analogous to the one potentially generated by a more
reversible (irreversible) process than the forward and time-reversal processes
themselves, or any classical mixture therefrom. We remark that the interference
term I±(W) may show non-zero values for W ≠ 0 in general, as we will see below.

We conclude by evaluating Eq. (23) in the concrete example of a spin-12 system
introduced in the “Interference effects in the work distribution” subsection in the
Results. We consider a spin system with natural frequency ω in a magnetic field

λ
!ðtÞ whose direction is rotating within the x− z plane at a constant angular
velocity around the y axis:

H λ
!ðtÞ
h i

¼ _ω

2
1þ λ

!ðtÞ � σ!
h i

¼ _ω

2
1þ cos Ωtð Þ σz þ sin Ωtð Þ σx

 


;

ð25Þ

where λ
!

tð Þ ¼ λ0 sin Ωtð Þ; 0; λ0 cos Ωtð Þ� �
and λ0= 1 is the dimensionless

magnetic field, and where the protocol reads Λ ¼ f λ!ðtÞ ; 0≤ t ≤ π=ð2ΩÞg. We

notice that ΘH λ
!ðtÞ
h i

Θy ¼ H½� λ
!ðtÞ�, implying that the time-reversal of the

control parameter corresponds to a flip of the magnetic field. At the initial and final
times of the protocol, the Hamiltonian is diagonal in the z ±

�� �� �
and x ±

�� �� �
bases, respectively. Therefore, Eð0Þ

n

�� � ¼ f z ±

�� �
S
g, with corresponding eigenvalues

Eð0Þ
n ¼ f0; _ωg, and EðτÞ

m

�� � ¼ f x ±

�� �
S
¼ 1ffiffi

2
p z�

�� �
S
± zþ
�� �

S

� 	
g, with eigenvalues

EðτÞ
m ¼ f0; _ωg (we shifted the lower energy level by ℏω/2 to avoid negative energy

eigenvalues). As a result, F0 ¼ Fτ ¼ �log 1þ e�β_ω
� �

and Wn,m= {ℏω, 0,− ℏω}.
In the frame rotating around the y axis at frequency Ω, the Hamiltonian

becomes time-independent, and the unitary governing the evolution can be
obtained straightforwardly. Turning back to the Schrödinger picture, the applied
unitary U(t, 0) reads:

Uðt; 0Þ ¼ e�
i
2Ωσy t e�

i
2½ωð1þσz Þ�Ωσy �t : ð26Þ

This is used below to compute the work distribution.

Effect of interference on reversibility. In this subsection, we will represent the
environment as a spin-12 system which is left unaffected during the quench. For
instance, we can assume that the purification of the thermal states in Eq. (2a)–2b

read

ψ0

�� �
S;E

¼
ffiffiffiffiffi
1
Z0

s
z�
�� �

S
z�
�� �

E
þ

ffiffiffiffiffiffiffiffiffiffiffi
e�β_ω

Z0

s
zþ
�� �

S
zþ
�� �

E
; ð27aÞ

~ψ0

�� �
S;E

¼
ffiffiffiffiffi
1
Z0

s
x�
�� �

S
z�
�� �

E
þ

ffiffiffiffiffiffiffiffiffiffiffi
e�β_ω

Z0

s
xþ
�� �

S
zþ
�� �

E
: ð27bÞ

Furthermore, we will assume to begin the protocol in the state in Eq. (3) with
α0 ¼ 1=

ffiffiffi
2

p
, α1 ¼ e�iφ=

ffiffiffi
2

p
, with φ being a controllable phase between the forward

and the time-reversal processes.
Next, we compute P ± ðWÞ:

P ± ðW ¼ 0Þ ¼ 1
2Pð± Þ p0;0 þ p1;1

� 	
� 1

2
ffiffiffi
2

p Pð± Þ p0;0 cos 2Φ0;0 þ φ
� 	

þ p1;1 cos 2Φ1;1 þ φ
� 	h i

;

ð28Þ
where we used the fact that hEðτÞ

n jΘjEð0Þ
n i ¼ �1=

ffiffiffi
2

p
for all n, whereas

hεð0Þn jεðτÞn iE ¼ 1, and where the marginal probability of the auxiliary system reads

Pð± Þ ¼ 1
2 ±

1
2
ffiffi
2

p p0;0 cos 2Φ0;0 þ φ
� 	

þ p1;1 cos 2Φ1;1 þ φ
� 	h i

, with

p0;0 ¼
hx�jUðτ;0Þjz�ij j2

1þe�β_ω , eiΦ0;0 ¼ hx�j Uðτ;0Þjz�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx�j Uðτ;0Þjz�ij jp , and p1;1 ¼

hxþjUðτ;0Þjzþij j2
1þe�β_ω e�β_ω,

eiΦ1;1 ¼ hxþj Uðτ;0Þjzþiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxþj Uðτ;0Þjzþij jp . (To evaluate hEðτÞ

n jΘjEð0Þ
n iS, we made use of the fact that the

time-reversal operator Θ for a spin-12 system acts as Θ= iσyK, where K is the
complex conjugation operator. Thus, Θjz ± i ¼ �jz�i). From this result, we deduce
that it is possible to observe interference between thermodynamic processes
occurring in the forward and time-reversal temporal directions. Following the same
procedure for the cases W= ± ℏω, we get

P ± ðW ¼ _ωÞ ¼ p0;1
4Pð± Þ 1þ e�β_ω

� �
; ð29aÞ

P ± ðW ¼ �_ωÞ ¼ p1;0
4Pð± Þ 1þ eβ_ω

� �
; ð29bÞ

which do not feature interference. In the last expressions, p0;1 ¼
hxþjUðτ;0Þjz�ij j2

1þe�β_ω ,

eiΦ0;1 ¼ hxþj Uðτ;0Þjz�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hxþj Uðτ;0Þjz�ij jp , and p1;0 ¼

hx�jUðτ;0Þjzþij j2
1þe�β_ω e�β_ω, eiΦ1;0 ¼ hx�j Uðτ;0Þjzþiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx�j Uðτ;0Þjzþij jp .

We illustrate the probability distribution in Eq. (28)–(29) in Fig. 4.

Interference terms for varying ±ℏω. In the previous case study, we represented the
environment as a spin-12 system which is left unmodified by the thermodynamic
quench. This caused the cancellation of all interference terms in P ± ðW ¼ ± _ωÞ. In
this subsection, on the contrary, we suppose that the environment undergoes a
spin-flip during the quench:

ψ0

�� �
S;E

¼
ffiffiffiffiffi
1
Z0

s
z�
�� �

S
z�
�� �

E
þ

ffiffiffiffiffiffiffiffiffiffiffi
e�β_ω

Z0

s
zþ
�� �

S
zþ
�� �

E
; ð30aÞ

~ψ0

�� �
S;E

¼
ffiffiffiffiffi
1
Z0

s
x�
�� �

S
zþ
�� �

E
þ

ffiffiffiffiffiffiffiffiffiffiffi
e�β_ω

Z0

s
xþ
�� �

S
z�
�� �

E
: ð30bÞ

This change results in hεð0Þn jεðτÞm iE ¼ 0, for n=m. For the sake of simplicity, below
we will also set φ= π. The three probabilities discussed in the previous section
become therefore:

P ± ðW ¼ 0Þ ¼ 1
2Pð± Þ p0;0 þ p1;1

� 	
;

P ± ðW ¼ _ωÞ ¼ p0;1
4Pð± Þ 1þ e�β_ω ±

ffiffiffi
2

p
e�

β_ω
2 cos 2Φ0;1

� 	h i
;

P ± ðW ¼ �_ωÞ ¼ p1;0
4Pð± Þ 1þ eβ_ω �

ffiffiffi
2

p
e
β_ω
2 cos 2Φ1;0

� 	h i
;

ð31Þ

where the marginal probability of the auxiliary system is now

Pð± Þ ¼ 1
2 ±

1
2
ffiffi
2

p p0;1 e�
β_ω
2 cosð2Φ0;1Þ � p1;0 e

β_ω
2 cosð2Φ1;0Þ

h i
, and where p0,0, Φ0,0,

p1,1, and Φ1,1 are the same as in case study “Effect of interference on reversibility”.
In Fig. 5, we show the work probability distributions for varying ℏω. For work

values ℏω smaller than, or of the order of β−1, we observe strong interference effect,
as shown by the difference between PþðW ¼ _ωÞ and P�ðW ¼ _ωÞ. For work
values ℏω≫ β−1, this difference vanishes, and the probability PðW ¼ _ωÞ :¼
PþðW ¼ _ωÞ þ P�ðW ¼ _ωÞ to obtain the work value ℏω tends to the probability
p0,1 of first projecting the auxiliary system onto the forward direction, and then
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obtaining the work value ℏω. This trend shows that the observation of large work
values effectively projects the system into a well-defined temporal direction.

Data availability
All data needed to evaluate the conclusions of the paper are present in the paper and/or
the Supplementary Information. Additional data related to this paper will be made
available from the authors upon reasonable request.
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