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Appendix A
Time-Reversal Symmetry

The reversal in time of a state |ψ〉 changes it into a state |ψ′〉 that develops in
accordance with the opposite sense of progression of time. For the new state
the signs of all linear and angular momenta are reversed but other quantities
are unchanged. Time reversal is effected by a time-independent operator T :

T|ψ〉 = |ψ′〉 .

Time-reversal invariance means that if |ψi〉 is an energy eigenstate:

H|ψi〉 = Ei|ψi〉 ,

so also |ψ′〉 is an eigenstate of H with eigenvalue Ei.
Consider now a pair of evolution operations that we can perform on |ψi〉

that are expected to lead to the same physical state. In case A we allow the
state to propagate to time t and then let t → −t. In case B we reverse time at
t = 0 and then allow the reversed state to propagate with the opposite sense
of progression of time, that is, to time −t.

In operation A we allow the state |ψi〉 to first evolve forward in time:

e−iHt/h̄|ψi〉 = e−iEit/h̄|ψi〉 (A.1)

and then we apply the time-reversal operator:

T e−iEit/h̄|ψi〉 = |ψi〉A . (A.2)

For operation B, we first apply T and then let the system evolve backward in
time:

eiEit/h̄T|ψi〉 = |ψi〉B . (A.3)

We require that these operations prepare the system in the same quantum
state:

|ψi〉A = |ψi〉B , (A.4)

so:

Te−iEit/h̄|ψi〉 = eiEit/h̄T|ψi〉 . (A.5)
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We see from this relation that T is not a linear operator. The time-reversal
operator is: antilinear

T(a1|ψ1〉+ a2|ψ2〉) = a∗1 T|ψ1〉 + a∗2T|ψ2〉 . (A.6)

Suppose we construct a complete and orthonormal set of energy eigenstates
|n〉,

H|n〉 = En|n〉 (A.7)

〈m|n〉 = δm,n (A.8)

∑
n
|n〉〈n| = 1 (A.9)

and we assume that these states remain orthonormal after time reversal:

|n′〉 = T|n〉 (A.10)

〈m′|n′〉 = δm,n . (A.11)

We can then expand two states |ψ〉 and |φ〉 as:

|ψ〉 = ∑
n
|n〉〈n|ψ〉 , (A.12)

and:

|φ〉 = ∑
n
|n〉〈n|φ〉 . (A.13)

When we apply T to Eq. (A.12) we obtain:

|ψ′〉 = T|ψ〉 = ∑
n
〈n|ψ〉∗ T|n〉

= ∑
n
〈ψ|n〉T|n〉 = ∑

n
〈ψ|n〉|n′〉 . (A.14)

Similarly:

|φ′〉 = T|φ〉 = ∑
m
〈φ|m〉|m′〉 . (A.15)

Taking the inner product:

〈φ′|ψ′〉 = ∑
m,n

〈m|φ〉〈m′|n′〉〈ψ|n〉
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= ∑
m,n

〈m|φ〉δm,n〈ψ|n〉

= ∑
n
〈ψ|n〉〈n|φ〉

〈φ′|ψ′〉 = 〈ψ|φ〉 . (A.16)

The two properties:

T(a1|ψ1〉 + a2|ψ2〉) = a∗1T|ψ1〉 + a∗2 T|ψ2〉 (A.17)

〈φ′|ψ′〉 = 〈ψ|φ〉 = 〈φ|ψ〉∗ , (A.18)

where |ψ′〉 = T|ψ〉, |φ′〉 = T|φ〉, specify that T is an antiunitary operator.
We can also derive the appropriate transformation law for matrix elements

of operators. Consider the states |α〉 and |β〉 = B̂|μ〉, where B̂ is some operator.
We have in general from Eq. (A.18) that:

〈α|β〉 = 〈β′|α′〉 , (A.19)

where:

|α′〉 = T|α〉 (A.20)

and:

|β′〉 = TB̂|μ〉
= TB̂T−1T|μ〉
= B̂′|μ′〉 , (A.21)

where we see that operators transform as B̂′ = TB̂T−1. We have then the
relationship between matrix elements:

〈α|β〉 = 〈α|B|μ〉
= 〈μ′|(B′)†|α′〉
= 〈μ′|(TBT−1)†|α′〉 . (A.22)

If we look at an average of an operator Â over some probability operator, ρ̂,

〈Â〉 = Trρ̂Â , (A.23)

then we can write:

〈Â〉 = ∑
i
〈i|ρ̂Â|i〉 . (A.24)
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Using Eq. (A.22) for the matrix element gives:

〈Â〉 = ∑
i
〈i′|(Tρ̂ÂT−1)†|i′〉 , (A.25)

where |i′〉 = T|i〉. Since the set |i′〉 is also complete,

〈Â〉 = Tr (Tρ̂T−1TÂT−1)† . (A.26)

If the probability operator is invariant under time reversal:

Tρ̂T−1 = ρ̂ , (A.27)

we have:

〈Â〉 = Tr (ρ̂TÂT−1)† . (A.28)

For two operators Â and B̂,
(

ÂB̂
)† = B̂† Â†, and:

〈Â〉 = Tr (TÂT−1)†ρ̂† . (A.29)

Since the probability operator is hermitian, ρ̂† = ρ̂, we can use the cyclic
invariance of the trace to obtain the invariance principle:

〈Â〉 =
〈(

TÂT−1
)†
〉

. (A.30)

We can build up the properties of various quantities under time reversal
using the fundamental relations: if p is a momentum operator,

Tp(t)T−1 = −p(−t) , (A.31)

while if x is a position operator:

Tx(t)T−1 = x(−t) . (A.32)

Clearly, from this one has, if L is an angular momentum operator:

TL(t)T−1 = −L(−t) (A.33)

We see then that Hamiltonians that depend on p2 and x are time-reversal
invariant:

THT−1 = H . (A.34)

Consider Maxwell’s equations, :

∇ · E = 4πρe (A.35)
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c∇× B =
∂E
∂t

+ J , (A.36)

where ρe is the electric charge density and J is the charge-current density. Since
ρe is even under time reversal and J is odd under time reversal, the electric and
magnetic fields transform as:

TE(x, t)T−1 = E(x,−t) (A.37)

while:

TB(x, t)T−1 = −B(x,−t) . (A.38)

Observables A(x, t) typically have a definite signature εA under time reversal:

A′(x, t) = TA(x, t)T−1 = εA A(x,−t) , (A.39)

where ε = +1 for positions, electric fields, and ε = −1 for momenta, magnetic
fields and angular momenta.




