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Abstract

The equation for canonical gravity produced by Wheeler and De-
Witt in the late 1960s still appears to present insurmountable issues
both in terms of matematrhical solutions and physical insight, one be-
ing the explicit absence of time. In this short note we introduce one
possible way to make time appear again in this equation by going back
to the classical equation that inspired Wheeler and DeWitt, namely the
Hamilton-Jacobi-Einstein equation, and introduce a classically mean-
ingful geometrodynamical notion of time before quantization. While
straightforward solutions could not be found, we provide a simpler
version of the equation that applies to the minisuperspace DeSitter
universe of interest to quantum cosmology.

1 Introduction

One traditional avenue open to the quantization of gravity is that
of geometrodynamics, represented by the infamous Wheeler-DeWitt
(WDW) equation [1, 2, 3]. Expected to describe the quantum evolution
of spatial geometry, its solution and interpretation is a long-standing
problem. Inherent mathematical problems are in particular the indef-
initeness of the DeWitt metric (the metric of the configuration space
of the theory, also called superspace, as it is the space inhabited by
all possible spatial geometries at all points of space, up to diffeomor-
phism) and the divergence due to the presence of a double functional
derivative, to which adds the unspecified ordering of the operators.

All these technical problems occur in the ”kinetic term,” i.e. the
term that we would expect to play such role if the analogy with the
standard Schrodinger equation held. There are reasons, however, to
consider this analogy not all too useful; for one, when it is interpreted
as a Schroedinger equation for gravity, the WDW equation appears to
be describing a stationary state. The difficulty in understanding how
time evolution may formally emerge from the equation has tradition-
ally been referred to as the problem of time. The absence itself of time
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from the equation is a consequence of the fact that the Hamiltonian
constraint, of which the WDW equation is the quantization, specif-
ically enforces the time diffeomorphism of General Relativity. When
we observe the Hamilton-Jacobi-Einstein (HJE) equation developed by
Peres [4], equivalent to the 00 component of the Einstein field equa-
tions in the Hamilton-Jacobi formalism, it is clear that also in that case
time is absent where it would have been expected to be, even though
the theory is classical. As the Hamilton-Jacobi-Einstein equation does
not describe a timeless geometry, the true problem is not that time
evolution has vanished in the quantum case, but how time evolution
can be extracted as we do in the classical case.

Study of the problem of time in quantum gravity has been exten-
sive (see [5] for a thorough review), with diverse attempts at recovering
time, either at the classical or the quantum level. In the semiclassical
limit of the WDW equation, it has been shown that when we include
quantum matter fields in the picture, the standard Schroedinger equa-
tion for these fields can be recovered by expanding the wave functional
in inverse squares of the Planck mass. The operation has analogies
with the WKB and Born-Oppenheimer approximations [6, 7]. In order
to retrieve the standard time evolution, one defines a functional time
τ = τ [x].

It is not clear, however, what becomes of this time beyond the
semiclassical level, when gravity does not act as a stage for matter
fields but rather partakes in the quantum dance. One may observe that
functional time can be applied to the aforementioned HJE equation
which describes the pure energetic component of gravity, and make
classical time explicit while still describing the spatial geometry of
General Relativity. One then recalls that this equation was the starting
point of Wheeler and DeWitt.

One day in 1965, JohnWheeler had a two hours stopover
between flights at the Raleigh-Durham airport in North
Carolina. He called Bryce DeWitt, then at the University of
North Carolina in Chapel Hill, proposing to meet at the air-
port during the wait. Bryce showed up with the Hamilton-
Jacobi equation of general relativity, published by Asher
Peres shortly earlier [...] Bryce mumbled the idea of repeat-
ing what Schroedinger did for the hydrogen atom: getting a
wave equation by replacing the square of derivatives with (
i times) a second derivative—a manner for undoing the op-
tical approximation. [...] Wheeler got tremendously excited
(he was often enthusiastic) and declared on the spot that
the equation for quantum gravity had been found. [8, 9]

In this short note, we consider the following question: what if De-
Witt had presented Wheeler with the HJE equation where functional
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time was made explicit rather than not? The resulting equation not
only presents a notion of time (the viability for quantum gravity will
still have to be assessed), albeit a functional one, but altogether elimi-
nates the troublesome kinetic term from the WDW equation. Further-
more, by construction it still reduces to the functional Schroedinger
equation in the semiclassical limit.

In section 2, we briefly review the definition of functional time.
In section 3, we apply the definition of functional time to the HJE
equation and quantize it. In particular, in subsection 3.1, we see how
the equation simplifies in the minisupersapce of the DeSitter universe.

2 Definition of Functional Time

Let us start from the Wheeler-deWitt equation in the form

∫

d3x

[

− 1

2M

(

GAB
δ

δhA

δ

δhB

)

+MV(hA) +Hφ(hA, φ)

]

Ψ[hA, φ] = 0 .

(1)
Here the capital indeces are pairs of the indeces, A = {ij}, i, j ∈

(1, 2, 3), of the spatial metric hij = gµν , µ, ν ∈ {1, 2, 3}, and GAB
(symmetric in these indices) is the DeWitt metric

GAB = Gijkl =
1

2
√
h
(hikhjl + hilhjk − hijhkl) . (2)

The physical scale (we have set ~ = c = 1) of quantum gravity is
fixed by the geometrodynamical mass M , which is proportional to the
square of the Planck mass mP

M = (mP /2)
2 , mP = (8πG)

−1/2
. (3)

The geometrodynamical potential density V is

V = −2
√
h(R− 2Λ) , (4)

h and R being the determinant and the Ricci scalar of the spatial
metric, respectively. The Hamiltonian density operator Hφ is taken to
describe bosonic matter. We ignore the operator ordering problem in
the geometrodynamical ”kinetic” operator.

In the Born-Oppenheimer approximation, one makes the ansatz

Ψ[hA, φ] = χ[hA]ψ[φ;hA] (5)

and considers an expansion in inverse powers of M [6, 7]. The
wave functionals χ and ψ describe the ”heavy” (i.e., the spatial metric
components) and ”light” degrees of freedom (i.e., matter), respectively.
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(Notice that ψ depends on the geometry only parametrically.) One
substitutes the expansion

Ψ[hA, φ] = exp
(

iM
∑

M−nSn[hA, φ]
)

(6)

in the WDW equation and equates contributions to equal powers
of M .

To order M2, one has S0 = S0[hA], i.e. the leading contribution is
purely geometrodynamical.

To order M1, one has the Hamilton-Jacobi-Einstein equation in
vacuum

∫

d3x

[

1

2
GAB

δS0

δhA

δS0

δhB
+ V

]

= 0 . (7)

To order M0, one obtains the functional Schroedinger equation for
matter

∫

d3x

[

i
δ

δτ
−Hφ

]

ψ[φ;hA] = 0 (8)

upon requiring conservation of the current associated with χ and
implicitly defining WKB time via the derivative operator

δ

δτ [x]
:= GAB

δS0

δhA

δ

δhB
. (9)

The definition of WKB time (9) is adopted in order to obtain the
functional Schroedinger equation. However, it is a sensible definition,
in that it is analogous to the material derivative in the absence of
explicit dependency on time

d

dt
= u · ∇ , (10)

u being the velocity field (see [10]). Although we are not con-
cerned at this level to explicitly select a foliation of Cauchy hypersur-
faces by choosing τ(x), notice that from (9) follows that necessarily
hij = hij [τ(x)]. With this definition, the functional time derivative
indeed becomes equivalent to the partial derivative when applied to
the matter wave functional ψ[φ(x);hA(τ(x))], as it acts only on the
time-dependency due to the background metric and not on the matter
field itself.

3 WDW Equation

We can apply the newly acquired definition of time to rewrite the HJE
equation (7) as
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∫

d3x

[

1

2N

δS0

δτ
+ V

]

= 0 . (11)

Using this form of the HJE equation we therefore attempt quanti-
zation along the lines of Schroedinger, Wheeler, and DeWitt, and thus
obtain

∫

d3x
i

2N

δ

δτ
Ψ[hij, φ] =

∫

d3x [MV(hij) +Hφ(hij , φ)] Ψ[hij , φ] .

(12)
Taking into account the operator ordering problem, which we have

neglected, would only contribute to the multiplying factor of the ge-
ometrodynamical momentum. In the WDW equation obtained by this
quantization, the second order functional derivatives with respect to
the spatial metric components are exchanged for a first order func-
tional time derivative. One crucial point in the passage from classical
to quantum is that, as we mentioned, the spatial metric is to be seen as
a function of time τ(x), and not vice versa, as imposing the definition
of τ might induce to think. Therefore, there should be no worries in
promoting the spatial components of the metric to operators, and in
treating τ(x) as a general functional definition of time that survives
the passage from classical to quantum.

3.1 DeSitter Universe

While the absence of the second order functional derivative operator in
(12) casts the WDW equation in a form that seems much better to deal
with, a general solution far from being easily obtainable. Formally it
is an equation at least as hard to handle as the Tomonaga-Schwinger
equation [12]. We will not attempt a general solution or a physical
interpretation of τ(x) in the general quantum case. In this section we
will just show how the equation can be further simplified by consider-
ing a minisuperspace model. We will constrain ourselves the vacuum
DeSitter universe, with line element

ds2 = dt2 − a(t)2δijdx
idxj . (13)

In this model we take the square root of the determinant of the
spatial metric, γ :=

√
h = a3, as the only effective dynamical variable.

The minisuperspace metric with respect to the variable γ is

G11 = −3

8
γ . (14)

Integrating through the spatial volume (which we set to unity), the
HJE equation reads
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3

16
γ

(

δS0

δγ

)2

= 4Λγ → S0 = −8
√

Λ/3

∫

γdt . (15)

The negative sign solution corresponding to the forward time di-
rection. We obtain in fact that the definition of functional time gives

δγ

δτ
= −3

8
γ
δS0

δγ
=

√
3Λγ , (16)

for any position on the spatial hypersurface. (This can also be
equivalently obtained from the condition (??).) The relation (16) runs
parallel to

dγ

dt
=

√
3Λγ , (17)

which is satisfied by the classical solution γ(t) = a(t)3 = exp (3Ht),
where H =

√

Λ/3 is the Hubble parameter for the DeSitter universe.
While t is coordinate time, however, τ is to be treated as a function,
albeit a spatially constant one. Observe, in particular, that the pres-
ence of the square root in (16) is consistent with the new form of the
HJE equation (11): treating time τ as a functional, the differentiation
of the action correctly gives

S0[γ[τ + δτ ]] = −8

∫

H γ[τ + δτ ]dt

= −8

∫

H (exp(3Hτ)(1 + 3Hδτ + . . . )) dt

→ δS0

δτ
= −24H2γ = −8Λγ = −2V .

(18)

Upon quantization, the Wheeler-deWitt equation (12) in this min-
isuperspace simplifies to

i
δ

δτ
Ψ[γ(τ)] = 8MΛγΨ[γ(τ)] . (19)

Although the (bounded) ”Hamiltonian” acts as a multiplicative op-
erator, and as such admits dirac distributions as eigenfunctions (with a
γ-dependent prefactor to ensure normalization with respect to the mea-
sure

√
−G11) general time-dependent solutions to (19) are not straight-

forward, as we cannot treat τ as a simple scalar and the functional
derivative as an ordinary derivative.
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4 Discussion and Conclusions

Following DeWitt’s intuition, but starting from a HJE equation, (11),
rewritten so as to show the presence of a classically meaningul time,
we have rewriteen the WDW equation in a way, (12), that makes time
explicit in functional form while also eliminating, at least apparently,
the problems associated with the kinetic term. Nevertheless, and as we
could expect, simple analytical solutions are not at hand. The equa-
tion is in form analogous the Tomonaga-Schwinger equation, which
presents its own problems, both mathematical and interpretative in
nature [13]. In the minisuperspace DeSitter model the equation re-
duces to a particularly simple expression, (19), that presents, however,
the same difficulties. Due to its simplicity and its cosmological interest,
the DeSitter universe minisuperspace might provide the best setting to
try and solve these difficulties.
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