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We examine closed timelike curves (CTCs) and “effective” superluminal travel in a spacetime
containing naked line singularities, which we call “wires”. Each wire may be straight-line singularity
or a ring singularity. The Weak Energy Condition (WEC) is preserved in all well-defined regions of
the spacetime. (The singularities themselves are not well-defined, so the WEC is undefined there,
but it is never explicitly violated.) Parallel to the wire, “effective” superluminal travel is possible,
in that the wire may be used as a shortcut between distant regions of spacetime. Our purpose in
presenting the superluminal aspects of the wire is to dispel the commonly held view that explicit
WEC violation is necessary for effective superluminal travel, whereas in truth the strictures against
superluminal travel are more complicated. We also demonstrate how the existence of such “wires”
could create CTCs. We present a model spacetime which contains two wires which are free to move
relative to each other. This spacetime is asymptotically flat: It becomes a Minkowski spacetime a
finite distance away from each of the wires. The CTCs under investigation do not need to enter
the wires’ singularities, and can be confined to regions that are weak-field: This means that if
these wires were physically possible, they would present causality problems even in nonsingular,
energetically realistic regions of the spacetime. We conclude that the Weak Energy Condition alone
is not sufficient to prevent superluminal travel in asymptotically flat spacetimes.

I. INTRODUCTION

Background. General relativity has a ‘time machine’
problem: Namely, it cannot rule out the possibility of cre-
ating time machines. It has been known for many decades
that general relativity (GR) allows for spacetimes where
time travel is possible [1]. Spacetimes which allow for
time travel contain paths which loop back on themselves
in time: By following such a path, an observer could
return to his own past. These looped paths are more
properly known as Closed Timelike Curves (CTCs). For
an overview of CTC solutions, see writings by Lobo [2]
or Thorne [3].

Time machines are problematic, both logically and
theoretically. Logical objections to time machines in-
clude the famous grandfather paradox and all its science-
fictional variations: These objections are outside the
scope of this paper, but are discussed by Lobo [2] and
Visser [4]. Theoretically, time machines are problematic
because they imply an ‘incompleteness’ in GR: The evo-
lution of a spacetime with CTCs has no clear, consistent
causal structure that can be described by GR itself, or
by any other well-accepted theory.

It is also known that ‘time machine’ spacetimes may
arise from attempts to devise a spacetime where “effec-
tive” superluminal travel is possible, e.g. spacetimes con-
taining traversible wormholes [5]. The problem of time
machines is therefore linked to the problem of superlu-
minal travel.

It is generally assumed that certain ‘realism’ condi-
tions will conspire to prevent CTCs and superluminal
travel schemes. These realism conditions are not inher-

ent to GR, but imposing these conditions is considered
much more reasonable than accommodating new notions
of causality. Broadly speaking, these realism conditions
fall into 3 categories:

1. The requirement that a spacetime have an ‘asymp-
totically flat’ geometry. This means that the space-
time should approach a flat, Minkowski spacetime
far from some compact region of interest. This
is important for any spacetime where we are not
studying cosmological effects.

2. The requirement that the spacetime contain mat-
ter which has the properties of realistic matter, as
we understand it. Here, ‘realistic matter’ means
matter which meets various energy conditions relat-
ing density, pressure and momentum in the stress-
energy tensor. For a detailed description of the
energy conditions, see the primer by Curiel [6].

3. The requirement that a spacetime containing CTCs
be able to evolve from initial data with no objec-
tionable features. This requirement is the basis of
Hawking’s Chronology Protection Conjecture [7].
Ori [8] breaks down this requirement more specifi-
cally as part of his criteria for a physical time ma-
chine model. We will refer to this as the ‘evolution’
requirement.

Several more minor requirements exist. For instance,
we would like our CTCs to be stable in time; this can
be considered part of the ‘evolution’ requirement. We
would also like our spacetime metrics to be smooth
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to at least the first derivative in every coordinate,
and preferably to higher derivatives as well. This is
because the stress-energy tensor of GR contains second
derivatives of the spacetime metric, and discontinuities
(or ‘corners’) in spacetime are equivalent to infinities in
energy density and pressure. There is an an ambigu-
ous exception to the ‘smoothness’ rule: Singularities
are, by definition, not smooth, and according to GR,
singularities do exist inside black holes, and do result
in a breakdown of causal structure. The singularities
inside rotating black holes are ring singularities. For
most purposes in physics, black hole singularities can
be ignored for the simple reason that they are hidden
inside a black hole’s event horizon. It is still an open
question whether or not ‘naked’ singularities can exist in
our universe. The hypothesis that naked singularities do
not exist is known as the Cosmic Censorship Hypothesis
[9]. If the Cosmic Censorship Hypothesis is correct,
then we should never be able to see any discontinuities
in spacetime outside an event horizon. We would
therefore require a realistic spacetime to be smooth
everywhere, except in regions hidden by an event horizon.

Model. In this paper, we present a family of ‘wire’
spacetimes, which allow ‘effective’ superluminal travel,
much like traversible wormholes. As a consequence, these
spacetimes can also contain CTCs. All these spacetimes
contain one or more extremely dense ‘wires’ of matter,
which become singular at their core. These spacetimes
meet most or all of the energy conditions in all well-
defined regions. In particular, they meet the Weak En-
ergy Condition (WEC). These spacetimes are smooth
and asymptotically flat, and their CTCs are not hidden
behind event horizons. We do not attempt to describe
how such ‘wire’ spacetimes could evolve from known
spacetimes: The evolution requirement is outside the
scope of this paper and its goal of demonstrating that
explicit WEC-violation is not an inherent feature of su-
perluminal travel schemes. However, we point out that
the mechanism which creates CTCs in our wire space-
times does not require fine-tuning: The CTCs exist in an
extensive region of the spacetime whenever some fairly
broad conditions are met. We simply need two wire-
containing regions to be in proximity to one another, and
to have some relative velocity parallel to their lengths.

The wire-based CTCs are created by a mechanism
mathematically similar to the CTCs of the Morris-
Thorne Wormhole[5]. We will discuss the relationship
between wire-containing regions and the energy condi-
tions.

The wire spacetimes allow effective superluminal
travel and contain CTCs, yet meet the WEC and may
have a reasonable, compact shape of singularity (namely,
a ring singularity). We conclude that the Weak Energy
Condition alone is not up to the task of forbidding
superluminal travel in asymptotically flat spacetimes.

Fast-Light Regions. For definiteness, we will always be
refering to static spacetimes in this section.

Our wire spacetimes produce CTCs because they allow
for ‘effective’ superluminal travel. When we say ‘effec-
tive’ superluminal travel, we mean that there exist paths
in a curved spacetime where light has a coordinate speed
cpath greater than c, where c is the standard speed of
light, and cpath is measured according to the coordinates
of a distant inertial observer to whom space is asymptot-
ically flat (see Figure 1). In natural units, we can write
this more concisely as: c = 1, cpath > 1.

By extension, this means that massive objects can
also have a coordinate speed vpath > 1 along these
paths, provided that their velocity vpath is still vpath <
cpath. Two well-known CTC spacetimes with this prop-
erty are Morris-Thorne wormholes[5] and Gott’s cosmic
strings[10]. Our wires are fundamentally different from
Gott’s cosmic strings, but they share this effectively su-
perluminal quality.

Moving forward, we will refer to effectively superlumi-
nal regions as ‘fast-light’ regions.

Distance B

Distance A

Figure 1: A spacetime whose lower half is a fast-light region.
Two identical photons (the sinusoids) travel across the space-
time at different locations. To these photons, Distance A =
Distance B = 3 wavelengths. We see both photons complete
their journey in the same amount of time, according to the co-
ordinates of a distant observer. But according to these same
coordinates, Distance B > Distance A. If the upper photon
has velocity c, we can infer that the lower photon has velocity
cpath = c×B

A
> c in the coordinates we are using. To us, then,

the lower photon appears to be traveling superluminally. This
is why the lower half of the spacetime is a fast-light region.

Fast-light regions can be formulated in different ways.
Here we demonstrate a simple way to formulate a fast-
light region using a static spacetime. Let us further as-
sume that there exists a special coordinate system in
which the metric of this spacetime is diagonal:

ds2 = gtt(x) dt2 + Σ3
igii(x) (dxi)2 (1)

Here, were use natural units, and t is the time coordinate
which points in the direction normal to the spacelike hy-
persurfaces in the spacetime. The spatial directions xi
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must be orthogonal to each other to ensure that our met-
ric is diagonal, but otherwise the xi axes can be freely
chosen. We would like to measure the coordinate speed of
light in some direction xpath. For simplicity, let’s choose
our coordinate system such that xpath lies parallel to the
x3 axis. We then have a very simple expression for the
coordinate speed of light in the x3 direction:

cpath =

√∣∣∣∣ gttg33

∣∣∣∣ (2)

If cpath > 1 in natural units, then we have created a
fast-light region in the x3 direction.

For our wire spacetimes, we will be primarily interested
in the coordinate speed of light along the length of the
wire. If the wire runs in the z direction, we will have
cz > 1.

Visser, et al.[11], have argued that ‘effective’ superlu-
minal travel, such as that allowed by fast-light regions,
is associated with violations of the null energy condi-
tion (NEC). However, that analysis requires that grav-
ity be weak everywhere, and the authors note that at-
tempts to extend the analysis to the strong-field regime
produced unsatisfying results. The fast-light spacetimes
which we will present here all meet the NEC, as well as
the more-stringent Weak Energy Condition (WEC). But
our fast-light ‘wire’ spacetimes are strong-field, according
to Visser’s usage: That is, they cannot be approximated
as a perturbation on flat space, so they do not fall under
Visser’s analysis.

A similar challenge comes from Olum [12], and is ex-
panded upon by Lobo & Crawford [13]. These papers ar-
gue that effective superluminal travel requires violation
of the WEC. Again, the singularities in our wire space-
times seem to exclude them from this constraint: Here,
the analysis requires that there exist some ‘best’, fastest
path between two events A & B. This is a crucial feature
of Olum’s definition of ‘superluminal’, but it is difficult
to see how a ‘best’ path can be defined in the presence
of a naked singularity. We discuss this further in Section
IV.

Technically, all energy conditions are undefined at a
singularity. This means that they are neither violated
nor not-violated, simply undefined. In a spacetime which
contains naked singularities, we must either 1) accept
that the WEC cannot be defined at the singularity itself,
or 2) declare that the WEC is automatically unsatisfied
in all such spacetimes, since it is not defined everywhere.
We take the first position. This paper assumes that the
WEC can be undefined at a naked singularity while main-
taining its relevance outside the singularity. However, we
will show that the WEC is not up to the task of for-
bidding superluminal travel in certain spacetimes which
contain naked singularities.

It is important to note that the CTCs produced by
our wire spacetimes need not approach the central sin-
gularity at all. For this reason, our analysis of CTCs
in Section III makes no mention of singularities. How-

ever, it appears that naked singularities may be nec-
essary for fast-light regions to meet the WEC. This is
suggested by the fact that the wires manifestly do meet
the WEC, despite proofs which associate superluminal
travel with WEC-violation in non-singular spacetimes
([11],[12],[13]). A full analysis of the role of the singu-
larity in WEC-preservation is beyond the scope of this
work. We note that we found no way to remove the sin-
gular region from our metrics while also preserving WEC
in all nonsingular regions.

Note also that, while naked singularities are a ma-
jor feauture of our CTC-creating spacetimes, not all
spacetimes containing naked singularities contain CTCs.
For instance, there exist models for the collapse of
dust-clouds which contain naked singularities, but no
CTCs [14].

Outline. In Section II, we will focus on a particular ver-
sion of the fast-light ‘wire’ metric. The version of the wire
metric was chosen for simplicity of analysis: Namely, it
is easy to prove the arguments of Section III. It is ax-
isymmetric, and meets the Null, Weak, and Strong En-
ergy Conditions (SEC), but not the Dominant Energy
Condition (DEC). It is also infinitely long, therefore not
asymptotically flat in one dimension. However, metrics
for finite-length wires and wires that meet the DEC are
known to us, and are described in the Appendix. All
such wire metrics contain fast-light regions and meet the
WEC.

In Section III, we demonstrate how a pair of fast-light
wires can be used to create CTCs. The arguments here
are framed in terms of fast-light wires, but can be modi-
fied to apply to other spacetimes where ‘effective’ super-
luminal travel is possible.

In Section IV, we state our conclusions.
In the Appendix, we briefly describe finite-length wires

and wires that meet the DEC. We also expand on our
analysis of the WEC.

II. A FAST-LIGHT WIRE

The Metric. We introduce an infinite, aximsymmetric
‘wire’ metric in natural units, with

F =

{
1 +

(
1
r −

1
R

)n
if r ≤ R

1 else
(3)

where R is an arbitrary positive constant, and n ≥ 2.
The line element is

ds2 = −F dt2 +
1

F
dr2 + dz2 + r2 dφ2 (4)

This metric represents a positive mass-energy distribu-
tion such as that shown in Figure 2. It contains a central
line singularity at r = 0. Because the factor of 1/F next
to dr2 never becomes infinite, this metric has no hori-
zon. This metric has a Lorentzian signature at all points,
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and is asymptotically flat. It is a vacuum metric when
r > R. The boundary at r = R is Cn−1 smooth: That
is, up to the (n − 1)th derivative, both cases of F have
zero-valued deriatives at r = R. This is because all terms
of the (n − 1)th derivative of F will contain a factor of(

1
r −

1
R

)
. The requirement that n ≥ 2 is the requirement

that the patch be continuous to at least the first deriva-
tive. Greater smoothness can be obtained with greater
values of n. If n ≥ 3, there is neither mass nor pressure
at the boundary r = R.

rφ

z

r = R

Figure 2: A segment of a fast-light wire, with the dense central
region colored dark. The wire has zero density at the bound-
ary r = R, and it is surrounded by a flat vacuum spacetime.
The wire density increases monotonically as r → 0. The rate
of increase is determined by n.

Note that we could have omitted the − 1
R term in (3),

and simply had F = 1 + 1
rn for all r. If we had done

this, we would still obtain a wire metric with many of
the same properties as we will describe below. By in-
cluding the − 1

R term, we ensure that our wire is of finite
radial extent: That is, beyond r = R, the wire exerts no
gravitational influence on the surrounding space. This
greatly simplifies the analysis of CTCs in Section III.

To verify that the mass density described by the metric
(4) is indeed positive for any timelike observer, we must:

1. Compute the stress-energy tensor Tµν . We use a
zero cosmological constant.

2. Find the transformation which orthonormalizes the
metric [g], i.e. find the matrix Λ such that
ΛT [g]Λ = [η], where [η] is the Minkowski met-
ric. In index notation, we would write this as(
ΛT
)µ
ρ
gµνΛνσ = ηρσ.

3. Perform this same transformation on the stress-
energy tesnsor, i.e.:

(
ΛT
)µ
ρ
TµνΛνσ = Tρ̂σ̂, where

our answer Tρ̂σ̂ is the orthonormalized stress-energy
tensor. In other words, Tρ̂σ̂ is the stress-energy ten-
sor as viewed by some local observer, to whom the
space appears to be locally flat and the coordinate
speed of light in natural units is always 1. Or-
thonormalization simplifies analysis of the energy
conditions in the space.

4. Test the energy conditions on this Tρ̂σ̂, to see if
the metric (4) exhibits energetically unrealistic be-
havior. Energetically realistic spacetimes should,
at minimum, satisfy the the Averaged Null Energy
Condition (ANEC); the Weak Energy Condition
(WEC) is somewhat more stringent. In this pa-
per we are primarily concerned with whether our
metrics satisfy WEC at every nonsingular point in
the spacetime. See [6] and the Appendix for details
of how to determine if a metric meets the WEC.

From (4), we find that the unorthonormalized stress-
energy tensor Tµν in the range 0 < r ≤ R is:

Tµν =

K×


F (R− r) 0 0 0

0 −(R−r)
F 0 0

0 0 R (n− 1) 0
0 0 0 r2 (R− 2 r +Rn)


(5)

where

K =
Rn

16π

(R− r)n−2

r2 (Rr)
n (6)

The transformation matrix Λ is given by:

Λ =


1√
F 0 0 0

0
√
F 0 0

0 0 1 0
0 0 0 1

r

 (7)

We use Λ to obtain the orthonormalized stress-energy
tensor:

Tρ̂σ̂ =

K×

 (R− r) 0 0 0
0 − (R− r) 0 0
0 0 R (n− 1) 0
0 0 0 (R− 2 r +Rn)


(8)

Since 0 < r ≤ R and n ≥ 2, all the terms in Tρ̂σ̂ are
positive or zero, except Tr̂r̂, the radial pressure. Tr̂r̂ is
simply the negative of Tt̂t̂, the mass-energy density of
the wire. For a diagonal stress-energy tensor, the WEC
requires that

Tt̂t̂ ≥ 0

Tt̂t̂ + Tî̂i ≥ 0 for all spatial directions î
(9)

We have shown that the wire metric satisfies both of
the conditions in (9) for 0 < r ≤ R. When R < r, (4)
is simply vacuum, so it also satisfies these conditions.
Therefore, this wire satisfies the Weak Energy Condition
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everywhere.1 For details on this form of the WEC and
its use with an orthonormalized stress-energy tensor, see
the Appendix.

Note that this wire also satisfies the Strong Energy
Condition (SEC), which additionally requires that the
trace of Tµ̂ν̂ is nonnegative [6]. However, this wire fails
the Dominant Energy Condition (DEC), because the an-
gular pressure Tφ̂φ̂ is greater in magnitude than the mass-

energy density Tt̂t̂. For a version of the wire that satisfies
the DEC, see the Appendix. (We do not consider the
DEC-satisfying wire here, since it makes certain proofs
significantly more complicated. It may be of future in-
terest to prove whether or not DEC-satisfying wires can
support the CTCs which will be described in Section III.)

The large negative radial pressure of (9) is notable,
and may have some as-yet unclear role in CTC-creation.
However, this pressure is not negative enough to violate
the WEC. Therefore, the WEC is not an adequate way to
rule out certain objectionable features of this spacetime,
which are described in the next section.

Features of the Wire Spacetime. The wire metric is a
‘fast-light’ metric in both the r and z directions. In the
case of the z direction, the coordinate speed of light cz
is greater than 1 because the metric’s gtt component has
a magnitude greater than 1. Note that this is opposite
from the usual effect of a massive body on the spacetime
around it. For instance, the metric of a standard star
can be considered a ‘slow-light’ metric according to our
definitions.

The wire metric bears some qualitative similarity to
the ‘negative-mass Schwarzschild’ metric, ds2 = −(1 +
2|M |
r )dt2 + (1 + 2|M |

r )−1dr2 + r2dΩ2. The ‘negative-mass

Schwarzschild’ is a fast-light metric, since 1 + 2|M |
r >

1. Despite its name, the negative-mass Schwarzschild
is a vacuum metric; i.e. it has an all-zero stress-energy
tensor. Its negative mass is implied to exist in the central
singularity, while its explicit mass-energy density is zero.
By contrast, our wire metric has an explicitly positive
mass-energy density for all timelike observers.

During our investigation of the wire metric, we at-
tempted to ‘patch over’ the singularity at r = 0 using
both analytic and numerical methods. In other words,
we tried to change the form of the metric as r → 0 while
keeping the metric the same at higher r. We were unable
to find any ‘patch’ for the wire that could both remove
the central singularity and preserve WEC at every point
in the patch. However, we could not prove generally that
such a patch does or does not exist. Olum’s Superlumi-
nal Condition [12] seems to imply that such a patch does
not exist.

1 Tρ̂σ̂ is technically undefined at the r = 0 singularity itself, but
meets the WEC for all arbitrarily small r.

In the case of the wire, having |gtt| > 1 when r ≤ R
makes the wire’s gravity repulsive in that region. This
can be seen by calculating the geodesics of the wire met-
ric, which we do below.

We start by taking the scalar product of an unknown
timelike geodesic for a massive particle (ṫ, ṙ, ż, φ̇)T , where
the dotted coordinates refer to derivatives with respect
to an affine parameter. Then, using the metric given by
(3) and (4), we have:

(gµνu
µuν)massive = −1 = −F ṫ2+

1

F
ṙ2+ż2+r2φ̇2 (10)

for a massive particle, while for massless particles:

(gµνu
µuν)null = 0 = −F ṫ2 +

1

F
ṙ2 + ż2 + r2φ̇2 (11)

We will use the Euler-Lagrange equation ∂L
∂xν = d

dτ

(
∂L
∂ẋν

)
in combination with (10) and (11) to obtain the
geodesics. Let

L =
1

2

(
−F ṫ2 +

1

F
ṙ2 + ż2 + r2φ̇2

)
(12)

Using standard simplification methods, we find:

ṫ = E
F , ż = Z, φ̇ = J

r2
(13)

where E is the test particle’s conserved initial energy den-
sity, Z is the test particle’s conserved momentum density
in the z direction, and J is a conserved angular momen-
tum density. (That is, Z and J are quantities that the
test particle brings with it when it approaches the wire
from r = ∞. They are free inputs to the equation for
r̈.) For the radial geodesics at r ≤ R, we solve the Euler-
Lagrange equation and obtain:

r̈ =
n

2r2

(
1

r
− 1

R

)n−1

×
(
E2 − ṙ2

)
F

+ F J
2

r3
(14)

r̈ refers to the geodesic 4-acceleration of the test particle
in the r direction. We set (14) equal to 10) and (11) ,
and arrive at:

r̈massive = n
2r2

(
1
r −

1
R

)n−1
(

1 + Z2 + J2

r2

)
+ F J2

r3

r̈massless = n
2r2

(
1
r −

1
R

)n−1
(

0 + Z2 + J2

r2

)
+ F J2

r3

(15)
It is easy to see by inspection that r̈massive must always

be a positive number. This means that a massive particle
near the wire is spontaneously accelerated to higher r,
according to the particle’s proper time. Therefore, the
wire’s gravity is repulsive to massive particles.

For massless particles, r̈ is also positive if Z or J is
nonzero. This means that photons are deflected outward
from the wire if they have any initial momentum in the z
or φ direction. However, a photon aimed straight at the
wire (Z = J = 0) will not be repelled.
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Although this repulsive gravity is unusual, it is not
technically forbidden. A greater constraint on the wire’s
realism comes if it can be proven that the wire’s central
singularity cannot be ‘patched over’ in a satisfactory way.
This constraint is only partially due to the fact that the
wire is a naked singularity: As currently formulated, the
total mass-per-unit-length of this unpatched wire is ac-
tually infinite, which makes it unrealistic even if Cosmic
Censorship is incorrect. The infinite mass can be seen by
integrating the mass energy density Tt̂t̂ between R and
some arbitrary lower limit r′:

mass

length
=

1

8π

∫ R

r′

Rn

r2

(R− r)n+1

(Rr)n
√
−g 2πdr (16)

where g refers to the metric determinant, and
√
−g

is the standard volume element for metric integrations.
(For this wire metric,

√
−g = r.) This leads to the con-

clusion that

lim
r′→0

(
mass

length

)
= ∞ (17)

If the wire’s center cannot be ‘patched over’ to avoid
infinite positive mass, this infinity would give us an addi-
tional reason that the wire is not a physically reasonable
spacetime. Pedagogically, it is an example of how space-
times with exotic features may fail realism tests other
than the energy conditions.

We detail the construction of the time machine in the
next section.

III. CLOSED TIMELIKE CURVES (CTCS)

In this section we demonstrate how a pair of parallel
fast-light wires form CTCs when one wire is boosted in
the z-direction. CTCs are also known as ‘time machines’
because they allow an observer moving along them to
travel into his own past.

The construction of the time machine is shown in Fig-
ure 3. Two fast-light wires are set parallel to each other
a trivial distance d apart in the x direction. Here, ‘triv-
ial’ means that d << L, but we should have d > 2R,
so that the wires do not interact gravitationally, and the
space between them is perfectly flat. This lack of grav-
itational interaction between the wires greatly simplifies
CTC analysis.

We observe the wires from frame S, where the bottom
wire is at rest. Our coordinates represent the space as
seen by observers (us) who are very far from the wires.
We will use natural units, where the standard speed of
light c in flat space is defined by c = 1. The top wire
is boosted by an amount β < 1 in the z direction. We
say that the top wire is at rest in frame S′. A rocket
capable of relativistic velocities travels along the bottom
wire from Event A to Event B (Figure 3). The rocket

Event B'Event C'

Figure 3: Two fast-light wires can be used to create a CTC.
Here, the top wire is boosted relative to the bottom wire, and
a relativistic rocket follows a looped path between them. If the
rocket and the top wire are sufficiently fast, Event C occurs
before Event A in frame S. An animated version of this figure
is available on YouTube: https://youtu.be/ub6PGaygVwA.

will then turn around and travel back along the top wire
to Event C, which has the same spatial location as Event
A. We will show that it is possible for Event C to occur
before Event A in frame S.

An animated version of Figure 3, shown entirely from
the point of view of an observer in the S frame, is avail-
able on YouTube: https://youtu.be/ub6PGaygVwA.

The time travel procedure is as follows:

Step I. The rocket starts at Event A. In the S frame,
Event A has coordinates (t, z) = (0, 0). For simplicity,
we assume that the rocket is capable of travelling at very
nearly the speed of light in its local space. However, the
rocket is not in flat space like us. Because the rocket is
in a fast-light region close to the wire, the coordinate
speed of light at the rocket’s location is greater than 1
(see (2)). Simply put, the rocket appears to be going
faster than light. Let’s say that the coordinate speed of
light at the rocket’s location is k > 1, where the exact
value of k depends on how close the rocket is to the wire.

Step II. We can use this information to find the co-
ordinates of Event B in S. From Figure 3, we can
see that Event B is a distance of L from Event A,
so ∆zAB = L. If the rocket can travel arbitrarily
close to the coordinate speed of light, then it takes a
time ∆tAB = ∆zAB

k = L
k to get to Event B from Event

A. So Event B has coordinates (t, z) = (Lk , L) in frame S.

Step III. We’d like to find the coordinates of Event B
in the S′ frame. The S′ frame is simply the frame of
a distant observer keeping pace with the top wire, so
we do not need to consider the modifications to special
relativity that would be necessary for an observer who
was in the curved spacetime close to either wire. That

https://youtu.be/ub6PGaygVwA
https://youtu.be/ub6PGaygVwA
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means a basic Lorenz boost will work:

∆t′AB = γ(∆tAB − β∆zAB) = γL (1/k − β)

∆z′AB = γ(∆zAB − β∆tAB) = γL (1− β/k)
(18)

Note that if β > 1/k then Event B occurs earlier than
Event A in frame S′, because the ∆t′AB is then negative.

Step IV. From Event B, the rocket will cross to the top
wire. It arrives at Event B’. The distance of space the
rocket must cross is ∆x. ∆x should be very small relative
to the length L, and somewhat smaller than the distance
d between the wires: That is, ∆x < d << L.

This requirement is important, because as long as the
crossing time ∆tBB′ is small relative to ∆tAB , we can
neglect it. (Note that both these time intervals are as
measured by the coordinate time in frame S.) We saw
in Step II that ∆tAB is directly proportional to L. The
crossing time, on the other hand, should depend on ∆x,
and not dependent on L at all. So we ought to be able to
ensure ∆tBB′ << ∆tAB by choosing a large enough L.
The only way this choice fails is if the crossing time in
S somehow becomes infinite. This would only happen if
the coordinate speed of light in the radial direction (cr)
becomes 0 in the vicinity of one of the wires. It can be
verified that cr 6= 0.2 Therefore, we can always choose an
L such that ∆tBB′ << ∆tAB , and tBB′ can be neglected.

There are several details to note here. First, although
the distance d between the wires’ centers should be neg-
ligibly small compared to L, we must have d > 2R, as
stated earlier. The gravitational effect of the wires ends
a distance of R away from them, so the d > 2R require-
ment ensures the wires do not interact gravitationally.

Second, since the gravity of the wires is repulsive to
massive objects, the rocket must exert more effort as it
gets closer to the top wire. We assume it is capable of
doing this.

Finally, it is important to note that we do not consider
the proper time experienced by a passenger in the rocket.
The rocket accelerates intensely between B and B′, and
this would be relevant if we wanted to know how much
the passenger ages relative to an observer in S. How-
ever, we are ultimately concerned only with the passage
of coordinate time in frame S: Namely, is ∆tAC < 0,
as measured in in S? We do not need to consider the
passenger in order to answer this question.

2 For the wire which is at rest in the S frame, we can use the
wire metric (4) and cr =

√
|gtt/grr| (See Eq. 2) to verify that

cr 6= 0 anywhere in the vicinity of the at-rest wire. For the
wire which is moving with velocity β in the z-direction in the S
frame, we must first deboost this wire’s metric into a coordinate
system which is at rest in the S frame. We can do this using a
tensor transformation. We find that the gtt component of the
deboosted metric is gtt = −

(
1 + γ2

(
1
r
− 1
R

)n)
, grr = 1

F (it is
unaffected by a boost in z), while gtr = 0. Since gtr = 0, we can
use Eq. 2 to get cr here, too. We find that cr cannot equal 0.

At the end of Step IV, the rocket has reached the top
wire at Event B’, where B’ ≈ B, by the logic above.

Step V. The rocket travels back along the top wire from
Event B’ to Event C’. This leg of the journey will have
some ∆t′BC and ∆z′BC in the S′ frame. ∆t′BC may be
deduced from the fact that the two wires are identical,
and we can chose the rocket’s return path to have the
same k as its outbound journey. In that case, ∆t′BC =

−∆z′BC
k , where the negative sign reflects the fact that the

return journey is in the −z direction. Note that since we
are working in the S′ frame, where the top wire is at rest,
we do not need to worry about special relativistic effects
on k.

We can obtain an expression for ∆z′BC by considering
the fact that ∆zBC must equal −L in order for Event A
and Event C to occur at the same spatial location. (By
the same logic used Step IV, Event C ≈ Event C’, where
Event C occurs after the rocket has crossed back down
to the bottom wire.)

Using an inverse Lorenz boost and solving for ∆z′BC ,
we have:

∆zBC = −L = γ(∆z′BC + β∆t′BC)

⇒ ∆z′BC =
−L

γ(1− β
k )

(19)

Step VI. We now have and expression for both ∆t′BC and
∆z′BC in the S′ frame. Use them to get an expression for
∆tBC in the S frame, via another inverse Lorenz boost:

∆tBC = γ(∆t′BC + β∆z′BC)

= γ∆z′BC

(
−1

k
+ β

)
⇒ ∆tBC =

L( 1
k − β)

(1− β
k )

(20)

Step VII. Let’s add ∆tAB from Step II and ∆tBC from
Step VI together to get the total time difference between
Events A and C in frame S:

∆tAC = ∆tAB + ∆tBC =
L

k − β

(
2− kβ − β

k

)
(21)

It is quite possible for ∆tAC to be a negative number. 3

The factor of L
(k−β) outside is always positive, so ∆tAC <

0 when

β >
2

k + 1
k

⇒ ∆tAC < 0 (22)

3 The ∆tAC given in (21) can be close to 0, in which case the
∆tBB′ which we neglected earlier may technically be relevant.
However, since the ∆tAC of (21) is proportional to L, and ∆tBB′
is not, we can generally ensure that ∆tBB′ is negligible by choos-
ing sufficiently large L.
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Equation (22) is our CTC condition: It is what makes
Figure 3 a time machine. For instance, if k = 3 and
β > 3/4, then ∆tAC is negative, and the rocket arrives
on the left side of the figure before it ever set out. For
higher k (which occur when the rocket is flying very
close to the wires), the boosted wire does not need to
be as fast in order to create the time travel effect; e.g.
at k = 10 we only need β > 0.198. In the limit k → ∞,
even nonrelativistic motions of the two wires create
CTCs.

It is of interest whether of not this spacetime is “totally
vicious”, as defined by Tipler [15]. That is, do CTCs pass
through every point in the spacetime? This is equivalent
to asking whether or not a time traveler could access any
event in the spacetime.

In the case of infinite wires, the spacetime is indeed
totally vicious: The time ∆tAC given in Eq. (21) is pro-
portional to L, the length traveled along the wires, and
L may be infinite if the wires are infinite. A time trav-
eler could therefore travel arbitrarily far back in time.
This would give the traveler access to events arbitrarily
far from the wires: For instance, to access an event that
occured one year ago and a thousand light-years away
from the wire, the traveler could simply use the wires to
travel 1001 years into the past. The total viciousness of
the infinite-wire spacetime is a constraint on its realism.

A spacetime containing finite versions of the the wires
is not totally vicious. Two possible constructions of fi-
nite wires are given in the Appendix. The argument for
the existence of CTCs in such a spacetime is fundamen-
tally similar to the arguments of Eqs. (18) through (22).
However, the evolution of the CTCs (if they exist) is
significantly more complicated with finite wires: This is
because two finite wires moving relative to each other
will only be in close proximity for a limited span of time.
Furthermore, the CTCs themselves would have limited
scope: If we use Eq. (21) as an approximation for the
amount of time that can be “gained” by traveling along
the finite wires, we see that it is proportional to L, which
cannot be longer than the wires themselves. This limita-
tion holds even if our traveler travels arbitrarily close to
the wires, where the coordinate speed of light k becomes
infinite:

lim
k→∞

∆tAC = −Lβ (23)

A time machine which uses finite wires can only travel
a limited ways into the past; therefore a spacetime
containing finite-wire CTCs is not totally vicious. A full
treatment of finite-wire CTCs and their implications is
outside the scope of this work.

As a final consideration, we might ask whether the
CTC spacetime of Figure 3 really satisfies the WEC, since
it contains two wires instead of one. To answer this,
consider that the WEC is a local condition: Whether or

not the WEC is met at a point depends only on the values
of energy density and pressure at that point. The wires
in Figure 3 are of finite radial extent and are separated
by flat Minkowski space (see Eq. 3 and 4): This means
they do not interact gravitationally, and cannot affect
each other’s ability to meet the WEC.

IV. CONCLUSIONS

We have demonstrated that the Weak Energy Condi-
tion (WEC) alone does not forbid the existence of ‘fast-
light’ regions in asymptotically flat spacetimes. We have
detailed the construction of one type of static ‘fast-light
wire’, and showed that two such wires can be used to cre-
ate Closed Timelike Curves (CTCs). We propose that the
Weak Energy Condition is not an adequate standalone
argument against superluminal travel.

V. ACKNOWLEDGEMENTS

We would like to thank Amos Ori for helpful feedback
on this paper. C.M. acknowledges support from the Uni-
versity of Massachusetts Dartmouth Graduate School.
G.K. acknowledges research support from NSF Grants
No. PHY-1414440 and No. PHY1606333, and from the
U.S. Air Force agreement No. 10-RI-CRADA-09.

VI. APPENDIX

We mentioned in the Outline that some of the wires’
‘realism’ problems, except the singularity, can be ad-
dressed by modifying the metric given in (4). Here we
briefly demonstrate.

A Wire that meets the Dominant Energy Condition. In
the course of our investigation, we found versions of the
fast-light wire which meet the dominant energy condition
(DEC), in addition to the weak and strong energy con-
ditions met by the basic wire. We present one such wire
here. Let H = 1 + 2/r, where 0 ≤ r ≤ ∞ is the range of
r. Then our metric is

ds2 = H dt2 +
1

H
dr2 +

1

H
dz2 + r2 dφ2 (24)

By the same methods used in Section II, we have:

Tµ̂ν̂ =
1

8πr3(r + 2)

 2 (r + 1) 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 1

 (25)

For a diagonal metric with a diagonal stress-energy tensor
Tµ̂ν̂ = diag (ρ, P1, P2, P3), the DEC requires that ρ >
|Pi| for the mass-energy density ρ and any pressure Pi.
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That condition is met here. This wire also meets the
Strong, Weak, and Null Energy Conditions at every point
in the spacetime.

In terms of CTC creation, the primary problem
with this wire is that it has infinite radial extent: If
a spacetime contains two of these DEC-preserving
wires, they will gravitationally interact. This compli-
cates the CTC argument of Section III, and possibly
breaks it entirely, though there is as yet no proof
whether or not a pair of DEC-preserving wires can
support CTCs. For this reason, we used the metric (4)
for most of this paper. It may be of future interest to
prove whether or not preserving DEC destroys the CTCs.

A Finite-Length Wire. It may also be of interest to know
whether a fast-light wire can preserve WEC while being
of finite length. There are two main ways to make a wire
finite: It must either be “capped” with two endpoints, or
it must form a loop (Figure 4). We briefly examine these
possibilities.

r
z

r'r' = R

φ

θ'

φ

θ

b

b = B r = R

A

Figure 4: Two possible modifications to the wire metric to
ensure finite length. Left: Looping the wire. This is done
by mimicking the form of the wire metric (4) on a toroidal
coordinate system. Right: A segment of a wire with a hemi-
spherical cap. The cap is made by mimicking the form of the
wire metric on a spherical coordinate patch, and identifying
z with θ′ at the boundary.

“Looping the wire” (Figure 4 left): This form of the
wire is of particular interest, since ring singularities are
thought to exist inside rotating black holes (such sin-
gularities, however, are not created the same way as a
looped wire). The wire can be looped by simply past-
ing the formulas of (4) into torus-like coordinates. Since
most readers will be unfamiliar with the flatspace form
of these coordinates, we present it here:

ds2
flat = −dt2 + db2 + b2dθ2 + (A− b cos θ)2dφ2 (26)

where A is the torus’ fixed major radius, and b is its
minor radial coordinate, with θ and φ as shown in Figure
4. Technically, a point in spacetime does not have a
unique expression in this coordinate system. Fortunately,
that won’t matter, because the non-vacuum portion of
this metric is confined to the region b < B < A (see

Figure 4 left). Under these limitations, each non-vacuum
spacetime point has a unique set of coordinates, and so
our metric will be well-defined. Let

Q = 1 +

(
1

b
− 1

B

)n
(27)

where n is an arbitrary number with n ≥ 2, as before,
and B is the outer limit of the curved region of spacetime,
so 0 ≤ b ≤ B. Then our looped-wire metric is given by

ds2
loop = −Q dt2 +

1

Q
db2 +b2dθ2 +(A−b cos θ)2dφ2 (28)

This metric is similar to (4), with the b coordinate taking
the place of r. At b = B, this metric is patched into flat
vacuum space in the same manner as the unlooped wire.
The value of n somewhat constrains the relation of A and
B, if we are interested in satisfying the WEC. It is known
that the orthonormalized stress-energy tensor for n = 2,
A = 2B has

Tt̂t̂ = 1
8π ×

(B−b) (2B2−b cos θ (B+b))
B2 b4 (2B−b cos θ)

Tb̂b̂ = −Tt̂t̂
Tθ̂θ̂ = 1

8π ×
6B−4 b−b cos θ
b4 (2B−b cos θ)

Tφ̂φ̂ = 1
8π ×

1
b4

(29)

Since b ≤ B everywhere, and −1 ≤ cos θ ≤ 1, all these
values are positive or zero, except for the minor radial
pressure Tb̂b̂, which has the same magnitude as the mass-
energy density Tt̂t̂. The sum of all these values is positive.
This ‘looped’ version of the wire meets the NEC, WEC,
and SEC while being of finite length.

One could imagine a chain of these loops which has
the same net effect as a single straight wire. In this way,
it may be possible to use many loops to create the time
machine described in Section III.

“Capping the wire” (Figure 4 right): We make use of 2
hemispherical patches at arbitrary endpoints on the z-
axis of the wire. Supposing the caps are identical, we
need only examine one of them.

To define this cap, we use spherical coordinates. In the
looped wire, we ported the formulas of (4) into toroidal
coordinates, and we do the same thing here to create the
hemispherical cap. The cap metric is then:

ds2 = F dt2 +
1

F
dr′2 + r′2 dθ′2 + r′2 sin2 θ′ dφ′2 (30)

where F is the same F given in (3), but with its cylindri-
cal r redefined as r′, a spherical coordinate. This metric
is valid in the range 0 ≤ θ′ ≤ π

2 . At the surface θ′ = π
2 in

the cap’s coordinates, we patch the cap to the wire met-
ric at some arbitrary surface of constant z in the wire’s
coordinates. The resulting stress-energy tensor for the
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cap has:

Tt̂t̂ = 1
8π ×

(r+R (n−1)) (R−r)n−1

Rn rn+2

Tr̂r̂ = −Tt̂t̂
Tθ̂θ̂ = 1

8π ×
n (n−1) (R−r)n−2

2Rn−2 rn+2

Tφ̂φ̂ = Tθ̂θ̂

(31)

Primes such as r′ have been left off the coordinates here
to avoid clutter.

Again, this meets the WEC. However, these caps were
not a main focus of research, and issues such as pressure
discontinuities at the θ′ = π

2 patch boundary may
become problematic. (Note that the looped wire metric
is much less likely to encounter these issues, because it
is more continuous.) We therefore present the caps only
to demonstrate that ‘capped’ solutions may exist.

The Weak Energy Condition (WEC). In its most general
form, the WEC requires that:

Tµνu
µuν ≥ 0 (32)

for every valid 4-velocity uµ in the spacetime. This con-
dition is equivalent to saying that no timelike observer in
the space can see negative mass. We can simplify analy-
sis if this requirement by dividing through by (ut)2 and
rewriting the WEC as:

Ttt + 2Ttiv
i + Tijv

ivj ≥ 0 (33)

⇒ ρ+ Pi(v
i)2 ≥ 0 for diagonalTµν (34)

where the vi represent all possible timelike spatial 3-
velocities.

In coordinates which are not orthonormal and a space
which is not flat, it can be an enormous chore to test
the WEC. For one thing, each point in the space may
have different constraints on what makes a vector ‘time-
like’. Orthonormalization removes that difficulty. It de-
scribes the stress-energy tensor and the 3-velocities from
the point of view of a local observer, to whom space is
always locally flat, and the coordinate speed of light is
the same constant value in every direction, i.e. c = 1.
This means that, for all timelike vectors in orthonormal

coordinates, |vî| ≤ 1: This makes it much easier to test
the WEC.

Since the vî in in orthonormalized version of (34) can

take any value such that |vî| ≤ 1, we should consider

the |vî| = 0 case, corresponding to an observer at rest
relative to the wire. In this case, only the first term in
(34) is nonzero, so we must have Tt̂t̂ ≥ 0 for all valid r in
order to meet the WEC. Looking at the form Tt̂t̂ given in
(8), we see that the wire metric meets this requirement:
There is no way that Tt̂t̂ can be negative for any r in
the range 0 ≤ r ≤ R. (Recall that at r > R, we switch
over to a vacuum metric, where the stress-energy tensor
is zero and there is no possibility of violating WEC.)

For all other possible observer velocities in this space,
note that WEC cannot be violated if Tt̂t̂ + Tî̂i ≥ 0 for
every spatial direction î. This is because all velocities are
quadratic sums of velocities in the 3 cardinal directions
(r, z, φ), and no velocity may have a magnitude greater
than 1. This is precisely the WEC requirement given in
(9), which the wire metric fulfills.
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