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Schrödinger’s equation says that the Hamiltonian is the generator of time translations. This seems
to imply that any reasonable definition of time operator must be conjugate to the Hamiltonian.
Then both time and energy must have the same spectrum since conjugate operators are unitarily
equivalent. Clearly this is not always true: normal Hamiltonians have lower bounded spectrum
and often only have discrete eigenvalues, whereas we typically desire that time can take any real
value. Pauli concluded that constructing a general a time operator is impossible (although clearly
it can be done in specific cases). Here we show how the Pauli argument fails when one uses an
external system (a “clock”) to track time, so that time arises as correlations between the system
and the clock (conditional probability amplitudes framework). In this case, the time operator is not
conjugate to the system Hamiltonian, but its eigenvalues still satisfy the Schrödinger equation for
arbitrary Hamiltonians.

There are many different ways in which a time oper-
ator [1–3] can be introduced into quantum mechanics.
These differences reflect the different physical meanings
that “time” may have. We recall the main ones (the fol-
lowing list is, by necessity, incomplete and clearly the
following categorizations are not clear-cut): (1) Typical
time operators [4–8] represent a “time of arrival”, whose
measurement represents the time at which a system is
in a certain location. This is dual [9] to the Newton-
Wigner [10] position operator whose measurement repre-
sents the position at which a system is located at a certain
time; (2) coordinate time [11–14]; (3) an arbitrary param-
eter (also reinterpreted as “Newtonian absolute time”)
[15, 16]; (4) a dynamical variable that parametrizes dif-
ferent Hilbert spaces [17–19]; (5) a classical parameter
that cannot be quantized [20–23]; (6) a parameter that
can be quantized, but not using self-adjoint operators
(observables) [11, 12, 24, 25]; (6) proper time [26]; (7)
clock time [27–44].

Here will be dealing with the clock time, mainly fo-
cusing on the Page-Wootters and Aharanov-Kaufherr
(PWAK) approach [29–33]. In this framework, time is
defined as “what is shown on a clock”, where a clock is
some (external) physical system that is taken as a time
reference. Then, the measurement of time acts as a con-
ditioning that outputs the position in time of some event
that is being gauged by the clock: namely the empha-
sis is on the correlations between a system and the clock
as in ‘the state of a system given that the clock shows
t’. As shown in [29–34] these correlations manifest them-
selves as a “static” entangled global state that satisfies a
Wheeler-de Witt [45] equation. The PWAK approach is
briefly reviewed in Sec. I.

The Pauli objection [21] essentially states that since
the energy is the generator of (continuous) time trans-
lations, any time operator must be conjugate to an en-
ergy operator (Hamiltonian) that has unbounded contin-
uous spectrum, properties which are not satisfied by the
Hamiltonian of typical systems. The standard textbook
answer to this objection is that time in quantum mechan-

ics cannot be represented by an operator and is a param-
eter, external to the theory, e.g. [20, 35]. A different,
but connected objection was put forth by A. Peres [46]:
if the Hamiltonian is the generator of time translations
and the momentum is the generator of space translations,
then the Hamiltonian and the momentum must always
commute, since space and time are independent degrees
of freedom. In this paper we show how the PWAK for-
malism can easily bypass these objections and provide an
acceptable time operator.
The main idea is simple: the global Hamiltonian must

contain both the system Hamiltonian (which may have
arbitrary spectrum) and the clock Hamiltonian, which
for an ideal clock must have unbounded continuous spec-
trum (physical clocks can clearly only approximate this
ideal situation). It is the clock Hamiltonian that is con-
jugate to the time operator, whereas it commutes with
the system Hamiltonian which acts on a different Hilbert
space. Then the clock Hamiltonian is the generator of

clock shifts, hence of “time” translations, whereas the
system Hamiltonian is the generator of translations only
of the system state, and not of time. Then [T̂ , H ] = 0, so

that H and T̂ do not need to have the same spectrum.
To overcome Peres’ objection, one notes that the Hamil-
tonian indeed does commute with the momentum of the

clock.
There are some arguments whose most extreme formu-

lation says that in quantum theory “time is not a quan-
tity at all” [47], i.e., there is no way to attribute values to
time, be it an operator or a parameter indistinctly. All
these arguments assume that the spectrum of the Hamil-
tonian generating the time evolution in the state space
is bounded from below. Indeed Halvorson ruled out the
existence of subspaces of states s(t1, t2) that can be as-
sociated to time intervals (t1, t2) and hence, dispensing
with the traditional notion of the passage of time in quan-
tum theory. He concretely derived [47] the contradiction
that, as a consequence of the Hegerfeldt theorem [48],
∀|v〉 ∈ s(t1, t2) ⇒ |v〉 = 0. Again, the PWAK approach
is immune to these kind of arguments that, as Pauli’s, re-

http://arxiv.org/abs/1705.09212v1


2

quire boundedness of the Hamiltonian spectrum, which
is not the case of the clock Hamiltonian considered here.
While the basic mechanism to overcome the Pauli and

Peres objections presented here is clear, one has to be
careful, since in the PWAK formalism (reviewed in Sec. I)
the dynamics is imposed as a constraint and one must
check that even in the space of physical states the above
properties still hold true: indeed, in the space of physical
states, the Wheeler-de Witt equation “forces” the clock
Hamiltonian to coincide with the system Hamiltonian.
This analysis is given in Sec. II and III (that contains the
more technical parts). Even though the system Hamilto-
nian and the time operator commute in this framework,
it is still possible to give an time-energy uncertainty re-
lation, as shown in Sec. IV.

I. THE PWAK MECHANISM

The PWAK mechanism was initially proposed by Page
and Wootters [29–31] and soon after by Aharanov and
Kaufherr [32] (but similar previous approaches can be
found, e.g. in [34, 37]). A recent review, together with
the solution to the objections that were moved against
it, can be found in [33].
To provide a quantization of time, one can simply de-

fine time as “what is shown on a clock” and then use
a quantum system as a clock. If one wants a continu-
ous time that goes from −∞ to +∞, a good candidate
clock is to use the position of a 1-d particle [27, 32, 34].
Nonetheless, introducing explicitly a physical system is
not necessary, and one can only consider the time Hilbert
space as an abstract space with no physical meaning.
The global Hilbert space is then HTS = HT ⊗ HS ,

where T represents the “time” Hilbert space, typically
the one for a particle on a line, L2(R). In HT we intro-

duce the position operator T̂ and the conjugate momen-
tum Ω̂, with [T̂ , Ω̂] = i. We associate the momentum Ω̂
to the energy of the clock (for a particle, this can be a
good approximation for sufficiently massive non relativis-
tic particles [32]). We can enforce that T̂ represents the
time operator which describes the evolution of a system
by imposing the following constraint equation, namely
by requiring that the only states |Ψ〉〉 of the joint Hilbert
space HTS that represent physically relevant situations
are the ones that satisfy

(~Ω̂⊗ 11S + 11T ⊗H)|Ψ〉〉 = 0 , (1)

(H being the arbitrary Hamiltonian of the system S)
which can be interpreted as a Wheeler-de Witt equation
[45]. The double ket notation serves only as a reminder
that |Ψ〉〉 is a state on the joint Hilbert space HTS . Note
that, even though the system Hamiltonian H may have
arbitrary spectrum, the Wheeler-de Witt Hamiltonian
(~Ω̂ ⊗ 11S + 11T ⊗ H) has unbounded continuous spec-

trum (because Ω̂ has). As eigenstates of the Wheeler-de
Witt equation, the physical states |Ψ〉〉 are “static” in

the sense that they do not evolve with respect to an “ex-
ternal” time. However, the system evolves with respect
to the clock and viceversa, in the sense that the correla-
tions (entanglement) between system and clock track the
system evolution. Indeed the solutions of (1) are

|Ψ〉〉 =
∫ +∞

−∞
dω |ω〉|ψ̃(ω)〉 , (2)

where |ω〉 is the eigenstate of Ω̂ with eigenvalue ω, |ψ̃(ω)〉
is the (un-normalized) Fourier transform of the system
state |ψ(t)〉. [Note that the state (2) is not uniform in |ω〉,
as the eventual weight is implicit in the norm of |ψ̃(ω)〉,
e.g. such weight selects the solutions of (1).] Indeed,

|ψ̃(ω)〉 = 1√
2π

∫ +∞

−∞
dt e−iωt|ψ(t)〉 ⇒ (3)

H |ψ̃(ω)〉 =
√
2π

∑

k

δ(ωk + ω)ψk~ωk|ek〉 = −~ω|ψ̃(ω)〉,

(4)

where we have used the expansion |ψ(t)〉 =
∑

k ψke
−iωkt|ek〉 in terms of the Hamiltonian eigen-

states |ek〉 of eigenvalue ~ωk. If the Hamiltonian has a
continuous spectrum, an analogous expression holds:

H |ψ̃(ω)〉 =
√
2π

∫

dω′δ(ω′ + ω)ψ(ω′)~ω′|ω′〉

= −~ω
√
2πψ(−ω)| − ω〉 = −~ω|ψ̃(ω)〉, (5)

where |ω〉 is the δ-normalized energy eigenstate of eigen-

value ~ω. It is clear from these expressions that |ψ̃(ω)〉
is the null vector if ω is not an eigenvalue of the Hamil-
tonian. The solutions (2) can be written as

|Ψ〉〉 =
∫ +∞

−∞
dω |ω〉|ψ̃(ω)〉 =

∫ +∞

−∞
dt |t〉|ψ(t)〉 , (6)

where |t〉 =
∫

dω e−iωt|ω〉/
√
2π is the position eigenstate

in HT and |ψ(t)〉 is the system state at time t in HS ,
with normalization 〈ψ(t)|ψ(t)〉 = 1 for all t. [Note that
any nontrivial probability amplitude φ(ω) in the integral
(2) can be absorbed in the definition of the system state

|ψ̃(ω)〉 as ψk → φ(ωk)ψk.] The states (6) are improper
(non-normalizable) states that reduce to the momentum

eigenstate
√
2π|ω = 0〉 =

∫

dt|t〉 in HT whenever the sys-
tem is in an eigenstate of its Hamiltonian H . Starting
from the state (6) and conditioning the clock system to
the state |t〉, we recover the Schrödinger equation: in-
deed, Eq. (1) in the position representation becomes

〈t|~Ω̂ +H |Ψ〉〉 = 0 ⇔ (−i~ ∂
∂t +H)|ψ(t)〉 = 0 , (7)

where we wrote the momentum in position representa-
tion 〈t|Ω̂ = (−i∂/∂t)〈t|, and we used 〈t|Ψ〉〉 = |ψ(t)〉
which follows from (6). One can similarly also derive the
unitary evolution for the system [33].
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One of the many advantages of this approach is that
it renders explicit the problem that, when an event is
gauged by a quantum clock or a system is controlled by
a quantum clock, a feedback (disturbance) to the clock
must occur [28].

II. BYPASSING THE PAULI OBJECTION

The Pauli objection is just an argument and is not re-
ally rigorous. There are many counterexamples in the lit-
erature (e.g. [49]), but it can also be made into a rigorous
statement if one is careful enough (e.g. [50]). It basically
says that if one introduces a time operator, then time and
energy are conjugate operators through the Schrödinger
equation. Then their spectrum must be the same. This
is a consequence of the Stone-von Neumann theorem: if
[T̂ , Ĥ ] = i then T̂ and Ĥ have the same spectrum.
The PWAK mechanism is immune to this, since we

are requesting that [T̂ , Ω̂] = i and then enforcing that

Ω̂ is equal to Ĥ only on the physical states through the
constraint Eq. (1). Such equation is saying that in this

subspace Ω̂ = Ĥ! So it seems that in the space of physical
states, the Pauli argument should apply: T̂ has the same
spectrum as Ω̂ which (in the subspace) has the same spec-

trum as Ĥ. So we must conclude that in the subspace of
physical states T̂ has the same spectrum as Ĥ !
Luckily this statement is false, although it is not im-

mediately trivial to see. To see why that statement is
false, we must formalize it very carefully. We start by
defining T̂ and Ω̂ as

T̂ ≡
∫ +∞

−∞
dt t |t〉〈t|, Ω̂ ≡

∫ +∞

−∞
dω ω |ω〉〈ω| (8)

|ω〉 ≡
∫ +∞

−∞

dt√
2π
e−iωt|t〉, ⇒ |t〉 =

∫ +∞

−∞

dω√
2π
eiωt|ω〉.

The Pauli objection can be formalized as follows:

1. The definitions of T̂ and Ω̂ imply that [T̂ , Ω̂] = i.

2. Introduce the Hilbert space of physical states Hc

as the ones that satisfy Eq. (1), (~Ω̂ + Ĥ)|Ψ〉〉 = 0.

3. Since (~Ω̂ + Ĥ)|Ψ〉〉 = 0, then∗ also T̂ (~Ω̂ +

Ĥ)|Ψ〉〉 = 0, and 〈〈Φ|T̂ (~Ω̂ + Ĥ)|Ψ〉〉 = 0 for all
|Φ〉〉, |Ψ〉〉 ∈ Hc.

4. The point above implies that

0 = 〈〈Φ|T̂ (~Ω̂ + Ĥ)|Ψ〉〉 − 〈〈Φ|(~Ω̂ + Ĥ)T̂ |Ψ〉〉 (9)
= 〈〈Φ|~[T̂ , Ω̂] + [T̂ , Ĥ ]|Ψ〉〉, (10)

so 〈〈Φ|~[T̂ , Ω̂]|Ψ〉〉 = −〈〈Φ|[T̂ , Ĥ]|Ψ〉〉 (11)

5. Since [T̂ , Ω̂] = i, this means that, when restricting

to the physical states space Hc, we have [T̂ , Ĥ ] =
−i~, which through the Stone-von Neumann theo-
rem implies that T̂ has the same spectrum as Ĥ in
this Hilbert space Hc, the Pauli objection!

We note that Dirac had introduced an equation of the
type (1) in [51], but he did not consider it as a constraint
on the physical states. This meant that he ran into an
inconsistency similar to the one emphasized above. Dirac
never gave a solution [44]. We show here that a solution
is provided by the PWAK mechanism.
This above argument is clearly wrong since [T̂ , Ĥ ] = 0

because they are operators acting on different Hilbert
spaces. In fact, the implication indicated with an as-
terisk at point 3 fails: even though it is true that (~Ω̂ +

Ĥ)|Ψ〉〉 = 0, this does not imply that T̂ (~Ω̂+Ĥ)|Ψ〉〉 = 0.

This comes from the fact that the spectrum of T̂ is un-
bounded, see the definition (8). We prove this in the
following section (using two different regularizations for
the physical states |Ψ〉〉 which are un-normalizable).
One can also give a physical interpretation to this: one

should expect that the expectation value of T̂ must be
undefined in the space of physical states. In fact 〈T̂ 〉 has
as value the result to the question “what is the time?”
which is a meaningless question per se in physics. Mean-
ingful questions are “what is the time when the spin is
up?” or “what is the time now that you’re reading this?”,
etc. So, one must expect that 〈〈Φ|T̂ |Ψ〉〉 will be unde-
fined in the space of physical states, which is indeed what
happens.

III. REGULARIZATION

Here we provide the regularizations necessary to prove
the relations introduced in Sec. II.
The state (6) is the solution of the eigenvalue equation

(1). The eigenvalue λ = 0 is an essential eigenvalue of

the self-adjoint constraint operator Ĵ = ~Ω̂ + Ĥ . This
can be shown through Weyl’s criterion [52] (Chap. 7),

since ‖(Ĵ − λ)|Ψn〉〉‖ → 0 for n → ∞ where |Ψn〉〉 is a
Weyl sequence, i.e. a normalized sequence of vectors that
weakly converges to zero (namely, ∀|θ〉〉 ∈ H we have
〈〈θ|Ψn〉〉 → 0).
We will show this using two different Weyl sequences

which can be considered as approximate eigenvectors (as
expected, both give the same results):

|Ψn〉〉 ≡
(

2
πn

)1/4
∫

dt e−t2/n|t〉|ψ(t)〉 (12)

|Ψ′
m〉〉 ≡ 1√

m

∫

dt β(t/m)|t〉|ψ(t)〉 , (13)

where the first uses a Gaussian whose width diverges for
n→ ∞, the second uses the box function β whose width
diverges for m → ∞, with β(x) = 1 if − 1

2 < x < 1
2 ,

β(− 1
2 ) = β(12 ) = 1

2 , and β(x) = 0 otherwise. It has
derivative ∂β(x)/∂x = δ(x + 1/2) − δ(x − 1/2). These
are both Weyl sequences (see [52] at pages 71 and 74
respectively).
All states in Hc can be obtained from these as

|Ψ〉〉 = lim
n→∞

(

πn
2

)1/4 |Ψn〉〉 = lim
m→∞

√
m|Ψ′

m〉〉. (14)
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Note that the state |Ψ〉〉 is un-normalizable: it does not
live in a Hilbert space, but one has to resort to rigged
Hilbert spaces, where the Hilbert space containing nor-
malized vectors (and the limit of sequences of normalized
vectors) is incremented with vectors of infinite norm [53].
First we show that |Ψn〉〉 and |Ψ′

m〉〉 are indeed Weyl

sequences for Ĵ and λ = 0, namely they are “proper”
approximations of the improper eigenvectors of Ĵ with
eigenvalue λ = 0. (We already know that, this is just a
consistency check.) Let us start with |Ψn〉〉. We have to

show that ‖(Ĵ− λ)|Ψn〉〉‖ → 0 for n→ ∞. Indeed,

lim
n
(~Ω̂ + Ĥ)|Ψn〉〉 = lim

n

2i
n

(

2
πn

)1/4
∫

dt t e−t2/n|t〉|ψ(t)〉.

That this is a null vector can be seen by taking its mod-
ulus:

‖(~Ω̂ + Ĥ)|Ψn〉〉‖2 = 4
n2

√

2
πn

∫

dt t2 e−2t2/n → 0,

where we used the fact that
∫

dt t2 e−at2 =
√

π/a3/2 and
〈ψ(t)|ψ(t)〉 = 1. The same result applies using the other

regularization: (~Ω̂+ Ĥ)|Ψ′
m〉〉 → 0 for m→ ∞. Indeed,

for all vectors |θ〉〉 =
∫

dtθ(t)|t〉|φ(t)〉 in the Hilbert space,
we find

|〈〈θ|(~Ω̂ + Ĥ)|Ψ〉〉| (15)

= lim
m

|〈〈θ|
∫

dt |t〉|ψ(t)〉[δ(t − m
2 )− δ(t+ m

2 )]

= lim
m

|〈φ(0)|ψ(0)〉[θ∗(m2 )− θ∗(−m
2 )]| = 0 , (16)

where we used (14), and the fact that 〈φ(t)|ψ(t)〉 is con-
stant and that all square integrable functions θ(t) → 0
for t→ ±∞.
Now the crucial point: what happens when we multiply

these null vectors by the unbounded operator T̂? We
obtain a non-null vector! Indeed,

‖T̂ (~Ω̂ + Ĥ)|Ψn〉〉‖2 = 4
n2

√

2
πn

∫

dt t4 e−2t2/n = 3
4 ,

for all n, since
∫

dt t4 e−at2 = 3
√

π/a5/4. This implies
that |Ψn〉〉 is not an approximate eigenvector for the λ =

0 eigenvalue of the operator T̂ (~Ω̂ + Ĥ), even though it

was an approximate eigenvector for the operator (~Ω̂ +

Ĥ). This also means that in the rigged Hilbert space we
cannot consider |Ψ〉〉 as eigenvector of this operator.
One can also show that

〈〈Ψn|(~Ω̂ + Ĥ)T̂ |Ψn〉〉 (17)

= i
√

2
πn

∫

dt(e−2t2/n − 2t2

n e−2t2/n) = i
2 , (18)

which suggests that |Ψ〉〉 is an (improper) eigenstate of

(~Ω̂+Ĥ)T̂ with eigenvalue i/2. Indeed, the above results
imply

‖[(~Ω̂ + Ĥ)T̂ − λ]|Ψn〉〉‖ → 0 (19)

for λ = i/2 (actually the modulus is equal to 0 for all n).
Note that this is the value that is necessary in Eq. (9) to
avoid the contradiction!
Analogous considerations hold for the other regulariza-

tion since

〈〈θ|T̂ (~Ω̂ + Ĥ)|Ψ〉〉 = lim
m
im2 [θ

∗(m2 ) + θ∗(−m
2 )] , (20)

where we used |Ψ〉〉 = limm
√
m|Ψ′

m〉〉. This does not
tend to zero asm→ ∞ for all square integrable functions
θ(t), since square integrable functions must go to zero
faster than 1/

√
t for t→ ∞.

In conclusion, not only we have shown that point 3
of the Pauli argument fails, but we have also recovered
the expected values of the scalar products 〈〈Ψ|T̂ (~Ω̂ +

Ĥ)|Ψ〉〉 = i/2 that are necessary in Eq. (9) if it has to be

consistent with the fact that [T̂ , Ω̂] = i.

IV. UNBOUNDED-ENERGY CLOCKS?

The way we the PWAK mechanism bypasses the Pauli
objection is by using a clock with an unbounded Hamil-
tonian equal to its momentum [32]. Clearly this is un-
physical and one could object that our resolution is not
a resolution after all. However, it is important to notice
that all quantum experiments to date have been per-
formed with macroscopic “classical” clocks (except for
especially crafted situations [43]). These have energy
so large compared to the time uncertainties that can be
tracked in practice that their spectrum can be considered
unbounded for all practical purposes. Moreover, macro-
scopic systems get very quickly correlated to astronomi-
cal distances (e.g. the motion of one gram of matter on
the star Sirius by one meter sensibly influences the parti-
cle trajectories in a box of gas on earth on a time-scale of
µs after the transit time [54]) so that a pure-state analy-
sis as performed above will break down unless one is able
to track all the correlated degrees of freedom, a practical
impossibility.
In this section we study how good is the approximation

of considering a clock with unbounded spectrum. We
show that if the energy spread is ∆E the time can be
measured up to a precision ∆t = ~/2∆E. This is a direct
consequence of the time-energy uncertainty relation [55–
57] which says that, if the energy spread is ∆E, then the
minimum time interval it takes to evolve to an orthogonal
state is τ > ~/2∆E. Hence no smaller time interval can
be measured with accuracy.
Clearly, a spread in energy is by itself insufficient to

obtain a clock: one also needs good time correlation.
However, in the absence of energy spread, a clock in
the state |Ψ〉〉 of (2) cannot keep time, and with lim-
ited energy spread, it can only keep time up to some
accuracy since the correlation in time cannot be suffi-
ciently high. For the sake of simplicity we will keep the
unbounded Hamiltonian of the clock ~Ω, but we will re-
duce the energy spread by making explicit the spectral
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function φ(ω) which was absorbed into |ψ̃(ω)〉 in (2) as

|ψ̃(ω)〉 = φ(ω)|χ̃(ω)〉, and we take the standard deviation
of the probability probability |φ(ω)|2 is ∆ω = ∆E/~.
Since the clock and the system are entangled, this spec-
tral function does not refer exclusively to the clock, but
to both the clock and the system. As expected from the
time-energy uncertainty relation, a limited-bandwidth
spectral function φ(ω) will reduce the speed of evolution
(time resolution of the global system). Indeed (neglecting
multiplicative constants) we have

|Ψ〉〉 =
∫

dω φ(ω)|ω〉|χ̃(ω)〉 ∝
∫

dtdt′ φ̃(t− t′)|t〉|χ(t′)〉,

where φ̃ and |χ(t)〉 are the Fourier transforms of φ and
|χ̃(ω)〉. Even though this seems to be incompatible with
Eq. (6), it is not as can be seen by writing

|ψ(t)〉 ∝
∫

dt′φ̃(t− t′)|χ(t′)〉 . (21)

This can be interpreted as if |ψ(t)〉 is obtained by “av-
eraging” |χ(t)〉 over time with a probability amplitude

φ̃. Then the smallest time interval during which |ψ(t)〉
can vary appreciatively is of the order of ~/∆E, i.e. the
inverse of the spread of the probability |φ(ω)|2. Indeed

〈ψ(t)|ψ(t′)〉 ∝
∫

dτdτ ′ φ̃(t− τ)φ̃∗(t′ − τ ′)〈χ(τ ′)|χ(τ ′)〉,

whence, even supposing instantaneous change of |χ〉,
namely 〈χ(τ ′)|χ(τ ′)〉 ∝ δ(τ − τ ′), we have

〈ψ(t)|ψ(t′)〉 ∝
∫

dω|φ(ω)|2eiω(t−t′). (22)

If |φ(ω)|2 has a spread ≃ ∆E/~, then its Fourier trans-
form will have a spread of the order of ~/∆E. This means
that the scalar product 〈ψ(t)|ψ(t′)〉 cannot change appre-
ciatively in a smaller interval, namely the time scale of
change of the system state must be larger than ~/∆E, in
accordance with the time-energy uncertainty relation.

Thanks to its linearity, the Schrödinger equation holds
for the “averaged” |ψ(t)〉 of Eq. (21), which implies that
eventual imperfect correlations between system and clock
will not induce a fundamental decoherence effect in this
framework. This contrasts to the Gambini et al. frame-
work [41, 42] where imperfect clocks do induce a funda-
mental decoherence.

V. CONCLUSIONS

In this paper we have shown how one can easily bypass
the Pauli and the Peres objections to a quantum opera-
tor for time using the conditional probability amplitude
framework of Page, Wootters, Aharanov and Kaufherr.
Moreover we have detailed how the time-energy uncer-
tainty relation arises in this framework.
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