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Abstract

This paper examines two cosmological models of quantum gravity (from string theory
and loop quantum gravity) to investigate the foundational and conceptual issues arising
from quantum treatments of the big bang. While the classical singularity is erased, the
quantum evolution that replaces it may not correspond to classical spacetime: it may
instead be a non-spatiotemporal region, which somehow transitions to a spatiotemporal
state. The different kinds of transition involved are partially characterized, the concept
of a physical transition without time is investigated, and the problem of empirical
incoherence for regions without spacetime is discussed.

1 Introduction

An ordinary liquid can be considered a derived, ‘effective’ entity, as it is composed of
molecules. Knowing the relationship between molecular and hydrodynamical descriptions
helps us understand the nature of both molecules and liquids. But a collection of molecules
is not always a liquid: they might instead be in a state in the solid phase. So one also wants
to understand transitions from a state with an effective solid description to one with an
effective hydrodynamical description, the process of melting at the molecular level. This
paper addresses a parallel question for spacetime in quantum gravity.

Many proposed theories of quantum gravity (QG) suggest that their fundamental quan-
tities and structures do not include all the familiar ones of theories involving classical space-
times (especially the relativistic spacetimes of general relativity (GR) and quantum field
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theory). If so, relativistic spacetime must to some extent be a derived, effective entity, and
not all fundamental states need correspond to full classical spacetime: some might not have
an effective spacetime description. In turn then, spacetime might not only be composed of
something non-spatiotemporal, QG may permit a ‘transition’ from a non-spatiotemporal
to a spatiotemporal phase, an event maybe to be identified with the big bang, with ‘earlier’
non-spatiotemporal states of the universe.

Let us be careful in several ways from the start. First, as the scare quotes indicate, it
does not make obvious literal sense to talk of a ‘transition’ from the non-temporal to the
temporal, since transition is a temporal notion. We will discuss this issue later. Second,
for brevity, we will say ‘non-spatiotemporal’, but we mean, more carefully, ‘less than fully
spatiotemporal in some significant regard’. Finally, while ‘big bang’ strictly refers to an
initial singularity in classical GR, QG aspires to ‘smooth over’ any singular behaviour with
continuous quantum behaviour. Likely, classical behaviour becomes a poor description at
some finite time from the singularity, and so any ‘big bang’ transition is not happening
punctually at the singularity, but in some way around it. (The potential difficulty is that
the very notion of time itself may break down, making it impossible to ask when or how
long a transition occurs, beyond a certain classical early time.)

A scenario in which the universe makes such a phase transition from the non-spatiotemporal
to the spatiotemporal has been claimed by Oriti (2014), in his discussions of ‘geometroge-
nesis’. Here we discuss two further examples (which arguably do not amount to geometro-
genesis) to investigate whether and in what way spacetime might come into being at the
big bang.1 In §2, we introduce a model of cosmology based on string theory. In §3, we
turn to cosmological models based on Loop Quantum Gravity (LQG), thus covering the
two main approaches to QG. Finally, §4 addresses three conceptual issues that arise in
such models: how should we categorize the emergence (or non-emergence) of spacetime in
these contexts, how can we conceive of a ‘transition’ from timelessness, and how do these
cosmological models relate to the problem of ‘empirical incoherence’?

2 String Quantum Cosmology

Huggett and Vistarini (2015) discussed the derivation of GR from string theory. In the sim-
plest case, the classical string action is simply the spacetime area of the string worldsheet:
a quantity clearly depending on the Lorentzian metric, gµν , of the background spacetime.
This area is invariant under any internal reconfiguration (‘stretching’) of the string that
leaves unchanged the spacetime surface it occupies, so such ‘Weyl’ (local conformal) trans-
formations will be symmetries of the classical action.2 On quantization, local symmetries
must be preserved on pain of non-unitarity; but it has been shown for this action (Callan

1See Vaas 2004 for an earlier discussion.
2Strings are unlike non-relativistic, Hooke’s Law springs in this regard, precisely because the action is a

relativistic invariant.
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et al. 1985) that a necessary condition for quantum Weyl symmetry is that the background
metric satisfy the Einstein vacuum field equations, R = 0, the condition of Ricci (scalar)
flatness. And the result generalizes: if other background fields (fermionic matter, or bosonic
gauge fields, for instance) appear in the string action, then Weyl symmetry requires that
they mutually satisfy the appropriate Einstein field equations.

For instance, if a scalar field, φ(x), known as the ‘dilaton’, is added to the string action,
then parallel reasoning leads to the following pair of equations (Gasperini 2007, §2.1):

Gµν +∇µ∇νφ+ 1/2gµν(∇φ)2 − gµν∇2φ = λD−2s eφTµν (1)

and
R+ 2∇2φ− (∇φ)2 = λD−2s eφσ. (2)

Gµν is the usual Einstein tensor, λs is the characteristic string length (the fundamental
free parameter of the theory), Tµν is the stress-energy tensor of all other matter fields,
and σ is the matter ‘charge’ to which the dilaton couples. (1) is a modified form of the
standard field equations, in which (a) the dilaton appears with gµν , and (b) the coupling
strength of the gravitational field is not the gravitational constant, but depends on the
dilaton as λD−2s eφ. Huggett and Vistarini (2015) discussed how the dilaton can control the
dimensions of spacetime. Here we also see that interaction strengths depend on φ: in this
case the strength of gravity—but also the string coupling, gs, which controls the rate at
which strings split and join.

Two points should be emphasized. First, these so-called ‘background fields’, including
the spacetime metric and dilaton, are not (despite their name) distinct classical fields, but
instead represent the effects of special string states. In particular, gravitons and dilatons
are in the string particle spectrum, and the corresponding terms in the action are meant
to represent the effects of coherent states of such stringy quanta (Green et al 1987; §3.4).3

Second, string theory involves a double perturbation expansion, both with respect to
gµν ,4 and with respect to gs. The former represents the effects of the extended, stringy
nature of the graviton; the latter represents the quantum effects of strings splitting and
joining. Neither parameter is a constant, but depend on the background curvature and
dilaton respectively: only if both are weak is string theory in a perturbative sector. Indeed,
the effective equations (1-2) are derived at the lowest, tree level, and so break down when
higher order corrections are significant, or perturbation theory fails altogether.

The equations can be simplified by assuming a homogeneous, isotropic, flat, matter-free
spacetime5. In this case Tµν = σ = 0, while

gµν = diag(1,−a(t)2,−a(t)2,−a(t)2), (3)

3Formally, at least, gµν represents the effect of a graviton field in Minkowski spacetime.
4gµν formally acts like a field coupling in the action, whose strength depends on the curvature. Formally,

perturbative expansions are carried out in powers of a small fundamental constant α′ =
√
λs.

5The following example and its implications are drawn from Gasperini (2007), especially §4.1.
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so that the metric has a single time-dependent parameter, the ‘scale factor’ a(t), which
describes the ‘relative size’ of space, in a way familiar from GR cosmology. Additionally,
we adopt string units, which set λs = 1/

√
2, and introduce the ‘Hubble parameter’, H(t) ≡

ȧ(t)/a(t). Then the equations take the form

φ̇2 − 6φ̇H + 6H2 = 0, Ḣ −Hφ̇+ 3H2 = 0, (4)

and 2(φ̈+ 3φ̇H)− φ̇2 − 6Ḣ − 12H2 = 0. (5)

They represent the temporal and spatial parts of (1), and (2), respectively.
As well as time reversal symmetry (t→ −t), these equations also exhibit an interesting

‘scale inversion symmetry’: they are unchanged under

a(t)→ 1/a(t) and φ(t)→ φ(t)− 6 ln a(t). (6)

This symmetry is not an artifact of the special case, but hold of (1-2); indeed, it is a special
case of a more general symmetry for strings with background fields (Gasperini 2007, §4.3).

We flag this fact for two reasons. First, as we will illustrate below, this pair of symme-
tries provides a general method for constructing pre-big bang epochs from post big bang
solutions. Second, scale inversion is analogous to T-duality (Huggett 2017) in spaces that
are neither time-independent, nor compact (in the case of our effective classical theory).
We therefore commend it for philosophical attention.

Our equations of motion have a solution for t > 0

a(t) = (t/t0)
1/
√
3 H(t) = 1/(

√
3t) φ(t) = (

√
3− 1) ln(t/t0). (7)

These describe an expanding (ȧ > 0), but decelerating (ä < 0) Friedman-Lemâıtre-
Robertson-Walker spacetime (with Λ = 0). Moreover, since the Hubble parameter pro-
vides an indication of the spacetime curvature, we see that as t → 0 there is a curvature
singularity—an initial ‘big bang’.

Applying time and scale inversion symmetries there is another solution, for t < 0

a(t) = (−t/t0)−1/
√
3 H(t) = −1/(

√
3t) φ(t) = −(

√
3 + 1) ln(−t/t0), (8)

a spacetime which is expanding (ȧ > 0), and accelerating (ä > 0)—because of the dilaton,
this solution exhibits inflation. It too has a curvature singularity at t → 0, however, as
t→ −∞ the curvature vanishes: this solution represents a spacetime which has a perfectly
continuous past (not an early big bang), but which has a final singularity.

Turning to the dilaton field, we see that φ diverges as t → 0 in both solutions—with
opposite sign. It is this divergence that drives the early universe to the big bang singularity
in the model. Now, recalling that the string coupling gs ∼ expφ, we see that the first
solution has gs → 0 at t → +0, while the second solution has gs → ∞ at t → −0: for the
latter but not the former, the string perturbative expansion fails at t→ 0. However, since
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the curvature is singular at t → 0 in both solutions, the gµν expansion fails at t → 0 for
both. Since our equations are perturbative, they thus fail at the big bang.

Given these solutions for epochs of positive and negative times, which agree on the
geometry as t→ 0, one naturally wonders whether they can be meaningfully joined together
at t = 0, a big bang that occurs between an infinite past and future? Since the geometries
are singular at t = 0, this proposal does not strictly make sense, but recall that the
equations of motion which produce these solutions are themselves perturbative, and only
apply for weak curvature and string coupling. Hence, as we just saw, we cannot trust
them too close to the curvature singularity, and the question becomes whether quantum
and stringy corrections will prevent the singularity, and allow a consistent matching of the
solutions: that is, is there a complete string theoretical model, for which our solutions are
early and late time approximations? If so, what kind of physics do they entail for the big
bang? For if the classical approximation fails, there opens up the possibility that what is
left is quantum spacetime!

Here things are, unfortunately, unclear (Gasperini 2007, Chapter 6). Various possibili-
ties arise, and it is not known which holds. Assuming that indeed there is a stringy model
connecting the solutions, the following are the most relevant for the purposes of this paper.
First, the equations studied are only to lowest order in perturbation theory. As the curva-
ture grows as t→ 0, higher order corrections in gµν become significant; perhaps including
them causes (7-8) to lose their singular behaviour, so the classical spacetime approximation
remains valid throughout. Put another way, the correct effective theory around t = 0 is a
modified form of GR, in which a big bang singularity is avoided. According to Gasperini
(2007, 230) there are indications that this scenario does not hold.

Second, it is possible that the growth of the dilaton, and hence gs, for t < 0 make higher
order string corrections important, though the perturbative scheme still holds through the
transition to the classical t > 0 solution (at which point the first order solution again
suffices). Since such corrections represent (inter alia) the creation and annihilation of
stringy gravitons, in this scenario the effective classical description of gravity breaks down,
and is replaced by a quantum theory of superpositions of classical gravitational fields.
Some modeling of this scenario exists, but no detailed smooth transition between the two
classical solutions is known (Gasperini §6.3, Appendix 6A).6

Finally, it is possible that the growth of curvature and dilaton as t → 0 cause pertur-
bative string theory to fail altogether, and an exact, ‘M-theory’ is needed to describe the
physics. Of course, this theory is elusive: neither its fundamental quantities nor equations
are known. However, especially because of the many dualities linking its (assumed) lim-
its, it is widely believed by string theorists that the fundamental degrees of freedom are
non-spatiotemporal. Supposing that (and supposing that our classical solutions are stringy
phases of a single M-theoretic model), then the region around t = 0 at which the solutions

6Some models explain why only three of the nine spatial dimensions of supersymmetric string theory
are large.
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join, is fundamentally non-spatiotemporal: not well-described by a classical spacetime, nor
even by a quantum one.

3 Loop Quantum Cosmology

Loop Quantum Gravity (LQG) proceeds by a canonical quantization of GR. As such,
it casts GR as a Hamiltonian system with constraints. All but one of the constraint
equations have been solved: the Hamiltonian constraint equation, in loose analogy to the
standard case the ‘dynamical’ equation of the theory, has not so far succumbed to solution.
Physicists have pursued two work-arounds. Some have attempted to replace the canonical
‘dynamics’ with a supposedly equivalent covariant one (Rovelli and Vidotto, 2015). Others
have instead studied simplified systems with the original canonical ‘dynamics’.

Loop Quantum Cosmology (LQC) undertakes the latter: already at the classical level,
it imposes a symmetry reduction on the space of admissible models.7 We start with LQG,
where the geometry is not expressed in terms of metric variables, but instead the canonical
variables are a connection and a (densitized) triad. These basic variables are then used to
construct a ‘holonomy-flux algebra’. In full LQG, one arrives at the ‘kinematical Hilbert
space’ HK—the space of those states satisfying all but the Hamiltonian constraint. The so-
called ‘spin network states’ form an orthonormal basis in HK ; these states are eigenstates
of the ‘area’ and ‘volume’ operators. The spin network states are constructed from a
‘quantum geometrical vacuum’ state using the holonomies as ‘creation’ operators, raising
the excitation level of the fluxes. They can be represented as graphs labeled with spin
representations on their edges and vertices. Since the ‘dynamics’ is not yet accounted for,
the spin network states are routinely interpreted as ‘spatial’ such that physical space is a
quantum superposition of spin network states with well-behaved geometric properties.

As is usual in cosmology, LQC assumes spatial isotropy, such that the spatial geometry
is given by just one degree of freedom: the scale factor a of (3). It is in this sense that LQC
addresses the ‘cosmological’ sector of LQG. Thus, all degrees of freedom are ‘frozen’, except
for one (or three, in the anisotropic case). This symmetry reduction is already imposed at
the classical level, prior to quantization.8 Unlike in the full theory, where in general the
spin networks are complicated and irregular, the isotropic quantum configuration is highly
regular and can be represented by a lattice graph consisting of straight edges of roughly
the same basic length and similar-sized surfaces of an area roughly the square of the basic
length.

More concretely, the single remaining degree of freedom is captured by the ‘scale factor’
operator p̂, essentially corresponding to the classical scale factor a via a =

√
|p|, where

the p’s are the eigenvalues of p̂. The scale factor operator has a (quasi-)discrete spectrum,

7For an accessible, but technical introduction to LQC, see Bojowald (2011).
8It is unknown whether quantizing first and symmetry-reducing second will in fact deliver an equivalent

result, although in principle it should.
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which includes zero9: the isotropic spatial quantum geometry is ‘atomic’ in this sense. In
order to obtain the (symmetry-restricted) physical Hilbert space Hs, one expresses and
then solves the simplified Hamiltonian constraint equation on the basis of a momentum
representation of states |Ψ〉 in Hs, using |Ψ〉 = Σµψ(φ, µ)|µ〉, where φ designates matter
fields and the |µ〉 form a complete basis of eigenstates of p̂. Still at the kinematical level,
one can build an inverse triad operator, call it M̂ , capturing the scalar curvature of the
isotropic quantum geometry. Classically, the corresponding curvature a−1 would diverge
for a→ 0, as the big bang is approached. But in LQC, M̂ turns out to not only have the
appropriate classical limit for sufficiently large µ, and hence a, but also to exhibit bounded
small-µ behavior, with a peak around a small, but non-zero µ. In fact, at µ = 0, the
eigenvalue of the operator is zero. Thus, the curvature singularity at what is classically the
big bang vanishes in LQC.

So far, however, only the ‘kinematical’, or spatial, states are considered. In order to
turn LQC into a theory of QG, the physical states must be identified, i.e. those states which
satisfy the ‘dynamics’, and hence are fully spatiotemporal. Mathematically, the dynamics is
implemented in the Hamiltonian constraint equation Ĉ|Ψ〉 = 0, where whatever |Ψ〉 satisfy
this constraint (and the others) are the physical states we are looking for. These physical
states can be expanded in terms of eigenstates of some operator, such as of a scalar field
or of the volume, which does not need to be an observable (and so the eigenstates may not
themselves be ‘physical’). Since |Ψ〉 is extended in ‘time’, the family of these eigenstates
can then be interpreted as an ‘evolving quantum geometry’, with the evolution occurring
with respect to the degree of freedom captured by the operator—the ‘internal time’: the
‘variation’ of Ψ with respect to this basis stands in for the temporal variation of basis states
over the full interval of eigenvalues. All of this can in principle be done in full LQG. It is at
this point that the main advantage of LQC over the full theory manifests itself: unlike in
the full theory, it is possible to concretely construct the Hamiltonian constraint operator,
nurturing the hope that we can grasp important qualitative features of full LQG.

As it turns out, if we express the general state in the triad eigenbasis |µ〉 of p̂, and so
use the scale factor which essentially corresponds to p̂ as an internal time, the Hamiltonian
constraint equation becomes a difference equation, rather than a differential equation.
Essentially, it has the following form:

V+ψ(φ, µ+ 1) + V0ψ(φ, µ) + V−ψ(φ, µ− 1) = Ĥmψ(φ, µ), (9)

where the V ’s are coefficients making sure that the appropriate classical limit is obtained
and Ĥm is the matter Hamiltonian. In other words, for a state |Ψ〉 to qualify as physical,
its components in terms of the triad eigenbasis have to satisfy (9). In order to determine
|Ψ〉 through (9) by means of the ψ(φ, µ), the values of ψ(φ, µ) must be given for a closed
unit interval containing some µ ∈ R—the ‘initial values’. As long as the coefficients do not
vanish, the complete state can then be determined recursively through (9), including those

9The spectrum is R, but the eigenstates are normalizable, and thus the spectrum is discrete by definition.
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parts to the other side of the ‘big bang’ at µ = 0 from the initially given unit interval. As
this is in general possible, the dynamical singularity present in classical cosmology, where
nothing can ‘evolve’ through the big bang, is resolved.10

Although problematic, one reading of the simplified Hamiltonian constraint equation
is thus as an evolution equation, with the scale factor as ‘time variable’. Unlike the case
of string cosmology, in which the scale factor was a function of the time parameter, it
is interpreted here as (cosmic) time itself, although some other degree of freedom such
as a scalar field could play the role of internal time. Under this interpretation of µ as
‘time’ since µ runs the whole gamut of R, a ‘backward’ evolution brings us into a ‘mirror
world’ of negative µ. How should we think of this mirror world, and how does it relate
to the physics of the more homely late cosmic times? Can we meaningfully speak of what
happened ‘before the big bang’?

There are really two separate and distinct questions. First, what is the physics of the
realm ‘beyond the big bang’? Second, how does that physics connect to the physics of
our realm? As for the first point, the ‘trans’-big-bang physics is a precise mirror image of
the ‘cis’-big-bang physics, except that the spatial orientation is inverted (as indicated by
the negative sign). The usual interpretation, just as for the string-theoretic model in §2,
is that we are here faced with the physics of a collapsing universe, which heats up as it
contracts, reaches a point of maximum heat and minimum size (zero, in fact), and then
rapidly re-expands and cools down. We will offer an alternative interpretation in the next
section.

Regarding the second question, since what is quantized in LQC is a geometric degree
of freedom (the scale factor), one might anticipate that the physics of the region joining
the two parts of the universe are at most non-spatiotemporal in a very mild, quantum-
fuzzy way. However, these intermediate states are not semi-classical, and hence have no
intuitively spatiotemporal interpretation. In fact, it appears (Barrau and Grain, 2016;
Brahma 2017) as if the same mechanism that is responsible for the resolution of singularities
in LQC also leads to a so-called ‘signature change’ in these same models: going backwards
in time, from a structure which well approximates a spacetime of Lorentzian signature at
late ‘times’ (i.e. large values of µ), to a structure with Euclidean signature in the deep
quantum regime of early ‘times’ (small values of µ), and then back to Lorentzian trans-
big-bang physics. The structure in the deep quantum regime is thus, though geometrical,
purely spatial. Thus, there is no connected physical time through the big bang epoch—
in fact, there appears to be no time at all—and the interpretation of the scale factor as
physical time remains limited. It seems as if our current temporal era emerges, temporally,
from an atemporal epoch of the universe.

10See, however, Wüthrich (2006) for some caveats concerning the claimed singularity resolution.
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4 Discussion and Conclusions

Moving to quantum theories more fundamental than GR seems to lead us, at least poten-
tially, to atemporal (or aspatiotemporal) structures. What these fundamental less-than-
fully spatiotemporal degrees of freedom are and how they can form spacetime depends on
the approach to QG taken. But as we have noted, they raise the possibility that there is
a transition, as it were, from an ‘earlier’ quantum state, which in general lacks any cor-
respondence to a classical emergent state, to a ‘later’ classical cosmology well described
by relativistic spacetime. Indeed, we have seen that just such a phenomenon is at least
possible in cosmological models based on string theory and LQG. We want to raise three
foundational issues of particular note in the context of these two examples, with the second
dividing into three sub-points.

(1) Oriti (2015) offers a hierarchy of levels of emergence, corresponding to the severity
of the reconstructions required to recover classical, continuum spacetime from the funda-
mental structure: the higher the level, the more drastic they are, and correspondingly, the
less spatiotemporal the fundamental structure. At the first, lowest, level, we just have the
quantum version of otherwise ordinary spatiotemporal, geometrical, degrees of freedom: a
graviton field for example. At the next highest level, we find fundamental pre-geometric
degrees of freedom, which may still have some spatiotemporal properties, but which may or
may not have an effective spacetime description, depending on the state. At yet a higher
level, we find fundamental degrees of freedom which do not exhibit any spatiotemporal
properties, and which will only come to form something like spacetime, approximately, as
a result of some ‘dynamical process’. As an example at this level, Oriti offers his own
approach to quantum gravity called ‘Group Field Theory’, a second quantization of LQG,
in which spacetime emerges from fundamental degrees of freedom by a ‘process’ called
‘geometrogenesis’ (cf. Oriti 2014). Here, the relevant dynamical process is obviously not a
temporal happening; instead, it can be interpreted as a transition point in a phase diagram.

These levels are a useful general scheme for organizing kinds of emergence, but our
examples reveal some complications. First, our string example, shows how the fate of
spacetime hangs on what happens to the perturbative expansion. In general, it is expected
that a full theory—M-theory, that is—will involve non-spatiotemporal degrees of freedom,
and hence belong at one of the higher levels of Oriti’s scheme. However, in the specific model
discussed, that is only one possibility: it is also possible that only quantum corrections to
gravity are relevant, in which case the model corresponds to one of the lower levels. So the
example indicates that it makes sense to distinguish models of a single theory according to
their level of emergence, as well as different theories.

In LQC, spacetime gets directly quantized and thus replaced by a different structure. In
our example the fundamental structures are regular spin networks, which approximate the
classical cosmological models very well at late stages. Their states are discrete structures,
whose degrees of freedom, arguably, are still geometric; so in this sense, the disappearance
of spacetime remains comparatively mild in this case, even though these are quantum struc-
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tures, and general physical states are superpositions of spin network states. As geometric
as the degrees of freedom may remain, however, the fact that the spacetime signature
changes from Lorentzian to Euclidean for sufficiently early times suggests that although
the structure may afford a geometric, indeed spatial, interpretation, time does not extend
into the very early universe. This example shows that there are interestingly different pos-
sibilities at the lowest, quantum spacetime level, that arguably should be distinguished in
a more fine grained way: quantum time should be distinguished from pure spatiality!

(2a) As noted in §3, there are at least two ways to conceive of the LQC model. The
standard interpretation considers it as a universe which first contracts and heats up, goes
through an extremely dense and hot phase, and then expands and cools down.11 In this
case, physical time would have to run continuously through the deep quantum regime in
order to result in one unified physical process, of an earlier state evolving into a later
one. But as we saw, a signature change around the big bang means that there is no such
connected notion of time. (Nor can the scale factor provide one, since it is non-monotonic
at t = 0.)

Alternatively, one could interpret the model as describing the twin birth of two universes
from the same primordial quantum womb, which then both expand and cool. In this case
there is not one process, but two (similar) processes in which an effective spacetime region
emerges; and no connected, persistent physical time running from before to after the big
bang is required. The puzzle now is how a single atemporal quantum realm can stand in
a ‘before’ relation to both quasi-classical, temporal regions.

Consider the general case in which an effective spacetime emerges in a theory of QG.
The precise way in which time emerges hangs on details of the fundamental physics and the
particular ways in which its degrees of freedom combine. However, one expects the emer-
gence to involve the aggregation of a suitably complex collection of fundamental quantities.
The way in which not just time, but its direction, emerges is then essentially thermody-
namic, or statistical, and hence given, for instance, by an increasing entropy. In this case,
however, the direction of time can vary by region (as, for instance, a Boltzmann fluctuation
approaches equilibrium symmetrically in time). Therefore, in the LQC model we may find
a situation in which ‘during’ the big bang time does not emerge from the fundamental
degrees of freedom, while in the quasi-classical regions, the fundamental degrees of free-
dom (assuming sufficient symmetry) combine such that the local effective time is in the
direction away from the big bang in both the trans- and the cis-big bang realms.12

11Note the difference from string cosmology, in which both spacetime regions have a finite scale factor a
at all times, and a increases in the same temporal sense at all times—including the singularity at t = 0.
(The big bang curvature singularity shows up in the Hubble parameter, not a vanishing scale factor.)

12We do not say that such a situation must obtain. For instance, the entropy gradient need not align
with the scale factor gradient, ȧ, and entropy can in general decrease in the direction of expansion (see
Penrose 1989, Ch. 7). However, a desideratum for a theory of QG is that it explain the early low entropy
of our universe. Thus if the loop program succeeds, it will determine in what direction the effective arrows
of time point. So whether the scenario we postulate obtains depends on details of the theory; details that
are, as yet, unknown. Similar remarks could be made for string cosmology.
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(2b) One might still ask whether such an effective direction suffices: there is still the
problem of how an atemporal region could ever come before a temporal one, since in such
a case there is no time that could count as being earlier. The answer is to extrapolate
local, directed time beyond its proper domain of applicability: the atemporal region is
before the effective temporal region, iff timelike curves in the effective spacetime can be
extended to the atemporal region in the past, but not in the future, effective direction.
(Or the converse if the atemporal region comes after the temporal region.) In the models
we have discussed, the big bang region—even if timeless—may be a past limit relative to
local determinations of time’s arrow. In this sense it can come ‘before’. (We discuss this
definition further below.)

(2c) There remains, however, the crucial question of how we can even speak of a ‘tran-
sition from’ an atemporal phase: in geometrogenesis, or from an M-theory phase, or from
a LQC phase of purely spatial geometry. “How can there be a change from a state without
time?”, Zeno might ask. The radical possibility is that a theory of atemporal degrees of
freedom requires a completely different way of doing physics, which abolishes such notions.
But first, how far will a more conservative strategy take us? That is, note that there seems
no in-principle difficulty with a fundamental theory allowing an effectively temporal region
to have an atemporal state as its future limit point: such a model would describe a ‘disso-
lution’ of time. But in a fundamental, atemporal theory there is no fundamental direction
to time, and ‘dissolution’ and ‘emergence’ are identical. That is, since the direction of time
is only effective, when speaking in terms of fundamental physics we should think of the
big bang as just a limit to time, taken as early or late only by convention. Insofar as the
dissolution of time is unproblematic, so is its emergence.

However, this conservative response is incomplete. We did not fully specify the sense
in which the big bang region is a ‘limit’ to time, or what it means to extend an effective
timelike curve ‘to’ an atemporal region. It will of course depend on theoretical details of
the region, but by construction it will not involve the region having any temporal extent:
for instance, the region might be Euclidean, or lack any manifold structure. From the
point of view of an effective temporal description we have an open timelike curve plus one
extra ‘point’, which is in fact a structured object, more complex than the 3-dimensional
hypersurfaces found at other times. (For simplicity, ignore any indeterminacy in whether
points are temporal or not.) This picture could comprehend a transition from the atemporal
to the temporal, if the initial point were also considered a time, from which later states
evolve. That would require a dynamics in which the atemporal region was an initial state.

A quite different idea is that some new fundamental parameter is needed to play the role
of time in the fundamental dynamics: a parameter that varies across the atemporal region,
and agrees with effective time in the quasi-classical regions. The transition would then be
with respect to this quantity, not effective time. Or perhaps the radical possibility is correct:
the very idea of dynamics—and with it ‘transition’—must be replaced in quantum gravity.
All we will say is that there is a very deep conceptual issue here, in which philosophy has
profound bearing on physics.
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(3) Huggett and Wüthrich (2013) raised the question of ‘empirical incoherence’ for
quantum gravity: if a theory postulates that fundamentally there are no (or very weak)
spatiotemporal structures, doesn’t it undermine the very possibility of its having empirical
support—for all observations are ultimately local in space and time? There we argued
that the solution is to seek derived (or ‘emergent’) structures that behave functionally as
spatiotemporal ones: playing the right role in the laws of theories with classical spacetime,
for instance.

However, the current examples—in the strongest cases of spacetime dissolution—reveal
a gap in our answer. If there is a non-spatiotemporal region according to theory T , then
in that region there are no derived spatiotemporal structures, and hence no possible ob-
servations of it. So is a theory including such a region empirically incoherent, at least
regarding that portion of the universe? Again we say ‘no’; for of course observations are
possible in the spatiotemporal region, and so T is capable of empirical support by its own
lights, and insofar as it is supported, so are its consequences, including the existence of the
non-spatiotemporal region.

That said, the situation raises some interesting features. First, the non-spatiotemporal
phase is unobservable in a particularly profound sense; more profoundly than a very small
object, say. Second, as a result, the inference of the theory beyond the observable is
particularly tenuous, and hence arguably any inference from empirical evidence is unusually
weak. That said, the evidential situation is better in the future of an atemporal phase
than the past, for it should leave traces (i.e., one can benefit from the usual temporal
knowledge asymmetry); indeed, the string model makes predictions for traces in the cosmic
background radiation. Third, it is also possible that T allows worlds in which there is never
a phase transition, and the universe is entirely non-spatiotemporal; in such a world, the
theory would indeed be empirically incoherent—in other words, empirical incoherence is a
relation between theories and their models.

In short, the above examples and discussion demonstrate that there are significant
implications for our cosmic conception of time in QG accounts of the origin of spacetime.
We have barely scratched the surface.
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