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Abstract

Space and time are fundamental to our description and understanding of physical laws. But are

space and time themselves only approximations to an even more fundamental description of real-

ity? Recent developments in quantum gravity have shown how space can be emergent from more

fundamental principles. This dissertation provides a review of tools and results developed over the

last five years which shed light on a more fundamental description of time. We first discuss a way of

understanding time using quantum information theoretic techniques. These techniques are put to

use to study how causality and the arrow of time can emerge from the pattern of entanglement in

tensor networks. Next we discuss concrete models of emergent time in quantum gravity, culminat-

ing in a non-perturbative model in which both space and time are emergent from random matrices.

This model describes low-dimensional de Sitter quantum gravity, which has a positive cosmological

constant.
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Introduction

Our most incisive analysis of non-perturbative quantum gravity comes from various examples of

the AdS/CFT correspondence, originating in Maldacena’s seminal paper [1]. The correspondence

says that certain kinds of d-dimensional CFTs are non-perturbatively equivalent to string theory

in Anti-de Sitter space in (d + 1)-dimensions.1 In particular, one of the spatial dimensions of the

AdS theory “emerges” from the CFT. Over the last decade, there has been increasing emphasis

on the perspective that in AdS/CFT, a quantum gravity theory is encoded in a non-gravitational

theory, i.e. the CFT. Said simply, within quantum mechanics lies the equations of gravity. Rather

than attempting to combine quantum mechanics and gravity into a unified theory, we should instead

attempt to unearth quantum gravity hidden in certain quantum mechanical systems.

This perspective has led to intense study of how the quantum information theoretic properties of

CFTs and related quantum many-body systems encode the data of hidden quantum gravity theories

in one higher spatial dimension. Along the way, previously unknown structures of quantum field

theories were elucidated by quantum information-theoretic analyses. Remarkable connections be-

tween entanglement and emergent space were proposed and studied theoretically, and many insights

into the quantum nature of black holes were realized.

Despite these advances, we still have a very limited understanding of non-perturbative quantum

gravity with a positive cosmological constant, which would be required to understand our universe.

The fact that AdS has a negative cosmological constant is deeply ingrained in the paradigm of

AdS/CFT, and is not merely a minor technical point that can be readily modified with a minus

sign. In fact, it is believed that with a putative dS/CFT correspondence, or more generally a

framework for de Sitter holography, time should be emergent. This is difficult to fathom – if time

is emergent, then so too must be quantum mechanics. At stake are the basic structures defining

quantum mechanics, namely unitary evolution preserving a positive-definite inner product on a

Hilbert space. If de Sitter holography is emergent from a non-quantum mechanical theory, then the

paradigm previously mentioned of “gravity hidden in quantum mechanics” may have to be seriously

revised to understand our universe. As such, it is not clear which lessons of AdS/CFT will carry

1There are also additional compact dimensions that are the size of the AdS scale, but we will not discuss them
here.
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over to the setting of a positive cosmological constant.

Perhaps these deep questions have seen less attention because it is not at all clear how to proceed.

Unlike AdS/CFT, we lack clear and tractable examples of de Sitter holography with which to ground

our understanding. Although we know well the rules of AdS/CFT, the rules of de Sitter holography

have remained elusive. So progress on de Sitter holography over the last 20 years has been mostly

intermittent.

This dissertation summarizes my and my collaborators’ attempt over the last five years to grapple

with de Sitter holography and more broadly the emergence of time in quantum gravity. This research

program is presently ongoing, but we have to date made serious progress on multiple fronts. Part I

presents a framework for studying quantum information in spacetime. While quantum states encode

correlations at a fixed time, we introduce and study superdensity operators which encode spacetime

correlations in their pattern of entanglement. This is covered in Chapter 1. Next, in Chapter 2,

we put superdensity operators to work to study how tensor networks can encode causal structure

and the arrow of time. Here we start shedding away the usual structures of quantum mechanics:

we see how space and time can be encoded in the entanglement of a tensor network itself, without

any explicit time evolution (i.e., a Hamiltonian, quantum channels, etc.). While the framework and

results of Chapter 1 and Chapter 2 provide interesting insights for conventional quantum many-

body systems and even AdS/CFT, they do not provide us with a model of de Sitter holography.

However, the tools are useful for studying models of de Sitter physics.

In Part II, we formulate a model of de Sitter holography, and develop techniques to study it.

We find that the de Sitter quantum gravity theory is equivalent to a non-quantum theory with

neither space nor time. Thus, space, time, and quantum mechanics are emergent in the quantum

gravitational description. The way in which this manifests is rather remarkable, and appears to be

the first example of its kind. We develop relevant theoretical tools first in the more familiar setting

of AdS in Chapter 3, followed by dS in Chapter 4. The de Sitter holography framework and

emergent quantum mechanics, space, and time are analyzed in Chapter 5.

Going forward, there is much more work to be done to build on the model of de Sitter holography

developed in Chapter 5. Our hope is that our findings will shed light on the fundamental nature

of time.
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Chapter 1

Superdensity Operators for

Spacetime Quantum Mechanics

This chapter is essentially the same as

• Cotler, Jordan, Chao-Ming Jian, Xiao-Liang Qi, and Frank Wilczek. “Superdensity Operators

for Spacetime Quantum Mechanics.” Journal of High Energy Physics 2018.9 (2018): 93.

Abstract

We introduce superdensity operators as a tool for analyzing quantum information in spacetime. Su-

perdensity operators encode spacetime correlation functions in an operator framework, and support a

natural generalization of Hilbert space techniques and Dirac’s transformation theory as traditionally

applied to standard density operators. Superdensity operators can be measured experimentally, but

accessing their full content requires novel procedures. We demonstrate these statements on several

examples. The superdensity formalism suggests useful definitions of spacetime entropies and space-

time quantum channels. For example, we show that the von Neumann entropy of a superdensity

operator is related to a quantum generalization of the Kolmogorov-Sinai entropy, and compute this

for a many-body system. We also suggest experimental protocols for measuring spacetime entropies.
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CHAPTER 1. SUPERDENSITY OPERATORS FOR SPACETIME QUANTUM MECHANICS 6

1 Introduction

Large parts of the existing formalism of quantum mechanics, and its interpretative apparatus, treat

space and time on very different footings. Yet in classical physics it is often advantageous, especially

in the analytical theory of dynamical systems, to consider time as an extra dimension on the same

footing as spatial dimensions [2]. And of course grossly asymmetric treatment of time and space is,

from the point of view of relativity, disturbing and unnatural. In this paper, we propose a formalism

for spacetime quantum theory which ameliorates the asymmetry. This formalism suggests new

ways to analyze the dynamics of quantum information and entanglement in spacetime, and new

experiments to elucidate that dynamics.

Before attempting to put space and time on similar footing in quantum theory, it is instructive

to recall how space is treated in quantum theory – in other words, the relationship between physical

space and the Hilbert space of (single-time) states. In simple cases, we can decompose Hilbert state

space into tensor factors

H =
⊗

x

Hx (1.1)

with each factor corresponding to a particular point in space x. In this way, the tensor factor

decomposition identifies local degrees of freedom.

Given a quantum state, we can analyze it relative to the tensor factors Hx, using a basis of the

Hilbert space which is the tensor product of bases of the individual tensor factors. We learn about

spatial correlations by considering entanglement between partial traces of the quantum state (i.e.,

spatial entanglement) or, in practice, by measuring correlation functions of operators that act on

different tensor factors (i.e., local observables). Another, more general way to identify local degrees

of freedom is to provide a “net of observables,” essentially defining which operators on the Hilbert

space are local [3]. Also, notoriously, important subtleties arise in taking infinite products of Hilbert

spaces. In this paper we will prioritize simplicity over maximum generality.

To upgrade time from its parametric manifestation, it is natural to consider an expanded Hilbert

space, containing tensor products for different times, which we will call the history Hilbert space

Hhist.. Supposing a tensor factorization into spacetime points is possible, then the history Hilbert

space takes the form

Hhist. =
⊗

x,t

Hx,t . (1.2)

More compactly, if Ht is the Hilbert space of states at time t, then Hhist. =
⊗

tHt. Now we

require a spacetime generalization of quantum states. It is tempting to think that the right notion

of spacetime states would simply be states in Hhist. with the standard inner product, but this turns
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out not to be useful. In fact, finding a suitable notion of spacetime states is rather subtle.

History Hilbert space has appeared before in discussions of quantum theory, perhaps most notably

in Griffiths’ foundational work on consistent histories [4–6]. In the consistent histories framework and

its variations the central objects are projection operators on Hhist. [7–16]. In the entangled histories

formalism developed by two of the authors of the present paper, the consistent histories formalism

was generalized to define quantities which are more akin to spacetime states (in particular, allowing

superposition) and some of their characteristic phenomenology was explored [17–20]. Other attempts

at defining spacetime states include multi-time states [21–23] and pseudo-density matrices [24]. We

should also mention that the multi-time correlation operator, which was developed as a tool to

study dynamical entropies in quantum systems [25–31], embodies a special case of our superdensity

operator. We will return to comparative discussion of some of these approaches later; for now, let us

only mention that each of them can be expressed within the superdensity formalism, which appears

to us more systematic and comprehensive. We have been inspired by the elegance and power that

Dirac’s transformation theory achieves for quantum states, and have attempted to achieve something

analogous for spacetime analogs of quantum states. There has also been related work on spacetime

quantum circuits and quantum measurements [32–41] which can be interfaced with our formalism.

In the approach pursued here, superdensity operators play a central role. Mathematically, super-

density operators are quadratic forms on the space of operators on the history Hilbert space. Phys-

ically, the superdensity operator of a physical system codifies its response to experimental probes,

allowing that those probes may be applied at different times (and places). More abstractly, just

as a standard density operator represents a state and encodes the data of all correlation functions

at a fixed time, we propose that the superdensity operator represents a spacetime state, and en-

codes the data of all spacetime correlation functions. As the name suggests, superdensity operators

share many formal properties with density operators. We will demonstrate, in particular, that the

information theoretic properties of superdensity operators – such as their entanglement, entropies,

mutual informations, etc. – are meaningful notions with operational physical significance. Thus the

superdensity operator provides a compelling definition of the spacetime state of a system, which also

appears to be fruitful.

The paper is organized as follows:

• In Section 2 we will further motivate, define, and exemplify superdensity operators, and discuss

their formal properties. Within this framework, the concepts of spacetime observables and

spacetime entanglement arise as naturally as do the corresponding concepts for (single-time)

states.

• In Section 3 we show that the superdensity operator is in principle observable, and discuss the

interesting, novel kinds of measurements its full exploration requires.

• In Section 4 we show how the superdensity operator suggests a definition of quantum dynamical
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