

Unilateral version vector pruning using
loosely synchronized clocks

Yasushi Saito
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-51
March 5th , 2002*

E-mail: ysaito@hpl.hp.com

replication,
version
vector, vector
clock,
distributed
system

This paper presents a new lightweight algorithm for
pruning inactive entries in version vectors (VVs). This
algorithm lets each node remove inactive VV entries
without any coordination with other nodes. It achieves this
feature by devising a new way to compare two version
vectors based on loosely synchronized clocks and placing a
timing restriction on the behavior of the application. VVs
computed by our algorithm can accurately and completely
capture the “happened-before” relation between events just
like ordinary VVs. This paper proves the correctness of our
algorithm as well.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Unilateral version vector pruning using loosely synchronized clocks

Yasushi Saito
HP Labs, Storage Systems Department

ysaito@hpl.hp.com

March 5, 2002

Abstract

This paper presents a new lightweight algorithm for pruning
inactive entries in version vectors (VVs). This algorithm lets
each node remove inactive VV entries without any coordina-
tion with other nodes. It achieves this feature by devising a
new way to compare two version vectors based on loosely
synchronized clocks and placing a timing restriction on the
behavior of the application. VVs computed by our algorithm
can accurately and completely capture the “happened-before”
relation between events just like ordinary VVs. This paper
proves the correctness of our algorithm as well.

1 Introduction

A version vector (VV) is a data structure, kept for each copy
(replica) of a modifiable object, that summarizes the set of
updates applied to the replica. It is a generic mechanism
for detecting Lamport’s happen-before relationship [9] be-
tween events in a distributed system, and its uses include
detecting concurrent updates in a replicated database sys-
tem [11, 8, 14], distributed system monitoring and debug-
ging [6], and efficient update propagation in mobile database
systems [14, 12, 7].

This paper presents a new lightweight algorithm for prun-
ing inactive entries in VVs.1 Our algorithm addresses a key
shortcoming of VVs: they encode the set of nodes (comput-
ers) that participate in the VV protocol, and their size and
computational overheads grow with the number of nodes.
This problem becomes serious especially when a system ex-
periences frequent and dynamic changes to the participant
set [12, 14]. In such an environment, the size of VVs grows
unboundedly even when the number of active nodes is small,

1The algorithm is for pruning entries in a VV itself. It is not for pruning
data structures associated with version management, such as an update log in
a replicated database system. The reader should consult [15] for algorithms
for dealing with the latter issue.

because VVs must keep the entries for all nodes that once par-
ticipated in the protocol in the past. Such a system must prune
inactive VV entries systematically. A VV pruning algorithm
should satisfy the following goals:

Localization: VV pruning shall require no synchronous
communication among nodes. Localization not only re-
duces the cost of the algorithm, but also gives manage-
rial latitude to the system. For example, it allows VV
pruning to be performed when a node boots, every night
when the node is idle, or whenever a node wishes.

Livelock freedom: A slow or unavailable node shall not
hamper pruning process running on other nodes. This
property is crucial since VV-pruning is most often
needed when some nodes remain inactive for a long pe-
riod.

In the past, VV pruning has usually been implemented us-
ing a distributed consensus protocol, which is not only expen-
sive but also prone to livelocking. In contrast, our algorithm
achieves the above goals by letting nodes unilaterally remove
inactive VV entries. The key difficulty we face is inherent
asynchrony in distributed systems. For example, a node with
a fast clock may remove a VV entry that is considered still
“live” by another node with a slower clock.

The algorithm we propose utilizes loosely synchronized
clocks and develops a new way of comparing two VVs to
coordinate nodes implicitly. VVs computed by this algorithm
areaccurate andcomplete; for any event that “happened be-
fore” another, the former event’s VV will dominate the lat-
ter’s, and vice versa. The downside of this algorithm is its re-
liance on synchronous networking. In particular, it demands
that each event be delivered to all live nodes and processed
by them within a fixed period. This seemingly strong limi-
tation, however, can usually be circumvented by choosing a
long VV-entry expiration period (e.g., a month), because VV-
pruning is a non-critical, background operation that can be
delayed if needed.

1

Section 1.1 presents the basic “textbook” VV algorithm
and explains the difficulty of VV-entry pruning. Section 1.3
overviews VV-pruning algorithms proposed in the past. Sec-
tion 2 presents our algorithm, and Section 3 proves its cor-
rectness.

1.1 Description of the basic VV algorithm

Figure 1 shows the basic VV algorithm, introduced first in
the LOCUS distributed operating system [11, 16]. A VV is a
table that partially maps anode ID to a timestamp. It is kept
for each copy (replica) of an object replicated in a distributed
system. A node ID is any bit-string that uniquely identifies a
node that stores a replica (e.g., an IP address). A timestamp
is any monotonically increasing value, but most systems use
a counter that increments when an update locally happens at a
node. We follow this convention in our presentation. The VV
attached to an event or a data item captures a distributed cut of
the system, i.e., the perception of the state of all nodes in the
system by the event issuer [3]. This algorithm supports node
(replica) addition simply by letting a new node copy the VV
(and the database contents) from another existing node [7, 12,
14]. Other nodes treat non-existent entries in a VV as zero.
Thus, the VV-entry comparison operator≺ is defined as in
Table 1.

This paper focuses on the use of VV for concurrency de-
tection. Specifically, we assume that an incoming event is
compared against the VV representing the state of the replica
(variablevv in Figure 1) and that the incoming event is pro-
cessed (i.e., applied to the replica) immediately after its ar-
rival.

This VV algorithm can provably capture the “happened-
before” relationship [9] between two eventsE1 (with VV vv1)
andE2 (with VV vv2) as follows [5, 10]:

• If Dominates(vv1, vv2), thenE2 “happened-before”E1.

• If Dominates(vv1, vv2), thenE1 “happened-before”E2.

• If neither VV dominates the other, then neither of the
events “happened-before” the other. These events are
saidconflicting, or concurrent.

Figures 2 and 3 show examples of the use of VVs. Figure
2 shows how VVs can discover non-concurrent (consistent)
updates. Figure 3 shows how VVs can detect concurrent up-
dates.

1.2 Difficulty of VV-entry pruning

A VV entry should be removed when a node retires or stops
issuing updates so as to reduce both the spatial and compu-
tational overheads of VV management. Removing a VV en-

// Per-node persistent variables.
type VV = NodeID 7→ Timestamp

Update= 〈vv: VV, data: Whatever〉

var ts: Timestamp
vv: VV

// Called to issue a new event.
proc IssueUpdate(data)

ts← ts + 1
vv[myself]← ts
u← Update〈vv← vv, data← data〉
Sendu to other nodes.

// Called when an update arrives at a node.
proc ReceiveUpdate(u)

if Equal(vv, u.vv) or Dominates(vv, u.vv) then
Duplicate event reception.

if Dominates(u.vv, vv) then
Apply the update.

else
Conflict! resolve the update

// Compute the pairwise maxima of the two VVs.
for i ∈ dom(u.vv)∪dom(vv)

if vv[i] ≺ u.vv[i]
vv[i]← u.vv[i]

proc Equal(vv1,vv2): bool
return vv1[i] ≈ vv2[i], ∀i ∈ dom(vv1)∪dom(vv2)

proc Dominates(vv1,vv2): bool
if Equal(vv1, vv2) then return false
return vv1[i] ≺ vv2[i] or vv1[i] ≈ vv2[i],
∀i ∈ dom(vv1)∪dom(vv2)

Figure 1: The basic Version-vector algorithm. Function
“dom(vv)” returns the domain (keys) of version vector vv.
Operators ≺ and ≈ are defined in Table 1.

n 6∈ dom(vvb) n∈ dom(vvb)
n 6∈ dom(vva) vva[n]≈ vvb[n] vva[n]≺ vvb[n]
n∈ dom(vva) vva[n]� vvb[n] ∗

Table 1: Decision matrix for operators “≺”, “≈”, “�”, to
support node addition. For example, if, for some node n, n 6∈
dom(vva) and n∈ dom(vvb) then the algorithm decides that
vva[n] ≺ vvb[n]. “∗” means that the result is computed by
comparing vva[n] and vvb[n] arithmetically.

2

� [

� [

� [

�
��

�

� [

Figure 2: In this example, two replicas, a and b, start from
the identical state in step (1), with version vectors [0,0] (i.e.,
entries for a and b both being 0). Replica a is updated in step
(2), and the update is sent to b in step (3). Since a is strictly
newer than b, replica b detects no conflict in step (4).

� [

� [

� [

� [

Figure 3:In this example, replicas a and b start from the iden-
tical state in step (1). Two updates are issued concurrently at
replicas a and b concurrently in steps (2) and (3). When a’s
update is sent to b, replica b detects a conflict, because neither
vva nor vvb dominates the other.

try is not trivial, however, because simply erasing the entry
unilaterally causes both false-positive and false-negative con-
currency detection. The first problem is shown in Figure 4.
Here, if two concurrent events, received by nodesa andb, fail
to reach each other, then these events could falsely be consid-
ered non-concurrent. The second case is shown in Figure 5;
when one event is sent from nodea to b just aftera deleted a
VV entry (butb hasn’t), then two non-concurrent events could
be diagnosed as concurrent. These examples demonstrate that
nodes cannot simply remove VV entries at their will; they
must agree on the timing and the names of the entries to be
removed beforehand.

1.3 Related work

Several systems run distributed consensus protocols to let
nodes agree on VV entries to be pruned. TSAE [7] runs a
two-phase protocol for removing an entry for a retiring node
from VVs of other nodes. In the first phase, the retiring node
circulates the “retirement” message to other nodes. After con-
firming the reception of retirement by all the nodes, the retir-
ing node circulates another message to let the nodes delete the
entry from their VVs. Roam [13, 14] supports deletion of en-
tries for retiring as well as inactive nodes. Any node in Roam

� [

�

�
�

�

�
�

� [

Figure 4: The first problem of naive unilateral VV-entry re-
moval. Initially, nodes a and b receive two concurrent updates
1 and 2 with VVs VVa and VVb in steps (1) and (2). The sys-
tem remains quiescent, and the two updates fail to reach each
other until the second entry in their VVs are pruned in steps
(3) and (4). In step (5), update 1 is sent from node a to node
b, but b fails to detect a conflict.

� [

�

�
�

� [�

Figure 5:The second problematic case. Initially, in steps (1)
and (2), the state of node a and b is identical. In step (3),
because node a’s clock is faster than b’s, the second entry in
VVa is pruned before VVb’s. Later, in step (4), node a issues a
new update 1 that “happens-after” the update currently stored
in both a and b. When update 1 arrives at node b, b detects a
false conflict.

3

can start the pruning process autonomously by proposing the
value it wants to subtract from a VV entry. The proposed
value propagates among nodes epidemically. After the pro-
posal finishes circulating, each node subtracts the agreed-on
value from the entry; the entry is removed from the VV if its
value becomes zero. These consensus-based algorithms are
expensive and prone to livelocking.

Adya [1] proposes a VV-pruning algorithm that deletes en-
tries unilaterally without clock-skew compensation. Thus, it
is inaccurate (it may detect conflicts falsely), but for their pur-
pose of the summarization of causal dependency, inaccuracy
only results in a delay of program execution.

Bayou [12] supports removing VV entries for retiring
nodes through an ingenious node-naming scheme. A newly
created node (say,a) communicates with a node already in
the system (say,b) and receiveb’s timestamp (sayTb). Node
a then assumes the ID of〈Tb,b〉. This ID-selection scheme
allows each node to determine whether a missing entry in its
VV is due to a new node creation or a node removal. While
this algorithm achieves our goals of localization and livelock
freedom, it still has two shortcomings. First, the size of node
IDs grows gradually as replicas are created and deleted. Sec-
ond, it does not support removing VV entries for live but in-
active nodes.

Arora [2] proposes a VV algorithm in which the range of
values in each entry is bounded, and thus the total size of
the VV is bounded, assuming that the set of replicas is fixed.
It achieves this property by forcing each node to communi-
cate to others at a consistent pace and not allowing the entry
“wrap-round” too quickly. It does not, however, support VV-
entry pruning.

2 VV pruning using loosely synchro-
nized clocks

Our entry-removing algorithm is based on a simple intuition:
just remove entries unilaterally when they are found to be in-
active for a long period, e.g., a month. The two problems with
the naive implementation, demonstrated in Section 1.2, are
addressed as follows. The first problem is fundamentally in-
evitable in an asynchronous, livelock-free removal algorithm.
In fact, its inevitability is a direct consequence of Charron-
Bost’s theorem [4], which proved that detecting causality ac-
curately in anN-node asynchronous distributed system re-
quires a use of version vectors of size at leastN. Thus, we
punt and simply prohibit such situation from happening: our
algorithm demands synchronous networking, i.e., it demands
that any event be propagated to all live nodes within a fixed

period.2 The second problem is solved by creating a “grace
period” long enough to absorb both network delay and clock
skew, just before a node removes entries. During the grace
period, timestamps about to be pruned are considered equal
even when even when they are not.

Figure 6 shows our new algorithm. We extend the VV and
embed, in each entry, the physical-clock time the entry was
last updated by the node corresponding to the entry. (Systems
that use a physical clock as a timestamp, e.g., TSAE [7], need
not this change). The definition of the new VV-entry com-
parison operator,≺n,≈n,�n, are shown in Table 3. This al-
gorithm makes several timing assumptions about the system’s
behavior, as summarized in Figure 7.

This algorithm prunes VV entries in two stages:deactiva-
tion, anddeletion. An entry is deactivated when it remains
unchanged forDretire seconds. A deactivated entry is logi-
cally treated as a deleted entry, but is kept in the VV so as to
absorb clock skew. The entry is actually removed from the
VV when it remains unchanged forDdelete seconds.Dretire

and Ddelete are any values that satisfy the relations defined
in Table 2. In practice, we anticipate that both deactivation
and deletion are performed periodically in a batch, especially
when a node manages replicas of many objects.

Dretire > Dprop+Dnet+Dskew

Ddelete > Dretire +Dnet+Dskew

Table 2:Definition of Dretire and Ddelete.

3 Correctness proof

This section proves that our new VV algorithm accurately
and completely captures the “happened-before” relationship
between events. For the sake of the proof, we simulate the
basic VV algorithm (Figure 1) in parallel with our new al-
gorithm and show that a VV computed by our algorithm (vv
hereafter) dominates another if and only if the “imaginary”
VV computed by the basic algorithm (iv hereafter) dominates
its counterpart. Since the basic VV algorithm is proven cor-
rect [5, 10], this argument suffices to show the correctness of
our algorithm.

2Alternatively, a node that fails to receive an update within the period
must commit suicide. Our algorithm does not provide a mean of deciding
whether a node should commit suicide or not.

4

n 6∈ dom(vvb) n∈ dom(vvb),¬Active(vvb[n]) n∈ dom(vvb),Active(vvb[n])
n 6∈ dom(vva) vva[n]≈n vvb[n] 〈1〉 vva[n]≈n vvb[n] 〈4〉 vva[n]≺n vvb[n] 〈7〉

n∈ dom(vva),¬Active(vva[n]) vva[n]≈n vvb[n] 〈2〉 vva[n]≈n vvb[n] 〈5〉 ∗ 〈8〉
n∈ dom(vva),Active(vva[n]) vva[n]�n vvb[n] 〈3〉 ∗ 〈6〉 ∗ 〈9〉

Table 3:New decision matrix for operator “≺n”. “∗” means that the result is computed by arithmetically comparing vva[n]
and vvb[n]. Tags such as 〈1〉 and 〈2〉 are used to refer to the rules in the correctness proof.

3.1 Notations

• a.vv is the value of variablevv (Figure 6) at nodea.

• u.vv is the VV associated with updateu.

• a.iv andu.iv are the value of the VV computed by the
basic VV algorithm, corresponding toa.vv andu.vv, re-
spectively.

• Time mentioned in the proof is hypothetical physical-
clock time observed by one arbitrary node in the system.
Notice that, with this definition, the following relation-
ship always holds between hypothetical timeT and the
physical-clock timeT ′ observed at any node:

T−Dskew< T ′ < T +Dskew. (1)

3.2 Completeness

We first prove the completeness of the algorithm; i.e., that
whenever the basic algorithm detects a concurrency between
two events, our algorithm also detects the concurrency. The
opposite property, i.e., that a concurrency detected by our al-
gorithm is always genuine, is proved in Section 3.3.

Claim 1 Suppose that, for two VVsvv1 andvv2, there exists
node x such that x∈ (dom(vv1)∩dom(vv2)). Then,

vv1[x]≺n vv2[x] iff. iv1[x]≺ iv2[x],

and

vv1[x]≈n vv2[x] iff. iv1[x]≈ iv2[x].

Proof. The entry forx in a VV can be incremented only by
nodex, which never decrements its own entry. Thus, as far as
x is in both VVs, the entries have the same meaning as those
of the imaginary VVs.

Now, we prove the completeness by proving that compar-
ison of individual entries invv will yield the same result as
that iniv.

Theorem 1 Suppose that node a receives update u from node
b at time T. If a.iv[x] ≺ u.iv[x] for some node x, then
a.vv[x]≺n u.vv[x].

Proof. Let u′ be the update that first setx.iv[x] to u.iv[x], and
Tu′ be the timeu′ was issued (by nodex). Notice that, from the
wayu′.iv[x].wc is calculated and (1), the following inequality
holds.

u′.iv[x].wc−Dskew< Tu′ < u′.iv[x].wc+Dskew. (2)

We first prove thatx ∈ dom(u.vv) and Active(u.vv[x]) at
time T. Lets calculate the last moment that nodea can re-
ceiveu. From Assumption 1,a must receiveu′ by Tu′ +Dprop

(otherwise,a.iv[x] becomesu.iv[x]). On the other hand,Td,
the earliest moment at whichu.vv[x] can be deleted (by either
nodea or the sender ofu) is:

Td = u.iv[x].wc+Ddelete

> u.iv[x].wc+Dprop+Dnet+Dskew

> Tu′ +Dprop.

Thus,u must arrive ata beforeu.vv[x] is deleted.
We now enumerate the state ofa.vv at timeT and show that

in all the cases, nodea will conclude thata.vv[x]≺n u.vv[x].

Case 1: x ∈ dom(a.vv). Rule 〈9〉 in Table 3 apply. From
Claim 1, the theorem holds.

Case 2: x 6∈ dom(a.vv). Rule〈3〉 in Table 3 will decide that
a.vv[x]≺n u.vv[x].

Theorem 2 Suppose that node a receives update u from node
b at time T. If a.iv[x] � u.iv[x] for some node x, then
a.vv[x]�n u.vv[x].

Proof. Let u′ be the update that first setx.iv[x] to u.iv[x], and
Tu′ be the timeu′ was issued (by nodex). Notice that the
inequality (2) holds here as well.

We show thatx ∈ dom(a.vv) and Active(a.vv[x]). Node
a must receiveu′ time Tu′ + Dprop by the latest. In contrast,

5

// Per-node persistent variables.
type Entry = 〈ts: Timestamp , wc: PhysicalClock〉

VV = NodeID 7→ Entry

var ts: Timestamp
vv: VV

// Same as in Figure 1.
proc IssueUpdate(data)

ts← ts + 1
vv[myself]← 〈ts, Now〉
u← Update〈vv← vv, data← data〉
Sendv to other nodes.

proc ReceiveUpdate(u)
if Equal(vv, u.vv) or Dominates(vv, u.vv) then

Duplicate update reception.
if Dominates(u.vv, vv) then

Apply the update.
else

Conflict! resolve the update

for i ∈ dom(u.vv)∪dom(vv)
if vv[i] ≺n u.vv[i]

vv[i]← u.vv[i]

proc Equal(vv1,vv2): bool
PruneVV(vv1)
PruneVV(vv2)
return vv1[i] ≈n vv2[i], ∀i ∈ dom(vv1)∪dom(vv2)

proc Dominates(vv1,vv2): bool
if Equal(vv1, vv2) then return false
PruneVV(vv1)
PruneVV(vv2)
return vv1[i] ≺n vv2[i] or vv1[i] ≈n vv2[i],

∀i ∈ dom(vv1)∪dom(vv2)

// PruneVV can be called at any time to prune VV entries.
proc PruneVV(vv)

for n ∈ dom(vv)
if vv[n].wc < Now - Ddeletethen

Delete the entry forn from vv

// Used to compute≺n. See also Table 3.
proc Active(ent)

return ent.wc < Now - Dretire

Figure 6:Version vector algorithm with lightweight pruning
support. “Now” returns the value of the local physical clock.

1. Any event is propagated to any other node
within Dprop seconds after it was issued, un-
less the replica has been continuously dead
during that period. In other words, the algo-
rithm demands that any change to a VV entry
be propagated to all nodes within Dprop sec-
onds.

2. Maximum physical-clock skew among nodes
is Dskewseconds.

3. Any network message sent from one node
arrives and is processed by the destination
within Dnet seconds.

Figure 7:Timing requirements of the VV-pruning algorithm

Td, the earliest moment at whicha.vv[x] can be deleted, is
computed as follows:

Td = a.vv[x].wc+Ddelete

> a.vv[x].wc+Dprop+Dnet+Dskew

> Tu′ +Dprop.

Thus, the algorithm uses only the last row in Table 3 in this
case. By combining the last row and Claim 1, the algorithm
will determine thata.vv[x]�n u.vv[x].

Theorem 3 Suppose that node a receives update u from
replica b at time T. If a.iv[x] ≈ u.iv[x] for some node x, then
a.vv[x]≈n vvb[x].

Proof. Let u′ be the update that first setx.iv[x] to u.iv[x],
andTu′ be the timeu′ was issued by nodex. Notice that the
inequality (2) holds here as well.

Case 1: x∈ dom(a.vv).

If x ∈ dom(u.vv), then the theorem holds from Rules
〈5〉, 〈6〉, 〈8〉, and〈9〉. Suppose otherwise, i.e.,b removed
b.vv[x] before sendingu to a. The earliest moment that
b can removeb.vv[x], Td, is computed as follows:

Td ≥ b.iv[x].wc+Ddelete−Dskew

= a.iv[x].wc+Ddelete−Dskew

> a.iv[x].wc+Dretire.

Thus, ¬Active(a.vv[x]) holds. Combine that with
Claim 1, and the theorem holds.

6

Case 2: x 6∈ dom(a.vv).

In this case,x 6∈ dom(u.vv), because the “wc” field in
the two VVs are identical and the algorithm will remove
u.vv[x] before the comparison. Thus, the algorithm will
determine from Rule 1 that the two VV entries are equal.

3.3 Accuracy

This section proves that a concurrency detected by our algo-
rithm is a genuine concurrency.

Theorem 4 Suppose that node a receives update u from node
b at time T. If a.vv[x] ≺n u.vv[x] for some node x, then
a.iv[x]≺ u.iv[x].

Proof. Theorems 1, 2, 3 establish the following relationships.

a.iv[x]≺ u.iv[x] ⇒ a.vv[x]≺n vvb[x], (Theorem 1)
a.iv[x]≈ u.iv[x] ⇒ a.vv[x]≈n vvb[x], (Theorem 3)
a.iv[x]� u.iv[x] ⇒ a.vv[x]�n vvb[x]. (Theorem 2)

Now, by exploiting the fact that the combinations of “≺
,≈,�” and “≺n,≈n,�n” both define total orderings, we can
prove the reverse property easily.

For example, Theorem 5 is proved by combining Theo-
rems 2 and 3.

a.vv[x] 6�n u.vv[x] ∧ a.vv[x] 6≈n u.vv[x]
⇒ a.iv[x] 6� u.iv[x]∧a.iv[x] 6� u.iv[x]
i.e.,

a.vv[x]≺n u.vv[x] ⇒ a.iv[x]≺n u.iv[x].

Theorem 5 Suppose that node a receives update u from node
b at time T. If a.vv[x] �n u.vv[x] for some node x, then
a.iv[x]� u.iv[x].

Proof. The combination of Theorems 1 and 3 proves this
theorem.

Theorem 6 Suppose that node a receives update u from node
b at time T. If a.vv[x] ≈n u.vv[x] for some node x, then
a.iv[x]≈ u.iv[x].

Proof. The combination of Theorems 1 and 2 proves this
theorem.

4 Conclusions

This paper presented an algorithm for pruning inactive entries
in version vectors. This algorithm offers two properties cru-
cial in practical distributed services. First, it requires no syn-
chronous coordination among nodes, thereby allowing nodes
to prune entries when they desire. Second, it can prune en-
tries belonging to nodes that remain incommunicable. It still
cannot escape from the fundamental trade-off between asyn-
chrony and liveness in distributed systems in that it demands
that clock skew among nodes be bounded and each event be
delivered to all other nodes within a fixed period. In many
applications, however, these limitations are practically a non-
issue, because VV-entry pruning is a background operation
that can be delayed, and one can avert the problem simply by
choosing a long expiration period during which all events are
certainly delivered to all nodes.

Acknowledgements

I thank Christos Karamanolis and John Wilkes for helping me
out with ideas and presentations.

References

[1] Atul Adya and Barbara Liskov. Lazy consistency using
loosely synchronized clocks. In16th Symp. on Princ. of
Distr. Comp. (PODC), pages 73–82, Santa Barbara, CA,
USA, August 1997.

[2] Anish Arora, Sandeep Kulkarni, and Murat Demirbas.
Resettable vector clocks. InACM Symp. on Princ. of
Distr. Comp. (PODC), 2000.

[3] Ozalp Babaoglu.Distributed Systems, chapter 4, pages
55–96. Addison-Wesley, 1993.

[4] Bernadette Charron-Bost. Concerning the size of logical
clocks in distributed systems.Information Processing
Letters, 39(1):11–16, July 1991.

[5] C. J. Fidge. Timestamps in message-passing systems
that preserve the partial ordering. In11th Australian
Computer Science Conference, pages 55–66, University
of Queensland, Australia, 1988.

[6] Vijay K. Garg and Craig M. Chase. Distributed algo-
rithms for detecting conjunctive predicates. InIEEE In-
ternational Conference on Distributed Computing Sys-
tems, June 1995.

7

http://portal.acm.org/toc.cfm?id=259380&coll=portal&dl=ACM&type=procee% ding
http://portal.acm.org/toc.cfm?id=259380&coll=portal&dl=ACM&type=procee% ding

[7] Richard A. Golding. Weak-consistency group com-
munication and membership. PhD thesis, University
of California Santa Cruz, December 1992. Tech. Re-
port no. UCSC-CRL-92-52, ftp://ftp.cse.ucsc.edu/pub-
/tr/ucsc-crl-92-52.ps.Z.

[8] P. Kumar and M. Satyanarayanan. Flexible and safe
resolution of file conflicts. InUSENIX Winter Tech.
Conf., pages 95–106, New Orleans, LA, USA, January
1995. http://www.cs.cmu.edu/afs/cs/project/coda/Web-
/docdir/usenix95.pdf.

[9] Leslie Lamport. Time, clocks, and the ordering of events
in a distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[10] Friedmann Mattern. Virtual time and global states of
distributed systems. InInt. W. on Parallel and Dist. Al-
gorithms, pages 216–226. Elsevier Science Publishers
B.V. (North-Holland), 1989. http://www.informatik.tu-
darmstadt.de/VS/Publikationen/.

[11] D. Scott Parker, Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce Walker, Evelyn Walton, Johanna
Chow, David Edwards, Stephen Kiser, and Charles
Kline. Detection of mutual inconsistency in distributed
systems.IEEE Transactions on Soft. Eng., SE-9(3):240–
247, 1983.

[12] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry,
Marvin M. Theimer, and Alan J. Demers. Flexible up-
date propagation for weakly consistent replication. In
16th Symp. on Op. Sys. Principles (SOSP), pages 288–
301, St. Malo, France, October 1997.

[13] David Ratner, Peter Reiher, and Gerald Popek. Dynamic
version vector mainenance. Technical Report CSD-
970022, UCLA, June 1997. Available through http:/-
/www.csindex.com.

[14] David H. Ratner. Roam: A Scalable Replica-
tion System for Mobile and Distributed Computing.
PhD thesis, UC Los Angeles, 1998. Tech. Report.
no. UCLA-CSD-970044, http://ficus-www.cs.ucla.edu-
/ficus-members/ratner/papers/diss.ps.gz.

[15] Yasushi Saito. Optimistic replication algorithms, May
2000. General examination report. Available at http:/-
/www% -.cs.washington.edu/homes/yasushi/replica.ps.

[16] Bruce Walker, Gerald Popek, Robert English, Charles
Kline, and Greg Thiel. The Locus distributed operating
system. In9th Symp. on Op. Sys. Principles (SOSP),
pages 49–70, Bretton Woods, NH, USA, October 1983.

8

ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-crl-92-52.ps.Z
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.informatik.tu-darmstadt.de/VS/Publikationen/
http://www.informatik.tu-darmstadt.de/VS/Publikationen/
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=procee% ding
http://www.csindex.com
http://www.csindex.com
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://www.cs.washington.edu/homes/yasushi/replica.ps
http://www.cs.washington.edu/homes/yasushi/replica.ps
http://portal.acm.org/toc.cfm?id=800217&coll=portal&dl=ACM&type=procee% ding

