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Abstract 

The pursuit of better atomic clocks has advanced many research areas, providing better quantum 

state control, new insights in quantum science, tighter limits on fundamental constant variation, 

and improved tests of relativity.  The record for the best stability and accuracy is currently held 

by optical lattice clocks.  This work takes an important step towards realizing the full potential of 

a many-particle clock with a state-of-the-art stable laser.  Our 87Sr optical lattice clock now 

achieves fractional stability of 2.2 × 10-16 at 1 s.  With this improved stability, we perform a new 

accuracy evaluation of our clock, reducing many systematic uncertainties that limited our 

previous measurements, such as those in the lattice ac Stark shift, the atoms’ thermal 

environment, and the atomic response to room-temperature BBR. Our combined measurements 

have reduced the total uncertainty of the JILA Sr clock to 2.1 × 10-18 in fractional frequency units. 

Introduction 

Precise and accurate optical atomic clocks1–5 have the potential to transform global 

timekeeping, enabling orders-of-magnitude improvements in measurement precision and sensor 

resolution for a wide range of scientific and technological applications. The pursuit of better 

atomic clocks has also had strong impact on many fundamental research areas, providing 

improved quantum state control6,7, deeper insights in quantum science8,9, tighter limits on 

fundamental constant variation10,11, and enhanced sensitivity for tests of relativity12. Techniques 

developed for optical atomic clocks, such as advanced laser stabilization13,14, coherent 

manipulation of atoms15, and novel atom trapping schemes16, have given rise to new research 

opportunities in quantum physics.  

The continued advances in clock stability and accuracy go hand in hand.  In an optical 

atomic clock, short-term stability originates from an ultrastable laser that serves as a local 

oscillator.  Clock stability can be extended from seconds to hours by referencing the ultrastable 

laser to a high-quality-factor optical transition of an atom17. In this work, we use an ultrastable 

laser with 10 s coherence time, referenced at 60% duty cycle to thousands of strontium atoms in 

an optical lattice, to achieve a record fractional frequency stability of 2.2 × 10-16 at 1 s. 

Better clock stability allows for faster evaluations of systematic uncertainties and enables 

the discovery of new physical effects18.  Here, we describe a set of innovations implemented to 

improve the accuracy of the 87Sr clock: an optical lattice with no measurable ac Stark shift at 1 × 



10-18, blackbody radiation (BBR) thermometry with millikelvin level accuracy, atomic structure 

measurements that characterize the atomic response to BBR, and active servo stabilization of 

electric and magnetic fields.  With these developments, we achieve an overall systematic 

uncertainty of 2.1 × 10-18, which is more than a threefold improvement over the previous best 

atomic clock1. This corresponds to a gravitational redshift for a height change of 2 cm on Earth. 

Results 

Clock stability 

After preparing ultracold strontium atoms in an optical lattice (see Methods), we probe 

the 1S0 → 3P0 1 mHz clock transition with a 698 nm laser stabilized to 26 mHz14.  The laser 

frequency offset from the clock transition is determined with Rabi spectroscopy, with lineshapes 

shown for 1 s and 4 s probe times in Fig. 1a. For longer probe times, atomic interactions affect 

the measured linewidth18. Here we use Fourier-limited probe times (≤1 s) to study the clock 

stability and systematics. The clock transition is probed once on each side of the resonance 

center; the difference in excited state fraction between these two measurements provides the 

error signal used to lock the laser to the clock transition.   

Our clock stability at short averaging times is limited by the Dick effect19—aliased high 

frequency noise of the clock laser—that surpasses quantum projection noise20 (QPN) with 2000 

atoms. At long averaging times, the only mechanism that can limit the stability is drifting 

systematic shifts. We have demonstrated that after careful control of systematic effects, residual 

drifts did not affect clock stability at 2 × 10-18 after thousands of seconds of averaging time1. 

Furthermore, stability data taken over the course of a month was robust and repeatable. 

With long-term drift under control at the low 10-18 level, we can obtain a complete 

characterization of the clock stability with short-term stability measurements. Both the QPN and 

the Dick effect have been confirmed to be correctly determined with a self-comparison, which 

agrees with the measurement from a two-clock comparison21. A self-comparison approach 

compares two independent frequency locks operating on alternate experimental cycles22. Unlike 

synchronous stability5,21, which is useful for systematic evaluations but which does not 

demonstrate how a system would perform as an independent frequency standard, a self-

comparison reproduces the short-term stability of an independent clock. 

Taking this approach, we use 1-s probe pulses to achieve the best independent clock 

stability of 2.2 × 10-16/ τ1/2, where τ is the averaging time in seconds (red solid line in Fig. 1b). This 

is consistent with our estimate of the Dick effect based on the known laser noise spectrum14.  We 

now reach 1 × 10-17 stability in less than 500 s, in contrast to the previous record of 1000 s (blue 

dashed line in Fig. 1b)1,3,21.  



This improved stability motivates the implementation of new strategies to reduce 

systematic uncertainties.  Table I provides an uncertainty budget for our clock. We measure many 

of these uncertainties with lock-in detection, which involves modulating one parameter of our 

experiment between two values and recording the resulting frequency shift of the clock 

transition1,22.  We present some of the important systematic shifts that are measured using lock-

in detection, such as the lattice ac Stark and background dc Stark shifts.  We also discuss two 

advances that reduce the BBR shift uncertainty:  improved radiation thermometry and a direct 

measurement of the 3D1 state lifetime to determine the atomic spectral response to BBR. 

Lattice ac Stark shift 

The lattice ac Stark shift is measured by performing lock-in detection of the frequency 

shift between different lattice intensities.  Atoms are confined in an optical lattice with a tight 

trapping potential that eliminates Doppler and recoil shifts during clock spectroscopy.  A magic 

wavelength optical trap16,23,24 induces identical ac Stark shifts for the two clock states, making 

the clock transition frequency independent of the intensity of the optical trap.   

The differential ac Stark shift of the two electronic clock states Δνac is given by25, 

∆𝜐𝑎𝑐 = 𝑈0 {∆𝜅𝑠(𝑓) + ∆𝜅𝑣(𝑓)𝑚𝐹𝜉�̂� ∙ �̂� + [3𝑚𝐹
2 − 𝐹(𝐹 + 1)] (3|𝜖̂ ∙ �̂�|

2
− 1) ∆𝜅𝑡(𝑓)},  (1) 

where 𝜖̂ and �̂� are the lattice polarization and propagation vectors, 𝜉 is the lattice polarization 

ellipticity (0 indicates linear polarization), �̂� is the bias magnetic field direction which defines the 

quantization axis, 𝑓 is the lattice laser frequency, U0 is the trap depth, and ∆𝜅𝑠, ∆𝜅𝑣, and ∆𝜅𝑡 are 

the differential scalar, vector, and tensor shift coefficients, respectively.  In our one-dimensional 

optical lattice geometry, we reduce sensitivity to drifts by aligning the bias magnetic field, the 

lattice light polarization, and the clock laser polarization (𝜉 = 0, �̂� ∙ �̂� = 0, 𝜖̂ ∙ �̂� = 1), as well as 

independently stabilizing the magnetic field1.  To remove any residual vector Stark shift, we probe 

the stretched 𝑚𝐹 = ±9/2 spin states and average their transition frequencies26. 

By varying both the lattice wavelength and U0, we find the magic wavelength for 𝑚𝐹 =

±9/2, where the scalar and tensor components of the differential Stark shift cancel27,28 (Fig. 2b), 

and we operate our lattice there.  The lattice laser is locked to an optical frequency comb that is 

referenced to the NIST Boulder hydrogen maser.  Our operating wavelength is c/(368.5544849(1) 

THz), where c is the speed of light.  Here we measure an ac Stark shift of (-1.3 ± 1.1) × 10-18 for a 

trap depth of 12 μK, or 71 times the lattice photon recoil energy. At this lattice wavelength we 

do not observe a change in the clock frequency with lattice depth (Fig. 2a, open circles), in 

contrast to our previous measurement (Fig. 2a, open squares).  We applied a linear fit to the data, 

because an F-test did not justify adding a term that is nonlinear in U0 (see Methods). 



Modulating the lattice depth changes the sample density, potentially adding a parasitic 

density shift. We account for this by employing a density shift cancellation1 based on the 

experimentally verified relation that the density shift is proportional to NU0
3/2. As U0 is 

modulated, N is correspondingly changed and monitored to ensure common-mode cancellation 

of the density shift.  

Dc Stark shift 

The dc Stark shift is an important systematic effect that has been measured in lattice 

clocks1,27,29.  Here, we demonstrate active control of the dc Stark along the axis that was found 

to have a measureable background field.  Electrodes placed outside the vacuum chamber allow 

us to apply an external electric field and change its direction.  Since the dc Stark shift is 

proportional to the square of the total electric field, a background field leads to a frequency 

difference when we reverse the applied field direction.  This frequency difference, which is 

linearly proportional to the background electric field magnitude, serves as an error signal that is 

processed by a digital loop filter, which controls the electrode voltages to cancel the background 

Stark shift. This active servo, operated under a 0.1 Hz sampling rate, nulls the dc Stark shift with 

1 × 10-19 uncertainty. 

Radiation thermometry 

The largest systematic uncertainty in our clock comes from the Stark shift ΔνBBR due to 

the background BBR field30,31.  ΔνBBR can be approximated as, 

Δ𝜐𝐵𝐵𝑅 = 𝜐𝑠𝑡𝑎𝑡 (
𝑇

𝑇0
)

4

+ 𝜐𝑑𝑦𝑛 (
𝑇

𝑇0
)

6

,  (2) 

where T is the ambient temperature, T0 = 300 K, νstat and νdyn are the static and dynamic 

coefficients that describe the atomic response to ideal BBR, and higher order terms are 

negligible32.  The static shift scales as T4 because it is proportional to the total energy contained 

in the BBR electric field.  The dynamic shift comes from coupling to atomic transitions out of the 

clock states that spectrally overlap with room temperature BBR, and is sensitive to deviations 

from an ideal BBR spectrum.  Since νstat has already been accurately determined32, the systematic 

uncertainty in ΔνBBR comes from νdyn and T.  While the dynamic term accounts for only 7% of the 

total BBR shift, uncertainty in νdyn is the dominant source of BBR shift uncertainty1. 

We measure the BBR environment of the atoms with thin-film platinum resistance 

thermometers33 (PRTs), which are selected for good stability when thermally cycled over a test 

interval of 200 °C.  Two PRTs (primary sensors) are painted black to increase radiative coupling 

and mounted to the ends of glass tubes sealed to vacuum flanges.  Electrical feedthroughs allow 

for four-wire measurements (Fig. 3a).  The PRTs are calibrated on their mounts at the NIST Sensor 



Science Division temperature calibration facilities in Gaithersburg. Calibration is accomplished 

using Standard Platinum Resistance Thermometers traceable to the NIST ITS-90 temperature 

scale and water comparison bath. When there are temperature gradients across the mounting 

structures, heat that conducts from the flanges to the sensors (known as “immersion error”) 

biases the BBR temperature measurements. To calibrate the bias, we embed a pair of secondary 

NIST-calibrated PRTs in the vacuum flanges (flange sensors) to measure these gradients.  As a 

function of an applied gradient, we compare the primary sensor resistance in vacuum (Rvacuum), 

when the parasitic conductance is substantial, to the primary resistance in Helium (RHe), when 

the parasitic conductance is negligible (see Fig. 3b and Methods). After calibration, the sensors 

were returned under vacuum to JILA and installed in the clock vacuum chamber, where we 

observe that residual gradients in the clock chamber are very small and immersion errors are 

negligible.   

Only in an inhomogeneous thermal environment do emissivities play a role in determining 

the dynamic BBR shift.  Therefore, in order to predict the dynamic BBR shift correctly from the 

sensor resistance, we must ensure that the atoms are in a sufficiently thermal BBR environment.  

This is accomplished by surrounding the clock vacuum chamber with a BBR shield that achieves 

≤ 1 K spatial temperature inhomogeneity (Fig. 3a). One sensor is moveable, and it measures a 1.5 

mK temperature difference between the atom location and a retracted position 2.5 cm away. 

Accounting for our vacuum chamber emissivities and geometry, this small temperature gradient 

confirms a correction of less than 1 × 10-19 to the clock uncertainty due to a non-thermal 

spectrum1 (see Methods).  

 The final temperature uncertainties of the movable and fixed sensors are 5 mK and 11 

mK, respectively. The agreement between the moveable and fixed sensors (Fig. 3c), which have 

markedly different immersion error coefficients (Fig. 3b), further ensures that the gradients in 

the clock chamber are small and supports the conclusion that no calibration shifts occurred 

during transport and installation. Using the movable sensor, with uncertainty summarized in 

Table II, we reach an uncertainty of 3 × 10-19 in the static BBR shift.  This approach allows us to 

operate the clock at room temperature while achieving a similar uncertainty to in-vacuum 

radiation-shielded lattice clocks at cryogenic5 or room temperatures34. 

3D1 decay rate  

We now discuss our largest systematic uncertainty, which arises from the BBR dynamic 

coefficient νdyn.  The dominant source of uncertainty in νdyn comes from that of the oscillator 

strength of the 2.6 µm transition from the 5s5p 3P0 clock state to the 5s4d 3D1 state30,32.  This is 

the only transition from a clock state that overlaps significantly in frequency with the room 

temperature BBR spectrum.  According to Ref. 30, an accurate measurement of the 5s4d 3D1 state 

lifetime τ3D1 will improve the νdyn accuracy.   As shown in Fig. 4a, we first use our clock laser to 



drive the 1S0 → 3P0 transition, and then use a 2.6 µm distributed-feedback laser to drive the 3P0 

→ 3D1 transition with a 200 ns pulse.  The atoms decay from the 3D1 state into the 3P manifold35. 

Those that decay into the 3P1 state then decay to the 1S0 state, spontaneously emitting a 689 nm 

photon that is collected on a photomultiplier.  A photon counter time bins the data and we fit it 

to a double exponential function35 to extract τ3D1 and the 3P1 lifetime τ3P1 (Fig. 4b). 

We use the fit function 𝑦(𝑡) = 𝑦0 + 𝐴{exp[−(𝑡 − 𝑡0)/𝜏3𝑃1] − exp[−(𝑡 − 𝑡0)/𝜏3𝐷1]}, 

where  𝑡0 is the time offset, 𝑦0 is the background counts, and 𝐴 is the amplitude.  This functional 

form is valid after the 200 ns excitation pulse is extinguished as long as 𝑡0 is a free fit parameter.  

Both an analytical model and a numerical simulation confirm that this functional form gives an 

unbiased fit.  Another potential concern is density-dependent effects35 such as radiation trapping 

and superradiance.  However, as shown in Fig. 4c, we vary the density and observe no statistically 

significant density dependence of τ3D1.  From our result of τ3D1 = (2.18 ± 0.01) µs we determine 

νdyn = (-148.7 ± 0.7) mHz, improving the uncertainty in νdyn by a factor of two and agreeing with 

Refs. 30,32.  As shown in Table III, this measurement is limited by statistical error. The dynamic 

BBR uncertainty is reduced to 1.4 × 10-18. We also improve the uncertainty of the 3P1 lifetime by 

an order of magnitude, finding τ3P1 = (21.28 ± 0.03) µs. 

Finally, we have greatly reduced the uncertainties in the first- and second-order Zeeman 

shifts and the probe Stark shift to the low 10-19 level or better (see Methods).  

Discussion 

The current generation of stable lasers with >10 s coherence time and many-particle clocks 

have ushered in a new era of clock accuracy near the 1 x 10-18 level.  Even now, this coherence 

time has opened the possibility to eliminate the Dick effect by alternatively interrogating two 

separate atomic samples at >50% duty cycle with a single laser36,37.  Soon, the next generation of 

ultrastable lasers will come online13,38, with coherence times rivaling that of the 160 s natural 

lifetime of the Sr clock transition.  The enhanced stability will not only bring clock accuracy to a 

new level, but also sets the stage for quantum metrology where quantum correlations will be 

harnessed to advance the frontier of measurement precision beyond the standard quantum 

limit39–42. 
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Figure 1.  Single clock stability measured with a self-comparison.  a) A typical line scan 

associated with a 1 s interrogation time (open black circles). To explore the limit of coherence in 

our clock, we scan the clock transition with a 4 s interrogation time and more atoms (solid green 

squares). Here the linewidth and contrast are affected by the Fourier width and atomic 

interactions18. b) A new stability record (black circles, fit with red solid line) achieved by running 

with 1 s clock pulses and a 60% clock laser duty cycle for each preparation and measurement 

sequence. In contrast, the previous best independent clock stability1,3,21 (blue dashed line) is 

3.1 × 10−16/√𝜏. The error bars represent the 1σ uncertainty in the total deviation estimator, 

calculated assuming a white noise process, which is valid after the atomic servo attack time of 

≈30 s. 

Figure 2. The ac Stark shift from the optical lattice. a) Lattice ac Stark shift measurements, as a 

function of the differential trap depth ΔU (in units of lattice photon recoil energy), for the current 

evaluation (red circles) and our previous evaluation (blue squares). The lattice frequency for the 

new evaluation is 172.4 MHz lower than that of the previous evaluation. We determine the magic 

wavelength in our experimental configuration so that our trapping potential is independent of 

the electronic state (1S0 or 3P0) for 𝑚𝐹 = ±9/2.  Our current evaluation thus achieves the 

smallest reported lattice ac Stark shift of (-1.3 ± 1.1) × 10-18. Error bars represent 1σ uncertainties 

(calculated as described in Methods). b) The calculated lattice ac Stark shift Δνac at the magic 

wavelength, plotted for different spin states.  The trapping potential is independent of the 

electronic states when the scalar shift and the tensor shift cancel for 𝑚𝐹 = ±9/2. 

Figure 3. Radiation thermometry in the JILA Sr clock. a) Mounted radiation thermometers inside 

Sr clock chamber, surrounded by a BBR shield enclosure. Two thin film platinum resistance 

thermometers (PRTs) are mounted on glass tubes that are affixed to mini vacuum flanges. One 

sensor is fixed while the other can be translated to measure at the center of the vacuum chamber 

or, during normal clock operation, 2.5 cm from the center. The BBR shield is used for 

thermalization, minimizing temperature gradients and enabling passive temperature 

stabilization. b) The sensor calibration at the NIST Sensor Science Division. First, the sensor 

resistance is calibrated to the ITS-90 temperature scale under a He exchange gas (RHe). To 

calibrate the sensor resistance in vacuum (Rvacuum), we measure Rvacuum - RHe as a function of the 

temperature difference between the flange (Tflange) and primary (Tprimary) sensors. The slopes 

quantify the immersion error coefficients, which are markedly different between the two 

sensors. However, we find negligible immersion errors in the BBR-shielded clock chamber. c) A 

long-term record of the temperature and total BBR shift (upper plot), and the temperature 

difference (lower plot) measured by the two primary sensors.  While temperature fluctuations 

are within a few hundred mK, the sensor temperature difference (black line) is well within the 

combined uncertainty of both sensors (shown as the gray 1σ confidence band), which indicates 

that no calibration shifts occurred during shipping and installation. 



Figure 4. The measurement of the 3D1 decay rate. a) The electronic states used for the decay 

rate measurement. First we drive the clock transition, and then we use a 200 ns laser pulse to 

drive the 2.6 µm 3P0 → 3D1 transition. The 3D1 state decays into the 3P manifold with the branching 

ratios depicted in the panel. Photons from 3P1 → 1S0 are collected by a photomultiplier tube 

(PMT). b) The sum of photon counts for 8 million decay events (black dots), fit with the function 

𝑦(𝑡) = 𝑦0 + 𝐴{exp[−(𝑡 − 𝑡0)/𝜏3𝑃1] − exp[−(𝑡 − 𝑡0)/𝜏3𝐷1]} (red curve). Data when the pulse 

is on is excluded to ensure an unbiased fit.  The inset is the error ellipse for the fits of τ3D1 and 

τ3P1. c) Lifetime versus atom number. Comparing a constant model of this data to a model that is 

linear in density (the first-order correction for a density-dependent effect) using an F-test, we 

find no statistically-significant lifetime dependence on density. Error bars represent 1σ fit 

uncertainties (see Methods). 

 

 

  



Table I 

Effect Shift (×10-18) Uncertainty (×10-18) 

Lattice Stark -1.3 1.1 

BBR static -4562.1 0.3 

BBR dynamic -305.3 1.4 

dc Stark 0.0 0.1 

Probe Stark 0.0 0.0 

1st-order Zeeman -0.2 0.2 

2nd-order Zeeman -51.7 0.3 

Density -3.5 0.4 

Line pulling + tunneling 0.0 <0.1 

2nd-order Doppler 0.0 <0.1 

Background gas 0.0 <0.6 

Servo offset -0.5 0.4 

AOM phase chirp 0.6 0.4 

Total -4924.0 2.1 

 

Table I. Clock uncertainty budget.  Descriptions of these effects can be found in the main text and in 

Methods. The BBR static and dynamic shifts are calculated for the ambient temperature of 20.6 °C (Fig. 3c). The 

shifts and their corresponding 1𝜎 uncertainties are quoted in fractional frequency units. The statistical 

uncertainties for each effect are inflated by the square root of the reduced chi-square statistic, 𝜒𝑟𝑒𝑑
2 , when 𝜒𝑟𝑒𝑑

2 >

1. Typical values of 𝜒𝑟𝑒𝑑
2  are between 1 and 1.5. Statistical uncertainties are summed in quadrature with the 

systematic uncertainties for each effect. The only significant uncertainties that are not based on measurement 

statistics are the BBR shift and the background gas correction. 

 

 

 

 

 

 

 

 

 

 



Table II 

Effect Uncertainty (mK) 

Bath non-uniformity 1.0 

Bath SPRT calibration 1.0 

Bath temp. stability 1.0 

Sensor self-heating 0.5 

Electrical errors 0.07 

Sensor translation 0.03 

Thermal cycling 2.0 

Calibration coefficients 4.5 

Total 5.2 

 

Table II. Radiation thermometer calibration uncertainty for the moveable sensor. This sensor 

provides the temperature measurements used in the BBR shift correction for the clock. Each entry is a 

1𝜎 uncertainty. The bath calibration is monitored with two standard platinum resistance thermometers (SPRTs). 

See Methods for a description of each effect. The dominant uncertainty comes from a fit of (Rvacuum - RHe) as a 

function of (Tflange - Tprimary) (Fig. 3b). 

 

Table III 

Effect Uncertainty (ns) 

Fit uncertainty 10 

Hyperfine correction <0.1 

Finite pulse duration <0.1 

Stray laser light <0.01 

BBR contamination <0.01 

Photon counter timing 0.4 

Total 10 

 

Table III. Uncertainty budget for 3D1 decay rate.  Each entry is a 1σ uncertainty. Here the statistical fit 

uncertainty dominates the total uncertainty of this measurement. See Methods for a description of each effect. 

We do not measure a density-dependent effect within our statistics. 
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METHODS 

Sample preparation 

We first laser cool a hot strontium beam to 1 mK using a Zeeman slower and 3D magneto-optical 

trap (MOT) on the 1S0 → 1P1 32 MHz transition at 461 nm. The atoms are further cooled to a few µK with 

a 3D MOT operating on the 1S0 → 3P1 7.5 kHz intercombination transition at 689 nm. About 2000 atoms 

are then loaded into a cavity-enhanced 1D optical lattice at 813.4 nm. The cavity mirrors are placed 

outside the vacuum chamber and the lattice light, generated with an injection-locked Ti:Sapphire laser, is 

stabilized to the cavity using the Pound-Drever-Hall technique using a double-passed acousto-optic 

modulation as a frequency actuator. 

 

Stable laser 

 The 87Sr sample is probed on the 1S0 → 3P0 1 mHz clock transition with a 698 nm diode laser, which 

is stabilized to 26 mHz using a 40 cm Ultralow Expansion glass (ULE) cavity14,21. The cavity enclosure 

features bipolar temperature control, a passive heat shield, a double-chambered vacuum, active vibration 

cancellation, and acoustic shielding. The stabilized laser passes through an independent acousto-optic 

modulator (AOM) to steer the frequency of the clock laser light reaching the atoms. 

 

Atomic servo 

The offset of the clock laser frequency relative to the clock transition is determined with Rabi 

spectroscopy. In this work, measurements utilize Rabi pulse lengths from 160 ms to 4 s. The excited state 

population fraction after clock spectroscopy is measured by counting the number of 1S0 ground state 

atoms using 1S0 → 1P1 fluorescence, repumping the 3P0 excited state population to the ground state and 

again counting the number of ground state atoms. To lock the clock laser to the atoms, two excited state 

population measurements are performed on the clock transition (one on each side of the resonance 

center). The difference between these measurements is used as an error signal, which is processed by a 

digital proportional-integral-derivative (PID) controller to steer the laser frequency onto the clock 

transition resonance. 

 

Lock in measurements with the atomic servo 

Many systematic uncertainties are measured using a digital lock-in technique. In this scheme, an 

experimental parameter is set at one value, the clock transition is interrogated, and the atomic servo 

computes a frequency correction22.  The same procedure is then performed for a different value of the 

experimental parameter, using a second, independent atomic servo loop. As the experiment alternates 

between these two states, data is recorded and time stamped. Demodulation occurs in post processing. 

In all cases we seek the difference between the resonance centers measured by these control loops. 

 

Density shift 

The use of spin-polarized ultracold fermions suppresses s-wave interactions among our atoms; 

however, p-wave interactions that shift the clock transition can be significant at high precision. This 

density shift is proportional to the atomic density and insensitive to temperature (due to its p-wave nature 

and the 1D lattice18). The density shift is greatly reduced compared to our previous generation Sr clock 



due to the use of a cavity-enhanced optical lattice21. To measure this shift, we perform a lock-in 

measurement by modulating the atom number and looking for a frequency shift. Extrapolating this result 

to an operating atom number of 2000 and trap depth of 71 Erec (where Erec is the lattice photon recoil 

energy), we reach a density shift of (-3.5 ± 0.4) × 10-18 (Fig. 5). 

 

 
 

Figure 5. Evaluation of the density shift. The overlapping Allan deviation shows the density shift averaging down 

for 2000 atoms and U0 = 71 Erec. The atom number was modulated between 2400 and 12000 atoms.  

 

 

Lattice Stark shift 

 
Figure 6. The lattice Stark data used in this work. For ΔU = U2 – U1, the color coding represents the values of 

U2 used for each point. Data that has the same value of ΔU are averaged to produce the points in Fig. 2a. 

 

A lock-in measurement is performed for different lattice powers to study the intensity dependence of 

the lattice Stark shift. We determine this shift as a function of the optical trap depth at the location of the 

atoms, U0, which is proportional to the lattice intensity. The value of U0 is determined from the trap 

frequency along the lattice axis, which is measured using resolved sideband spectroscopy.  



Changing U0 also modulates the trap volume, which creates a parasitic density shift that can mimic a 

lattice light shift. A Gaussian density profile predicts that the density shift scales like NU0
3/2. In our system, 

we experimentally verify this relation with negligible uncertainty. To cancel effects of the density shift on 

this measurement, we modulate the atom number according to the NU0
3/2 scaling such that there is 

common-mode density shift cancellation. To further ensure that the density shift is removed, in post 

processing we remove data with the largest atom number fluctuations until the average differential 

density shift is well below the final measurement precision. 

U0 is stabilized with a laser intensity servo by monitoring the cavity lattice transmission. The lattice 

frequency is locked to a Yb fiber laser optical frequency comb referenced to the NIST maser array. Varying 

the lattice intensity and frequency, we find the magic wavelength where the clock shift is not responsive 

to changes in U0.  

Drifting background magnetic fields can cause the atom’s quantization axis to vary with respect to the 

clock laser polarization. This creates a drifting ac Stark shift. To solve this problem, we run a background 

magnetic field servo1 during the ac Stark shift measurement.  

At some level, terms nonlinear in U0 (such as hyperpolarizability and M1-E2 shifts) will be required 

to precisely model the lattice intensity. To measure these small terms, Ref. 43 relied on the ability to 

obtain lattices as deep as 103 Erec to achieve a large lattice intensity modulation amplitude. However, the 

measurement could have been susceptible to technical issues such as noisy tapered amplifier43 used to 

generate lattice light or parasitic density shift effects which could be significant for such large changes in 

lattice trap25.  To check whether our data supports terms nonlinear in U0 to model the lattice light shift, 

we use an F-test44 yielding F = 0.17 for 22 degrees of freedom (corresponding to unbinned data). 

Therefore, within our measurement precision, our data only supports a linear model (Fig. 6). We note 

also that all our lattice Stark shift measurements are made near the clock operating condition, with each 

data point reaching the statistical uncertainty at the 1 x 10-17 level. Together these points determine the 

Stark shift correction at the 1 x 10-18 level for the relevant condition of our clock.    

If we were to assume significant hyperpolarizability, we can use our data to infer a 

hyperpolarizability shift coefficient of (0.3 ± 0.3) µHz/Erec
2. This is consistent with the value reported in 

Ref. 43. We could also use the hyperpolarizability coefficient of Ref. 43 to correct our data, resulting in a 

minimal increase in our total uncertainty (from 2.1 × 10-18 to 2.4 × 10-18).  However, since our statistical 

tests do not justify hyperpolarizability, only linear behavior is assumed in our quoted ac Stark shift. 

 

Temperature sensors 

The in-vacuum temperature sensors, Heraeus thin-film PRTs, are mounted on the end of borosilicate 

glass tubes sealed to mini vacuum flanges. PRTs are a well-established technology for accurate 

thermometry and are ultrahigh-vacuum (UHV) compatible. The PRTs are pre-qualified by cycling their 

temperatures between an ice melting point (temperature stable to 1 mK) and 200 °C, and then choosing 

sensors that shifted less than 1 mK over 4 cycles. 4-wire phosphor-bronze connections to the sensors are 

soldered to electrical feedthroughs in the flanges. The sensor resistance is measured with a bridge circuit, 

comparing the PRTs to a 1 ppm resistance standard. Resistance measurements are taken with forward 

and reversed excitation currents for data processing that removes thermocouple effects. Electrical error 

is quantified in Table II of the main text.  



The mounting structures were installed in a test chamber and hand carried on a passenger flight to 

Gaithersburg, Maryland for calibration at the NIST Sensor Technology Division. At NIST, the sensors were 

calibrated by comparing them to standard PRTs (SPRTs), traceable to NIST’s ITS-90 temperature scale and 

accurate to 1 mK, using a water comparison bath with 1 mK temperature stability45. The temperature 

uniformity in the isothermal region of the bath is within 1 mK. Since thin-film PRT calibration shifts are 

quasi-random, mechanisms that could affect the calibrations would cause the two sensors to disagree. 

Agreement between the sensors throughout the shipping and installation process strongly suggests that 

no calibration shifts have occurred. Thin-film PRTs are generally robust against calibration shifts due to 

impacts. 

We deal with immersion error by a two-stage process. First, the test chamber is filled with pure helium 

and the sensors are calibrated to the SPRTs. Data is fit to the Callendar van Dusen equation, 𝑅𝐻𝑒 =

𝑅0(1 + 𝐴𝑇 + 𝐵𝑇2), where R0, A, and B are fit parameters. The helium acts as an exchange gas, enabling 

radial heat exchange along the glass stem and suppressing immersion error. Second, we measure the 

sensor resistance under vacuum, Rvacuum, as a function of Tflange – Tprimary. To quantify immersion error, we 

fit 𝑅𝑣𝑎𝑐𝑢𝑢𝑚 − 𝑅𝐻𝑒 = 𝐶(𝑇𝑓𝑙𝑎𝑛𝑔𝑒 − 𝑇𝑝𝑟𝑖𝑚𝑎𝑟𝑦) + ∆,  where C and Δ are fit parameters. These two equations 

are used to obtain Tprimary as a function of Rvacuum and Tbase. Sensor self-heating is studied by varying the 

excitation current and extrapolating the results to zero current. 

The sensors are installed in the clock chamber using a gas backflow. After installation, sensor baking 

at 150 °C means that 1.0 mK uncertainty, from thermal cycling, must be added to Table II. One of the 

sensors can be translated inside the vacuum chamber with an edge-welded bellows. For clock operation, 

this sensor is positioned 2.5 cm from the atoms to prevent coating with strontium. The temperature 

difference between the atom location and 2.5 cm away is (1.45 ± 0.03) mK, which is included in Table II. 

The sensor translation measurements and temperature measurements throughout the inside of the 

BBR shield confirm that temperature gradients are small, indicating a well-thermalized environment. 

Compared to previous efforts1, temperature gradients in the clock chamber are now smaller because 

greater care was taken to minimize heat sources inside the BBR shield. To quantify the non-thermal heat 

shift, we model the geometry and emissivities of the vacuum chamber1. We find that our simulation is 

insensitive to changes in the emissivity values and that the non-thermal heat correction is bounded below 

the 1 × 10-19 level for our level of temperature uniformity. The non-thermal correction has been included 

in the “Static BBR” entry of Table I rather than listed in Table II. 

 

Decay measurement 

After population is driven to the 3D1 state (Fig. 4a), 689 nm fluorescence from the 3D1 → 3P1 → 1S0 

cascade is collected with a photomultiplier tube and then read out and time binned (using a 40 ns bin size) 

with an SR430 event counter. This photon counting setup provides 0.4 ns of timing uncertainty.  

Our statistics have confirmed that the noise in this measurement is Poissonian. Simulating the 

measurement with the appropriate noise process shows that our fits should be given Poisson weighting 

to correctly obtain the fit uncertainty. 

Other simulations show that the fit does not accrue an appreciable bias due to the specific pulse shape 

when we use pulses shorter than 300 ns or when we remove data when the pulse is on from the fit. To 



ensure that this fit bias is doubly suppressed, we take both approaches. We take 0.1 ns as a conservative 

bound on the remaining uncertainty. 

We have calculated the correction due to the 3D1 hyperfine structure to be at the negligible 0.001% 

level. Therefore, we choose 0.1 ns as a comfortable upper bound on this effect.  

We quantify systematic bias from stray distributed-feedback (DFB) laser light by switching off the 

AOM used to pulse this laser while attempting to scan the 3P0 → 3D1 transition. We are able to observe 

this transition with stray light for exposure times of hundreds of milliseconds. By simulating the results of 

this scan, we can put a small 0.01 ns upper bound on stray laser light effects. We put the same bound on 

systematic bias from stray 2.6 µm radiation originating from the ambient heat in our lab. 

We study the measured decay rate as a function of atom number to check for density dependence. 

We confirm that the decay rate is constant in density within our precision using an F-test, comparing a 

constant to a model linear in density. With a value of F = 0.045 for the statistic (where there are 11 degrees 

of freedom), this test indicates no density dependence. 

 

Dc Stark shift 

A background dc electric field can arise from various sources, such as patch charges29 or electronics27. 

We have only measured a significant background dc Stark shift along one direction. This axis passes 

through the two largest viewports and the center of the MOT coils. 

To combat possible changes in the dc Stark shift, we actively suppress this shift with electrodes placed 

on the two large viewports. We measure ν+, the total dc Stark shift with the applied field in one direction, 

and ν-, the shift with the applied field flipped in direction. The background field is proportional to (ν+- ν-), 

which is processed by a digital Proportional-Integrator servo. The servo applies a voltage to the electrodes 

to null the background field. The nonlinearity of the shift in electric field means that shift measurements 

average down rapidly when the background field is well canceled.   We measure a low 10-20 level shift with 

an uncertainty of (-0.1 ± 1.1) × 10-19 in 20 minutes of averaging time. 

 

Probe Stark shift 

We perform this measurement by locking two independent atomic servos to 20 ms and 180 ms π-

pulses. By keeping the pulse area, which is proportional to the square root of the probe intensity, fixed at 

a π-pulse, we can perform low-noise measurements of the probe Stark shift, which is linear in probe 

intensity. To resolve the shift well, we perform a large amplitude probe intensity modulation using a motor 

to move a neutral density filter in and out of the clock laser beam path. Control measurements confirm 

that this filter does not introduce systematic bias.  

To prevent issues with many-body effects that might shift the clock transition frequency as a function 

of atom number, we study the probe Stark shift with a clock operation atom number of 2000. 

Extrapolating this result to an operating clock pulse of 1 s, we observe a probe Stark shift of (-3.2 ± 1.7) × 

10-20. 

 

1st-order Zeeman shift 

The 1st-order Zeeman shift is greatly suppressed by averaging locks to the two mF = ± 9/2 stretched 

states26. A residual 1st-order Zeeman shift could occur if there is appreciable magnetic field drift in 



between clock interrogations. We combat this by employing active background magnetic field 

cancellation1. 

The difference between the mF = ±9/2 stretched state frequency measurements is proportional to the 

background magnetic field. Drifts in this difference indicate a residual 1st-order Zeeman shift. Averaging 

down this difference, we measure a 1st-order Zeeman shift of (-1.6 ± 2.0) × 10-19. 

 

2nd-order Zeeman shift 

We measure the 2nd-order Zeeman shift by monitoring the atomic frequency shift while modulating 

between high and low bias magnetic field values. We then extrapolate the observed frequency shift to 

operating conditions, using the fact that the shift is proportional to the bias field squared. The 2nd-order 

Zeeman shift is measured as a function of the frequency difference between the mF = ± 9/2 stretched 

states, Δνstretch, which is proportional to the bias field magnitude. For clock operation, Δνstretch = 300 Hz. 

Background field drift can change the direction of the bias field, creating a time varying lattice tensor 

ac Stark shift that would affect the measurement. To prevent this, we operate a background field 

cancelation servo. Also, we reduce the sensitivity to drifts by aligning the field and the clock laser 

polarization. This is done by minimizing mF changing σ transitions. With this setup, we put a 10-20 level 

upper bound on systematic bias from field drift. 

 We measure the 2nd-order Zeeman shift coefficient, the shift normalized by ∆υstretch
2 , to be (-5.82 ± 

0.07) × 10-16/kHz2. This number is an atomic property and is independent of a particular measurement, so 

we average this result with 4 other determinations of this coefficient1,25,46,47.  The final value for the shift 

at Δνstretch = 300 Hz is (-51.7 ± 0.3) × 10-18. We use a reduced chi square 𝜒𝑟𝑒𝑑
2  inflated uncertainty to account 

for non-statistical variations between these data points. 

 

Other shifts 

Line pulling occurs when off-resonant spectroscopic features can slightly shift the clock transition 

frequency. This can be caused by imperfect spin polarization leaving population in mF states aside from 

±9/2, clock laser ellipticity causing us to drive mF-changing σ transitions, or clock transition sidebands that 

result from tunneling between lattice sites. Calculations and data allow us to put a conservative upper 

bound on this effect at 1 × 10-19. 

The 1st-order Doppler effect is not present in an optical lattice probed along the lattice axis, where 

the optical phase of the lattice and that of the clock probe lasers are referenced to a common mirror. A 

2nd-order Doppler shift is, in principle, present, but it is estimated to be at the 10-21 level. We put a 

comfortable 1 × 10-19 bound on this effect. 

Collisions with the background gases in our UHV vacuum chamber can shift the clock transition 

frequency. At normal operating vacuum pressure, the background gas is largely hydrogen. We use the 

model of Ref. 48 to put an upper bound on this effect of 6 × 10-19
.  

Steady-state error in the atomic servo could shift the measured clock transition frequency. We 

average lock data and find a servo offset of (-5 ± 4) × 10-19.  

Clock operation utilizes an AOM to scan the frequency and pulse the intensity of the clock laser. Phase 

transients occurring when this AOM pulses would appear as frequency shifts in clock measurements.  We 

study the AOM phase transients by looking at the beat of the -1st AOM order with the 0th-order on a digital 



phase detector. We also calibrated the phase transients of the detector itself. Drawing on the analysis of 

Ref. 49, we infer an AOM phase chirp shift of (6 ± 4) × 10-19. 

 

Statistical methods 

To calculate the shift of a given record, we perform a post processing demodulation of the data to 

extract a signal. The shift represents the mean of this signal. The statistical uncertainty is calculated from 

the standard deviation of the mean. If the reduced chi square 𝜒𝑟𝑒𝑑
2 > 1, the statistical uncertainty is 

inflated by √𝜒𝑟𝑒𝑑
2 . To remove the effects of residual laser drift, which is highly linear, from lock-in 

measurements, we use “3-point strings.” This analysis involves processing successive triplets of frequency 

measurements in linear combinations meant to cancel linear drift50. 
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