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From a thermodynamic point of view, all clocks are driven by irreversible processes. Additionally,
one can use oscillatory systems to temporally modulate the thermodynamic flux towards equilibrium.
Focusing on the most elementary thermalization events, this modulation can be thought of as a
temporal probability concentration for these events. There are two fundamental factors limiting the
performance of clocks: On the one level, the inevitable drifts of the oscillatory system, which are
addressed by finding stable atomic or nuclear transitions that lead to astounding precision of today’s
clocks. On the other level, there is the intrinsically stochastic nature of the irreversible events upon
which the clock’s operation is based. This becomes relevant when seeking to maximize a clock’s
resolution at high accuracy, which is ultimately limited by the number of such stochastic events
per reference time unit. We address this essential trade-off between clock accuracy and resolution,
proving a universal bound for all clocks whose elementary thermalization events are memoryless.

Clocks dominate our daily lives unlike any other tech-
nology – from ordinary things like catching the train in
the morning to locating ourselves using the GPS – they
are involved everywhere. Physics has provided the theo-
retical and experimental foundation to develop accurate
and stable clocks which has culminated in the 50s with
the invention of atomic clocks [1]. Year by year, these
clocks have been improving their accuracy, with a state-
of-the-art optical clock accumulating less than a hundred
milliseconds of error over the lifespan of the sun [2–4].
These advancements beg for the question whether there
are any physical principles constraining a clock’s perfor-
mance. Driven by this open problem, quantum clocks are
emerging into an independent field of research, unifying
approaches from quantum information theory [5–8] and
quantum thermodynamics [9–13]. Recent experiments
showcase today’s technology is capable of exploring these
ultimate limits of timekeeping [14–16].

This letter explores fundamental limitations of clocks
coming from thermodynamics, because clocks, like all
other physical systems, are subject to thermodynam-
ical laws [11]. Even worse, they very much rely on
the increase of entropy originating in the second law of
thermodynamics. This implies that (1) clocks are wit-
nesses of the macroscopic breaking of time-reversal sym-
metry because they tick forwards in time. (2) Thus,
they must be driven by irreversible processes that drain
out-of-equilibrium resources to output temporal infor-
mation. These processes, though, are thermodynamic,
therefore inherently stochastic and never perfectly pre-
dictable. (3) We conclude, even an idealized clock could
never be perfect simply due to the fact that the clock
itself is fundamentally driven by stochastic processes.

We look at clocks that use this flow by counting el-
ementary thermalization events to define ticks. Instruc-
tive examples of such a process could range from grains of
sand that pass through an hourglass to the photons that

are reflected from a pendulum to ascertain it’s position.
Even modern atomic clocks ultimately rely on a macro-
scopic number of photons to read out the laser frequency
(which is stabilized by feedback from atomic transitions).
In all these cases, the underlying thermalization processes
are stochastic and have some intrinsic rate Γ. The time
passing between two events, relative to assumed smooth
parameter time, is probabilistic and described by a prob-
ability density function. We refer to its average as µ and
its uncertainty as σ. We define the resolution ν of the
clock to be the inverse average time between two ticks
ν = 1/µ, and the accuracy N as the average number of
times the clock ticks until it is off by one tick. For a se-
quence of independent and identically distributed ticks,
the accuracy equals the signal-to-noise ratio N = µ2/σ2

[9]. A clock usually modulates the temporal distribution
of when the thermalization events occur as to improve its
accuracy. For most practical clocks, the stability of this
temporal modulation (for instance the laser frequency in
atomic clocks) is the limiting factor to the accuracy. We
show that even if this temporal modulation is perfectly
stable, the stochastic process underlying the tick gener-
ation limits the accuracy at given resolution. In other
words, the need to irreversibly generate a signal bounds
the clock’s performance even if it uses an eternally stable
frequency reference.

Theorem (Accuracy-resolution trade-off). Clocks with
elementary ticking events generated by a memoryless
stochastic process at rate Γ obey the trade-off relation

N ≤ Γ2

ν2
. (1)

This trade-off complements other established results
in the field considering restrictions imposed on the clock
through entropy production [9, 17] or Hilbertspace di-
mension [18, 19].
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Temporal probability concentration. The most prim-
itive clock consists of two out-of-equilibrium thermal
reservoirs in contact with each other. Counting the indi-
vidual stochastic thermalization events as ticks can serve
as a way to measure time, we call this the thermal refer-
ence clock. Sufficiently large reservoirs are memoryless,
therefore, such stochastic jumps at equal rate are expo-
nentially distributed [20–22]. The coupling of the two
baths defines a characteristic thermalization rate Γ. For
an exponential distribution the standard deviation equals
the average, which leads to µ = σ = Γ−1. Consequently,
such a clock has unit accuracy N = 1 and only by av-
eraging over many of these ticks are we able to achieve
higher accuracy, but at the expense of resolution. Av-
eraging over M independent and identically distributed
(i.i.d.) such events increases the variance and mean of
the tick time M -fold, leading to a resolution ν ∝ 1/M
and accuracy N ∝ M . This gives an inverse proportional
accuracy-resolution scaling

N =
Γ

ν
, (2)

quadratically smaller than the upper bound in eq. (1).
Upon closer inspection, we find a thermodynamic cost
associated to this increase in accuracy: instead of hav-
ing a single irreversible event producing a tick, now M
irreversible events are required.

A natural question to ask is whether it is possible to
increase the accuracy beyond what is achievable through
averaging in eq. (2), while still using the same underlying
stochastic tick generating process. The answer lies in
the observation that all ticking clocks known to us use a
combination of two processes to tell time:

(a) irreversible processes that generate ticks, and

(b) a filter process, temporal probability concentration,
which modulates the probability of the irreversible
ticking events to occur.

By means of temporal probability concentration (TPC),
a (sensible) clock centers the probability distribution of
the stochastic events with a periodic process such that
the ticks occur closely around well-defined instants in
time. Exponential decay of an unstable two-level sys-
tem is an example for a clock without TPC where the
decay defines the tick. The tick probability density con-
ditioned on the tick not yet having occurred equals Γ, the
decay constant which is time-independent. Such a clock
has accuracy N = 1. Clockworks modulate this proba-
bility by, for example, driving the two-level system from
the ground state into the excited state. This gives an
effective time-dependency of the ticking probability as il-
lustrated in Fig. 1, and this driving is what we call TPC
and in general, it gives an accuracy N > 1. The key
is to perform the driving autonomously without external
temporal control. In the following we introduce a model
for this with more details on the formalism of TPC in
Sec. A of the Appendix.

FIG. 1. The two plots qualitatively show the ticking behav-
ior of two clocks with respect to parameter time t (horizontal
axis). The ticks of such a clock are generated by individ-
ual thermalization events at rate Γ (vertical stripes). Figure
a) sketches a generic example, where these events are Pois-
son distributed. In b), temporal probability concentration
is shown, another process through which the probability of
an thermalization event can be suppressed at times (shown
by the hat-shaped curve). As a result, the probability den-
sity for a tick can be concentrated around a desired average
value, here 5 Γ−1, with the tick time uncertainty of order Γ−1

bounded by the width of the TPC window.

FIG. 2. We illustrate the oversampling regime with a pendu-
lum in a weakly lit environment. The two sources of entropy
production for this clock are, firstly, the friction within the
clockwork itself and, secondly, the light-matter interaction to
track the position of the pendulum. While the entropy from
friction can in principle be vanishingly small, the one from
observation is fundamental and can not be made zero with-
out losing the ability to measure time. The plot shows the
elementary ticking events of this clock as a function of time,
i.e., the photons reflected off the pendulum when it is close to
its maximum deflection, and the pendulum oscillation (TPC).
In the oversampling regime, the photon rate is much higher
than the frequency of the TPC, and this allows to use the
TPC period to define ticks.

Examples of clocks following this scheme are given
in [8–10, 18, 23–25], with a particularly illustrative one
given in the first mentioned reference: a three-qubit sys-
tem where one of the qubits couples dissipatively to the
electromagnetic field with strength Γ, emitting photons
when it decays, and these events are then counted as
ticks. Alone, the qubit would undergo exponential decay
and give accuracy N = 1, but here it is autonomously
driven by the other two qubits, which themselves are cou-
pled to out-of-equilibrium heat baths. The Hamiltonian
coupling the three qubits is the periodic process which
makes the effective decay probability of this clock time-



3

dependent, and leads to an enhanced accuracyN > 1 due
to TPC. More details are in Sec. A 1 of the Appendix.
Many macroscopically sized clocks, be it pendulums or
atomic clocks, operate in an oversampling regime, where
multiple irreversible events occur per TPC cycle (see Fig-
ure 2). In this regime, the thermodynamic cost of a clock-
work often becomes obscure, as both the dissipation due
to the macroscopic number of irreversible events and the
TPC have to be accounted for. Atomic clocks, for exam-
ple, do not count photons as a way to tell time, rather
they use the oversampled coherent oscillations of a maser
tuned some stable reference atomic transition to estimate
the TPC frequency. The time-scale Γ of the fundamental
ticking events appearing in eq. (1) is therefore not the
limiting factor to the accuracy of atomic clocks, the sta-
bility of the coherent oscillation of the electromagnetic
field is, i.e., the TPC stability. In atomic clocks, accu-
racy is examined using Allan Variance which captures
the stability of the TPC oscillation over many different
time-scales [26–28]. Quantum projection noise, thermal
noise but also natural drifts in the experimental setup are
what affect the stability of atomic clocks [29, 30]. A sum-
mary with some key references on the working principle
of atomic clocks can be found in Sec. B of the Appendix.

So far, we have established that every clock is sub-
ject to irreversible processes and that through TPC, they
can increase their accuracy. In the following, we intro-
duce a mathematical model to describe clocks on a quan-
tum scale and where the two contributions (a) irreversible
ticks and (b) temporal probability concentrations have an
explicit representation in the equations of motion. Even-
tually, this framework allows us to formulate the funda-
mental trade-off between the accuracy and resolution of
clocks, dictated by thermodynamics.

Model. Quantum clocks [8–10, 18, 23–25] only weakly
coupled to a memoryless environment (sufficiently large
thermal baths are one such environment) can be de-
scribed by a Lindblad master-equation [31]. If we are
again talking about ticking clocks, their state can be
Fourier-decomposed by introducing a free counting field
χ [32–34],

ρ(t, χ) =
∑
n

ρ(n)(t)einχ. (3)

Each non-normalized density matrix ρ(n)(t) can be
thought of as the system’s state conditioned on n ticks
having already occurred. In a setting where the interac-
tions with the environment are memoryless, the ticks are
produced by linear jump operators Jj , the generators of
the process (a). Aside from this, the clock is subject to a
general open quantum system’s evolution with Lindblad
operator Lno tick which is the generator of TPC, i.e., pro-
cess (b). We are interested in the statistics of the time
T between any two successive ticks n and n + 1. These
statistics may differ from each tick to the next one be-
cause the initial state changes, and this also means that
the accuracy N and frequency ν can change with each
tick n. However, the trade-off theorem is agnostic to the

value n, and holds for all pairs of N and ν. Without loss
of generality, we can therefore assume that the nth tick
happened at time t = 0 and that n = 0, and we can look
at the evolution of the conditional state ρ(0)(t) that ex-
actly n = 0 ticks have occurred. Given the initial state
ρ(0)(0) of the clock from eq. (3), the evolution is entirely
determined by

ρ̇(0)(t) = Lno tick[ρ
(0)(t)]− 1

2

∑
j

{
J†
j Jj , ρ

(0)(t)
}
. (4)

The right-most term of eq. (4) produces the ticks and
is therefore responsible for the process (a) while Lno tick

generates the TPC, i.e., process (b). In this sense, one
may attempt to separate (a) and (b) into two indepen-
dent processes, as in [10]; however the back-action of the
tick channel always affects the clock evolution which is
an inherent feature of clocks that operate on a quantum
scale.
Ticking statistics. Together with the initial state,

eq. (4) defines the evolved state ρ(0)(t) and therefore
entirely determines how the tick time random variable
T is distributed, because the cumulative probability
P [t ≤ T ] that no tick has occurred up to time t equals
the trace P [t ≤ T ] = tr ρ(0). To highlight the influ-
ence of TPC, we can equivalently express the cumula-
tive tick probability as a function of the conditional tick
rate P [T = t|T ≥ t], defined as the instantaneous tick
probability at time t conditioned on the tick not having
happened before. We can obtain this rate by working
with the clock’s state conditioned on not having decayed
ρno tick = ρ(0)/ tr ρ(0). Then, the conditional tick rate

equals the trace tr
(
V ρno tick(t′)

)
, where V =

∑
j J

†
j Jj

is the positive operator generating the clock’s ticks [35],
and we find the relationship

P [t ≤ T ] = exp

(
−
∫ t

0

dt′ tr
(
V ρno tick(t′)

))
, (5)

which we further outline in the Appendix A 2.
The master-equation description of quantum ticking

clocks allows us to formalize the statement made in the
accuracy-resolution trade-off theorem. The tick channel
is governed by the positive operator V , whose spectral
decomposition reveals the time-scales involved in the de-
cay. We define the rate Γ as the fastest one of them,

Γ := ∥V ∥max = max
ρ∈S(HC)

trV ρ, (6)

where the maximum is taken over all possible clock states
ρ ∈ S(HC). This is consistent with the special case of
exponential decay (as used in [9, 17]) with rate Γ, since
there, the tick generator is given by a single jump oper-
ator J =

√
Γ |0⟩⟨1|. If a clock is described by eq. (4) and

produces its ticks by means of the generators Jj , then the
accuracy is limited by the resolution, regardless of how
well a possible clockwork in the background works. The
resulting bound is eq. (1) from the accuracy-resolution
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FIG. 3. In this figure, we plot the accuracy N on the vertical
axis versus the resolution ν on the horizontal axis. The red
curve highlights the upper bound for the accuracy N = Γ2/ν2

given by the accuracy-resolution trade-off theorem. Below, we
have the blue curve, indicating the accuracy and resolution
that can be achieved by averaging the thermal reference clock
with fundamental tick rate Γ. The shaded area between the
two curves contains all the accuracy-resolution touples that
cannot be achieved by classically averaging a rate Γ stochastic
process, but which are still allowed by the upper bound. How
close one can get to the red curve with quantum clocks and
whether classical clocks are constrained to be below the blue
line are open questions.

trade-off theorem which we recall here for completeness,

N ≤ Γ2

ν2
,

and prove in the following.

Proof. The key observation is that no clock can on av-
erage tick faster than the decay process that mediates
the ticks allows for. If the elementary ticks are generated
by an ensemble of jump operators Jj , then the fastest
such rate is given by Γ (see eq. (6)). A single such chan-
nel produces ticks that are exponentially distributed and
as a consequence, we can reduce the generic form from
eq. (5) to the special case of exponential decay, where the
exponent reduces to −Γ

∫
dt′p(t′), and p(t) is a measure

of the clock’s state population that can decay. Regard-
less of how the TPC modulates p(t), the variance σ2 of
the tick can never be smaller than Γ−2, the variance of
exponential decay. This is a manifestation of the fact
that no clock can tick faster than it’s underlying decay
process. Now that the variance σ2 of the tick time distri-
bution is bounded from below by Γ−2, the main theorem
follows. We refer the reader to Sec. C of the Appendix
for a detailed account of the proof.

In this letter, we have analyzed quantum timekeep-
ing devices through a thermodynamic lens, where their
tick generation can be decomposed into two processes,
(a) a stochastic process which irreversibly produces the
ticks and (b) temporal probability concentration (TPC)
through a clockwork which controls when these elemen-
tary ticks occur. Then, we asserted that there is a fun-
damental trade-off between the clock’s accuracy and res-
olution (see trade-off theorem but also Fig. 3), stating
that the number of times a clock can tick until it goes
wrong by one tick is universally bounded by the inverse
of the clock’s resolution squared.

Atomic and optical clocks. Timekeeping devices fun-
damentally require stochastic thermalization events to
measure time, and we have shown that for the class
of clocks using those events directly to define ticks, the
trade-off from eq. (1) applies. Macroscopic clocks such
as atomic and optical ones work in a different regime,
where the TPC is sampled by irreversible events and ticks
are defined not by event numbers directly, but rather
those are used to estimate the oscillatory TPC process
frequency. This frequency is usually downsampled to
a lower frequency, like for example the 10MHz, or the
1Hz standard that is then used to generate an electri-
cal signal to read out the ticks at said resolution [36].
Our work points out some of the challenges that have
to be overcome for optical clocks being used to produce
ticks at THz resolution: for one, ultra-fast electronics
that can generate an electric signal using only a single
photon per oscillation of the e.m. field. For another,
this gives an estimate of the power required from a laser
to create such a photon flux. While for time-standards
whose main goal it is to provide long-time stability, power
consumption may not be the primary concern, there are
other uses for clocks where energy-efficiency matters. For
example, quantum technologies require accurate high-
resolution timers that do not disturb the fragile state
of the quantum system through heat dissipation [37–40].
For building noise-robust quantum devices, it may thus
become unavoidable to account for the thermodynamic
resources consumed by clocks, which is where we expect
quantum clocks to outperform their macroscopic classical
counterparts.
Achievability. Good clocks excel by resolving time

well while at the same time being highly accurate, i.e.,
maximizing both ν and N ; ideally, they do so at opti-
mal thermodynamic costs far away from the oversampled
regime and only with a single thermalization event per
tick. As a foundational question, we may ask, does there
exist an appropriate clock Lindblad operator L, through
which it is possible to saturate the bound N = Γ2/ν2?
And the answer is: No, at least not for finite systems. As
it turns out, saturating this bound amounts to a time-
dependent Lindblad-operator, which instantaneously ro-
tates the clock state from a subspace of states where it
can’t tick onto a state from which it decays at rate Γ (see
proof in Sec. C of the Appendix). The TPC in this case
would be ideal as it concentrates the decay event to the
most narrow time-window possible, the one given by the
underlying stochastic process, but quantum speed limits
prohibit such an instantaneous state rotation for systems
finite in energy and dimension [41–43]. A weaker question
we can ask is whether at least the scaling N = O(Γ2/ν2)
can be reached, and which resources are required for this.
Without imposing any restriction on the clock’s Lind-
bladian aside from time-independence, there are quan-
tum clocks which asymptotically reach the squared scal-
ing of N for large dimensions of the clock Hilbert space
[23]. To do so, they require highly coherent states, whose
generation using only thermal resources is technically in-
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finitely expensive from an entropic perspective [40] and
the approximation with finite resources is an open prob-
lem. Of interest in the field of thermodynamics are the
autonomous quantum clocks which only require thermal
resources to run [9, 10, 12, 24, 35], in particular no exter-
nal control but also no coherence in the initial state. It
is ongoing research, whether it is possible for such clocks
to approach the optimal accuracy-resolution scaling.

Questions about fundamental precision limits are gen-
erally of great interest. The accuracy of clocks falls into
this category and closely related problems have been ex-
amined in the field of (quantum) stochastic thermody-
namics under the name of thermodynamic uncertainty
relations (TUR) [44–46] and kinematic uncertainty rela-
tions (KUR) [47–49]. Future work exploring connections
between timekeeping and the TUR / KUR has to reveal
whether a quantum thermodynamic advantage close to
the optimal accuracy-resolution bound N = Γ2/ν2 is in
principle possible. Both superconducting circuits and op-
tomechanical systems are promising platforms to test the
achievability of the optimal accuracy-resolution relation

while accounting for the resources and ensuring that they
do not introduce a hidden clock through a backdoor.
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ner, Quantum Clocks are More Accurate Than Classical
Ones, PRX Quantum 3, 010319 (2022).

[19] Y. Yang and R. Renner, Ultimate limit on time signal
generation, arXiv:2004.07857 [quant-ph] (2020).

[20] R. S. Ingarden, A. Kossakowski, and M. Ohya, Informa-
tion Dynamics and Open Systems (Springer Netherlands,
1997).

[21] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, 2007).

[22] A. Klenke, Probability Theory (Springer International
Publishing, 2020).

[23] M. P. Woods, R. Silva, and J. Oppenheim, Autonomous
Quantum Machines and Finite-Sized Clocks, Annales
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APPENDICES

Appendix A: Temporal probability concentration

In this section, we elaborate on the technical details
regarding the concept of temporal probability concentra-
tion (TPC) which we have introduced in the main text
of this letter. This concept has first been explicitly men-
tioned in [10], but implicitly, it has been applied in a
variety of works [9, 18, 23, 25]. In the main text, a dis-
tinction of tick generation into two separate processes
was made: a) the irreversible process whose occurrence
defines the tick, and b) an additional filter mechanism,
which temporally concentrates the probability of when
a tick, i.e., process a) occurs. We refer to the latter as
TPC.

1. An example

As an illustration, let us take a fixed exponential de-
cay process, i.e., a physical system comprising two states,
say an excited one and the ground state, and the excited
state decays with a fixed rate Γ into the ground state.
If we were to initialize this system in the excited state,
its tick rate would be constantly equals to Γ and the re-
sulting tick probability density P [T = t] = Γe−Γt would
be exponential. Not unsurprisingly, this clock does not
excell in accuracy, which manifests itself in the accuracy
N = 1, as already elaborated in the main text. Let us
now introduce an additional dynamical process, for ex-
ample the driving by an autonomous thermal machine
as in [9]. Such an interaction could first rotate the clock
state from the ground state from which it can not decay
into the excited state, from which it can decay, leading to
an effective decay rate not always equals Γ, but now mod-
ulated dynamically by the autonomous thermal machine.
This time-dependency is the TPC of the tick process, and
in the example of [9] it leads to an accuracy N > 1.
We here summarize the clock example from [9] to il-

lustrate the general model for clocks introduced with the
equations of motion in eq. (4) in the main text. In gen-
eral, the two-level system in the clock described above
can be extended to a d-dimensional ladder which allows
to delay the decay process even further. To be more spe-
cific, the clock model comprises the ladder HL spanned
by the states |0⟩L , |1⟩L , . . . , |d− 1⟩L, and the thermal
machine. The thermal machine itself is made up of two
qubits, a cold one HC with the states |0⟩C , |1⟩C and a
hot one HH with states |0⟩H , |1⟩H . The interactions be-
tween the ladder and the two qubits is described by the
Hamiltonian H = H0 +Hint, where

H0 = ωC |1⟩⟨1|C + ωH |1⟩⟨1|H +

d−1∑
n=0

nωL |n⟩⟨n|L , (A1)

is the system’s free Hamiltonian, with ωC the energy-
splitting of the cold qubit, ωH that of the hot qubit, and

ωL that of the ladder. The term

Hint = g

d−1∑
n=0

(
|10⟩⟨01|CH ⊗ |n+ 1⟩⟨n|L + h.c.

)
(A2)

describes the population exchange between the two-qubit
thermal machine and the ladder system. Furthermore,
there are the thermal dissipators LC , and LH modelling
the interactions of the cold qubit with a cold bath at in-
verse temperature βC and those of the hot qubit with it’s
hot bath at inverse temperature βH . The dissipators are
of the form LC = nCγCD[|1⟩⟨0|C ]+(1+nC)γCD[|0⟩⟨1|C ],
where nC is the photon number of the cold bath given
by Bose-Einstein statistics, nC = (eβCωC − 1)−1, and γC
is the coupling rate of the cold bath to the cold qubit.
The dissipator for the hot bath is analogous but with the
subscript H instead of C. The terms D are as usually
defined as D[L] = L ◦L† − 1

2

{
L†L, ◦

}
. All these expres-

sions together give rise to the Lindbladian part Lno tick

responsible for TPC,

Lno tick = −i[H, ◦] + LC + LH . (A3)

The tick generation then comes from the ladder decaying
from it’s top level state into the ground state through the
tick generating operator J, defined by

J =
√
Γ |0⟩⟨d− 1|L , (A4)

where Γ is the coupling strength of the ladder’s transi-
tion |d− 1⟩L → |0⟩L to the environment, i.e., the decay
rate. If we go through the calculations provided in refer-
ence [9], we find that this clock’s accuracy in the regime
Γ, g ≪ γH , γC , and g ≪ ωC , ωL, and under the resonance
condition ωC +ωL = ωH grows with the dimension d but
the resolution decreases. In the asymptotic limit, as cold
bath temperatures goes to absolute zero, β−1

C → 0, the
accuracy grows linearly in the dimension, N ∝ d, and
the resolution inverse linearly, ν ∝ d−1. The resulting
accuracy-resolution relationship is also inverse linear for
this clock, N ∝ ν−1; as the authors in [9] state, the clock
in this regime behaves essentially classically, hence, not
unexpectedly, we find the classical trade-off from eq. (2)
in the main text.

2. General formalism

In the following we approach the concept of TPC from
two different perspectives, firstly from the equations of
motion by starting from eq. (4), describing explicitly the
evolution of a given tick state, and secondly from a formal
probability theoretic paradigm.
TPC as an emergent property from the equations of

motion. For convenience, let us recall the equation of
motion (4) from the main text,

ρ̇(0)(t) = Lno tick[ρ
(0)(t)]− 1

2

∑
j

{
J†
j Jj , ρ

(0)(t)
}
. (A5)
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Ticks, by definition, are the transitions generated by the
operators Jj , and this is the process a) in our list from
before. This means, if the clock system undergoes any
one of the stochastic transitions Jj , this is counted as a
tick.

We can take the trace of the equation of motion (A5),
and we obtain on the left-hand side the derivative of the
cumulative tick probability density,

tr
{
ρ̇(0)(t)

}
=

d

dt
P [t ≤ T ]. (A6)

For a well-behaved, here, continuously differentiable, cu-
mulative probability P [t ≤ T ], the derivative equals the
probability density function (PDF) P [T = t]. This allows
us to identify the trace of the right-hand side of eq. (A5)
as the probability density,

P [t = T ] = tr
{
V ρ(0)(t)

}
, (A7)

where V =
∑

j J
†
j Jj as defined in the main text. This

probability distribution completely describes the statis-
tics of the tick considered. Average time between ticks
µ and variance of the time between ticks σ2 are defined
with respect to this PDF. An related quantity, which is
of particular relevance from an operational perspective is
the conditional tick probability density: the probability
density P [T = t|T ≥ t] that the tick occurs at time t
conditioned on the fact that it has not ticked before that
time t. We can calculate the conditional PDF using

P [T = t|T ≥ t] =
P [T = t ∧ T ≥ t]

P [T ≥ t]
(A8)

=
P [T = t]

P [T ≥ t]
, (A9)

which reveals that the conditional tick PDF equals the
trace that appeares in eq. (5) in the main text,

P [T = t|T ≥ t] = tr
(
V ρno tick(t′)

)
. (A10)

In this form, TPC becomes particularly apparent: for a
clock without any internal dynamics, i.e., Lno tick ≡ 0
where ticks are generated through exponential decay, the
conditional tick PDF is constant, P [T = t] = Γ, where Γ
is the rate of the exponential decay. This is the example,
where the stochastic thermalization event that generates
the tick is not temporally concentrated, hence the time-
independence of the conditional tick PDF. In contrast,
for a non-trivial clockwork as for example presented in
the references [9, 18, 23, 25], the conditional tick PDF
has time-dependency, which eventually leads to a non-
exponential tick probability with accuracy N > 1.
TPC as a conditional probability density. The previ-

ous paragraph introduced the notion of the conditional
tick PDF P [T = t|T ≥ t] that a tick happens at time
t conditioned on the tick not having happened before.
Equation (5) in the main text relates this expression to

the tick cumulative tick probability density P [T ≥ t] via
the more general identity,

P [T ≥ t] = exp

(
−
∫ t

0

dτP [T = t|T ≥ t]

)
. (A11)

Here we would like to derive this expression and elabo-
rate. Definition of cumulative probability distributions
(CDFs) and PDFs ensure, that

d

dt
P [T ≥ t] = −P [T = t], (A12)

so long as the derivative is well-defined and continuous. If
we then use the conditional probability law from eq. (A8)
of this supplemental material, we find that

d

dt
P [T ≥ t] = −P [T ≥ t]P [T = t|T ≥ t]. (A13)

The solution of this differential equation is the exponen-
tial expression as generally given in eq. (A11). This shows
the relation in eq. (5).

Appendix B: Working principle of atomic clocks

Atomic clocks are the technological state-of-the-art
when it comes to timekeeping and in the letter, we discuss
the relevance of the trade-off theorem to atomic clocks.
In this section, we give the interested reader a brief de-
scription of the working principle of atomic clocks and
refer them to more specialized references.
Frequency estimation vs. tick generation. Atomic

clocks use the period of the coherent electromagnetic
field oscillation in a laser to measure time and they use a
reference frequency, for example electronic transitions in
an atom, to stabilize the laser’s frequency. Commonly,
atomic clocks are used to generate a stable frequency ref-
erence. The coherent light field of the laser which is the
basis of every atomic clock is generated using stimulated
emmission (see e.g. [50] for an open quantum system’s
approach or [51], for an applied textbook). In practice,
the laser frequency is inevitably subject to drifts and
noise due to interactions with the environment and in-
herent imperfectness of the constituents (e.g. Brownian
motion). To correct for this, elaborate feedback tech-
niques have been developed, e.g., the hyperfine ground-
state transition of an Caesium-133 atom is used as a fre-
quency reference to stabilize the laser [1, 36, 52, 53]. In
our model introduced in the main text, all frequencies
are idealized to be perfectly stable; in particular also the
TPC’s oscillatory frequency is assumed to be unchang-
ing. We reveal that despite these idealizations, such a
clock can not be perfect, due to the underlying stochas-
ticity of the thermal processes. Formally, we show this
with the accuracy-resolution trade-off theorem.
However, frequency stabilization is only part of the

story required for accurate timekeeping, as an additional
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process is required to produce ticks. In the oversam-
pling regime atomic clocks work in, ticks are not uniquely
defined but one may chose to define ticks as the zero-
crossings or the maxima of the oscillation. In this regime,
the elementary stochastic events (here: photoemission)
are not directly used as a tick definition anymore but
rather as a means to sample the TPC oscillation, which
then defines ticks as for example one period of the oscilla-
tion. Only in the regime where such a clock is run with a
single photon per oscillation of the electromagnetic field,
and the photon defines a tick, does the trade-off theorem
impose a practical restriction on the clock’s performance.

Appendix C: Proof of the accuracy-resolution
trade-off

Before we get started with the proof of the accuracy-
resolution trade-off theorem (which is a generalization of
the one shown in [35]), some preliminary notation has to
be established. When it comes to the cumulative non-
tick probability P [t < T ] as in eq. (5) of the main text,
the trace trV ρC(t) can be rewritten as

tr(V ρC(t)) = Γp(t), (C1)

where p : R≥0 → [0, 1] is a smooth function that takes
values between 0 and 1. This comes from the fact that
Γ is the maximum of the expression over all states ρ and
the function can only take positive values because V is a
positive operator. This expression puts is into the posi-
tion, where we can write

P [t ≤ T ] = exp

(
−Γ

∫ t

0

dt′p(t′)

)
, (C2)

which is formally the exact same expression that one
would obtain in the case where the clock’s elementary
ticks are exponential decay. We will from now on refer
to p(t) as the top-level population. The remaining sec-
tions are an adapted version of the proof of the accuracy-
resolution theorem originally derived in [35].

1. The Heaviside-Θ population

Definition 1 (Heaviside populations). The family of
Heaviside populations comprises all the functions

pΘ : R≥0 → [0, 1] (C3)

t 7→ Θ(t− t0), (C4)

where t0 ≥ 0.

Properties of the Heaviside population. Such a top-
level population is unphysical because of its discontinu-
ity at time t = t0. This is not an obstacle, though, as
we only use the Heaviside population to prove an up-
per bound for the accuracy of a decay clock. No claim

is made whether we can physically obtain the Heaviside
population. The non-tick probability PΘ[t ≤ T ] and tick
probability density pΘtick(t) associated to this population
are given by (see eq. (C2))

PΘ[t ≤ T ] =

{
1 t ≤ t0
e−Γ(t−t0) t ≥ t0,

(C5)

and

pΘtick(t) =

{
0 t ≤ t0
Γe−Γ(t−t0) t ≥ t0.

(C6)

See Fig. 4 for a visualization of these functions. Using
the analytic solution of the integral over an exponential,∫∞
0

dxe−ax = 1/a, we can calculate the accuracy and
resolution for clocks working the Heaviside population.

Lemma 2. The Heaviside population pΘ(t) = Θ(t − t0)
has an accuracy and resolution given by

N = (1 + Γt0)
2
, and ν =

1

t0 +
1
Γ

, (C7)

leading to an accuracy-resolution relation

N =
Γ2

ν2
. (C8)

Before we prove Lemma 2, let us put the Heavi-
side population into perspective. Given the accuracy-
resolution trade-off theorem the equality N = Γ2/ν2 for
clocks with Heaviside population tells us that this top-
level population profile is ideal in the accuracy-resolution
sense. This is no coincidence: a Heaviside population
with offset at t0 requires a clock in the background which
perfectly knows t0. The population then describes a lad-
der conditioned on not having decayed, whose top-level
is populated precisely at t = t0, and stays there. This
would require instantaneous external driving at t = t0,

FIG. 4. This graph visualizes the ticking statistics for the
Heaviside population. The solid line in the above figure vi-
sualizes the tick probability density, whereas the dashed line
stands for the cumulative non-tick probability. The time axis
scales in inverse units of the decay rate Γ and the population
in the example is chosen such that on average the decay oc-
curs at µ = 4.5Γ.
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i.e., a perfect background clock. The exponential de-
cay channel coupled to the top-level then smears out the
Heaviside profile of pΘ(t) into an exponential decaying
tick probability density pΘtick(t) of width 1/Γ, giving rise
to the results of Lemma 2.

Proof. The average tick time is given by an integral over
tpΘtick(t) and splits into two parts

µ =

∫ ∞

0

dt tpΘtick(t) = 0 +

∫ ∞

t0

dt te−Γ(t−t0) (C9)

= t0 +
1

Γ
. (C10)

Thus, the resolution is given by ν =
(
t0 +

1
Γ

)−1
. For the

accuracy, which is defined as N = (µ/σ)2, we only need
to calculate the variance σ2. The variance, however, is in-
variant under translations of the tick probability density
and, thus, one can calculate the variance without loss of
generality for t0 = 0,

σ2 =

∫ ∞

0

dt t2e−Γt − µ2 (C11)

=
2

Γ2
− 1

Γ2
=

1

Γ2
. (C12)

Expressing the accuracy in terms of t0, we find N =
(1 + Γt0)

2, that is, the accuracy increases with higher
offset t0. There is a tradeoff, though: The greater t0,
the lower the resolution. Eliminating the t0-dependency
in the equations, we can establish an accuracy-resolution
relation for the family of Heaviside populations given by
N = Γ2/ν2.

Analytic preliminaries. The tick probability density
ptick(t) reveals how likely it is for a tick to happen dur-
ing a given time interval. By the fundamental the-
orem of calculus, the cumulative non-tick probability
P [t ≤ T ] (whose negative derivative is ptick(t)) con-
tains the same information, and for proving the accuracy-
resolution trade-off, the latter function turns out to be
useful. Let us collect some general identities for the non-
tick probability P [t ≤ T ] which for some function p(t)
(be reminded, that the superscript no tick is suppressed)
is given by

P [t ≤ T ] = e−Γ
∫ t
0
dτ p(τ). (C13)

There is a general constraint (Lemma 3) on how fast the
non-tick probability decays. The fact that p(t) ∈ [0, 1]
ensures that P [t ≤ T ] is monotonically decreasing (be-

cause the integral
∫ t

0
dτ p(τ) is monotonically increasing)

but does this not faster than exponentially.

Lemma 3. For all t > 0 and s > 0, the cumulative
non-tick probability satisfies the following inequalities:

P [t ≤ T ]e−Γs ≤ P [t+ s ≤ T ] ≤ P [t ≤ T ]. (C14)

Proof. This is a consequence of eq. (C13) and the fact
that 0 ≤ p(t) ≤ 1.

The cumulative non-tick probability can be used to
calculate the moments of the probability density ptick(t)
(see Definition 4 and Lemma 5) via the relation ptick(t) =

−Ṗ [t ≤ T ] and partial integration. It is important to
note, that this discussion only makes sense for clocks that
tick with certainty, i.e., limt→∞ P [t ≤ T ] = 0. This need
not be true for all clocks, however, whenever we talk
about a tick probability density, we implicitly assume that
we have a properly normalized probability density in the
probability theoretic sense [22].

Definition 4 (Moments). For a given tick probability
density ptick(t), define its k-th moment as

tk :=

∫ ∞

0

dt tkptick(t). (C15)

Lemma 5 (Tick probability moments). The k-th mo-
ment of ptick(t) is related to P [t ≤ T ] by the integral

tk = k

∫ ∞

0

dt tk−1P [t ≤ T ]. (C16)

Proof. This is partial integration and for the boundary
conditions, we use the assumption that limt→∞ P [t ≤
T ] = 0.

In particular, we can apply this result to µ = t1 and
σ = t2 −µ2, two expressions that are essential in Section
C 2, where we prove the upper bound. The average tick
time µ = t1 can be written as the area below the graph
of P [t ≤ T ],

µ = t1 =

∫ ∞

0

dt tptick(t) =

∫ ∞

0

dt P [t ≤ T ]. (C17)

The second moment t2, on the other hand, is related
to the center of mass of the graph for P [t ≤ T ], up to
normalization,

t2 =

∫ ∞

0

dt t2ptick(t) = 2

∫ ∞

0

dt tP [t ≤ T ]. (C18)

2. Proof construction

The introduction of the Heaviside population in Defi-
nition 1 together with the result in Lemma 2, that these
populations achieved the (claimed) optimal accuracy res-
olution relation, leads us to the following approach in
proving the inequality N ≤ Γ2/ν2: we try to show that
all clocks are worse than the one with a Heaviside popu-
lation, which has essentially a perfect background clock.
In that sense, what we are showing is that no clock is
better than the one that is already perfect. The only
premise we have for the proof is that the clocks we con-
sider eventually tick (i.e., ptick(t) is a valid probability
density) and that their evolution is continuous,1 we call
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this well-behaved. That being said, our strategy to prove
the upper bound consists of the following three steps:

(i) We show that for any well-behaved top-level popu-
lation p(t), there exists a Heaviside-Θ type top-level
population with the same average tick time.

(ii) Then, we argue that the variance of the tick prob-
ability density coming from the Heaviside-Θ top-
level population lower-bounds the variance coming
from the generic population p(t).

(iii) We conclude that any well-behaved top-level pop-
ulation p(t) must have an accuracy upper bounded
by that of the Heaviside population and by using
Lemma 2 on the properties of the Heaviside popu-
lation, we have N ≤ Γ2/ν2. Once we are there, we
have proven the accuracy-resolution trade-off theo-
rem.

Step (i). Begin with a generic, but well behaved top-
level population p(t). Let µ be its average tick time and
define t0 := µ− 1/Γ. The top-level population

pΘ(t) = Θ(t− t0) (C19)

has the same first moment t1 = µ as the generic top-
level population.2 For the results from Lemma 2 to carry
over, we need t0 > 0. This is generally true as Lemma 6
guarantees. In fact, it tells us (see Fig. 5) that the average
tick time of any well-behaved top-level probability can
not be smaller than 1/Γ and that the best resolution is
achieved by the top-level population which is constantly
one.

Lemma 6 (Resolution upper bound). For any well-
behaved top-level population p : R≥0 → [0, 1], the induced
resolution ν cannot be greater than Γ.

Proof. Equivalently to the statement in the Lemma, we
can prove that µ ≥ 1/Γ. For this matter, use eq. (C17),
to estimate the average tick time

µ =

∫ ∞

0

dt P [t ≤ T ] ≥
∫ ∞

0

dt e−Γt = 1/Γ. (C20)

This concludes the proof.

1 This ensures we are doing a fair comparison, otherwise, we’d have
to discuss how to compare clocks that possibly never tick to ones
that always tick. We reserve that discussion for future work.

2 The average tick time is given by µΘ = t0 +1/Γ, with t0 coming
from the time translation of the Heaviside-Θ function and 1/Γ
coming from the exponential decay.

FIG. 5. The sketch shows the time-dependency of a generic
top-level population p(t) together with the associated cumu-
lative non-tick probability P [t ≤ T ] compared to the non-
tick probability e−Γt of the top-level population which is con-
stantly 1. A top-level population smaller than unity leads to a
slower decay of the non-tick probability, which is responsible
for a lower bound on the average tick-time given by 1/Γ.

Step (ii). If p(t) = pΘ(t), there is nothing to be
shown, because pΘ(t) achieves the minimal tick time
variance σ2 = 1/Γ2 (see eq. (C12)). Hence, we as-
sume from now on p(t) ̸= pΘ(t) to avoid this patho-
logical case. Proposition 8 in Section C 3 further dis-
cusses, that there exists a unique t∗ > t0 = µ−1/Γ, such
that P [t∗ ≤ T ] = e−Γ(t∗−t0) (see Fig. 6). For all times
t < t∗, the non-tick probability for the generic top-level
population is smaller than that of the Heaviside popula-
tion, i.e., P [t ≤ T ] ≤ PΘ[t ≤ T ]. In the generic case, a
tick before t∗ is therefore more likely than for the Heav-
iside case. On the other hand, for all t > t∗, we have
P [t ≤ T ] ≥ PΘ[t ≤ T ]. That is, in the generic case, it
is also more likely that after t∗ the tick did not happen.
Formally, the variance of the tick signal is bigger for a
generic population than for the Heaviside one (Proposi-
tion 7).

Proposition 7. For any well-behaved top-level popula-
tion p : R≥0 → [0, 1], the variance of the tick probability
density ptick(t) is lower-bounded by that of pΘtick(t), the
tick probability density coming from the Heaviside top-
level population pΘ(t) defined in eq. (C19).

Proof. By construction both ptick(t) and pΘtick(t) have the
same average tick time µ. Because the variance of the
tick time is given by the difference σ2 = t2 − µ2, the
following two statements are equivalent,

σ2 ≥ σ2
Θ ⇔ t2 ≥ tΘ2 . (C21)

The second moments on the right-hand side can be cal-
culated as the center of mass of the respective non-tick
probabilities P [t ≤ T ] and PΘ[t ≤ T ] (up to constant
prefactors, see also eq. (C18)). Therefore, the question
we have to answer is, whether the graph of P [t ≤ T ] has a
center of mass at larger values of t then that of PΘ[t ≤ T ]?
The two areas A1 and A2 in Fig. 6 are equal and they
correspond to the difference in the area below the graphs
of P [t ≤ T ] and PΘ[t ≤ T ]. The graph of P [t ≤ T ] has
less ‘mass’ (i.e., area) on the interval 0 ≥ t ≥ t∗ than
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FIG. 6. The dashed lines show the top-level populations for
the generic (blue) and the Heaviside case (green). The in-
duced cumulative non-tick probabilities P [t ≤ T ] and PΘ[t ≤
T ] are drawn in the same color but as solid lines. The time
t∗ marks the unique crossing point of the two non-tick prob-
abilities. On its right and left, the two areas A1 and A2 are
defined by the difference between the two non-tick probabili-
ties.

PΘ[t ≤ T ]. For t∗ ≥ t ≥ ∞, however, P [t ≤ T ] has more
‘mass’, resulting in a center of mass further to the right
for P [t ≤ T ] than for PΘ[t ≤ T ]. Formally,

t2
2

=

∫ ∞

0

dt tP [t ≤ T ] (C22)

=

∫ ∞

0

dt tPΘ[t ≤ T ] +

∫ ∞

0

dt t (P [t ≤ T ]− PΘ[t ≤ T ])︸ ︷︷ ︸
:=∆P (t)

(C23)

≥
∫ ∞

0

dt tPΘ[t ≤ T ] =
tΘ2
2
, (C24)

where the inequality comes about because the integral
over ∆P (t) is greater equal than zero,∫ ∞

0

dt t∆P (t) =

∫ t∗

0

dt t∆P (t) +

∫ ∞

t∗

dt t∆P (t) (C25)

≥
∫ t∗

0

dt t∗∆P (t) +

∫ ∞

t∗

dt t∗∆P (t) = 0.

(C26)

All in all, this shows that t2 ≥ tΘ2 , which, by the initial
remark, proves the proposition.

Step (iii). Combining all the results from the previ-
ous two steps, we proof the Theorem.

Proof. The accuracy N is defined as N = (µ/σ)2, and
the resolution ν as ν = 1/µ. We can therefore express

N =
(µ
σ

)2

=
1

ν2σ2
. (C27)

From Proposition 7 we know that σ2 ≥ σ2
Θ, but σ2

Θ =
1/Γ2, as we derived in Lemma 2 (see eq. (C12) in the
proof). In conclusion,

N =
1

ν2σ2
≤ 1

ν2σ2
Θ

=
Γ2

ν2
, (C28)

FIG. 7. This sketch visualizes the first step of the the proof
of Proposition 8. The solid green line indicates the non-tick
probability for the Heaviside population. We see that for the
red dashed line which does not fall below 1 before t0, the total
integral is greater than that of PΘ[t ≤ T ], contradicting the
construction, which ensures that both functions have the same
integral. The blue, dashed line shows a plausible function for
P [t ≤ T ].

which proves the claim, and thereby the optimality of the
family of Heaviside-Θ top-level populations.

3. Details on the optimality of the Heaviside
population

In Step (ii) of Section C 2, the claim is made that there
exists a unique t∗ ≥ t0 = µ−1/Γ, such that the two non-
tick probabilities coincide P [t∗ ≤ T ] = e−Γ(t∗−t0). To be
more precise, we formulate

Proposition 8. The set S = {t ≥ 0 : P [t ≤ T ] = PΘ[t ≤
T ]} is of the form

S = [0, a] ⊔ {t∗}, (C29)

where t∗ > t0, and [0, a] is an interval with upper bound
a < t0.

Proof. We divide the proof of this proposition into three
steps (a) - (c), with visual aids in Figures 7 and 8.
Step (a). We claim that there exists a 0 < t < t0,

such that P [t ≤ T ] < 1. Suppose that this was not the
case, then P [t ≤ T ] = 1 for all t ≤ t0 (see Fig. 7). By
requirement, there must exists a t such that p(t) ̸= pΘ(t),
and because by our (contradictory) assumption t cannot
be smaller than t0, it must be bigger than t0. Since, P [t ≤
T ] ≥ e−Γ(t−t0), for all t > t0, there must exist a t > t0,
such that P [t ≤ T ] > e−Γ(t−t0). But this contradicts the
assumption that

∫∞
0

dtP [t ≤ T ] = t0+1/Γ. Therefore, it
must be that there is a t < t0 with P [t ≤ T ] < 1.
Step (b). Our next claim is, that there exists an 0 <

a < t0 such that on [0, a], we have P [t ≤ T ] = 1 and for
all other a < t ≤ t0, P [t ≤ T ] < 1. By our previous claim
(1), there exists 0 < t < t0 with P [t ≤ T ] < 1. Let a be
the infimum of all such t.3 Then, [0, a] ⊂ S (continuity
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FIG. 8. Here, we visualize step two of the proof of Propo-
sition 8. Again, the solid, green line indicates the non-tick
probability for the Heaviside population. To satisfy the con-
struction that P [t ≤ T ] and PΘ[t ≤ T ] have the same integral
on R≥0, the area below the graph of P [t ≤ T ] for t > t0 must
be bigger than that of PΘ[t ≤ T ]. Thus, at some point after
t0, P [t ≤ T ] must be bigger than PΘ[t ≤ T ] (see the blue
area denoted by Agood), and not always smaller (see red area
denoted by Abad).

of P ). Moreover, by the properties of an infimum, for all
ε > 0, there exists a δ > 0, such that P [a + δ ≤ T ] < 1.
But P [t ≤ T ] is monotonically decreasing, hence, this is
true for all δ > 0, such that a+δ ≤ t0, proving the claim.
Step (c). In this last step, we show the existence of

a unique t∗ > t0 such that t∗ ∈ S. For a visualization
of this step, see Fig. 8. The integrals of P [t ≤ T ] and
PΘ[t ≤ T ] on R≥0 coincide. However, we have just argued
that on a non-empty interval between 0 and t0, P [t ≤
T ] is strictly smaller than PΘ[t ≤ T ]. This leads to the

the inequality
∫ t0
0

dt P [t ≤ T ] <
∫ t0
0

dt PΘ[t ≤ T ]. In
order to ensure that the integrals over all of R≥0 are
equal, there must exist a t′ > t0 such that P [t′ ≤ T ] >
PΘ[t

′ ≤ T ]. For all t > t′, this inequality must be true
too, because P [t ≤ T ] can not drop faster than e−Γ(t−t0),
due to boundedness of the top-level population p(t) ≤ 1.
Set t∗ to be the infimum of all such t′. Note that t∗ must
be strictly greater than t0 due to continuity of P [t ≤ T ].
This concludes the proof of the last step and therefore of
the proposition.

3 The set {t : P [t ≤ T ] < 1} is lower bounded by 0 and non-empty
by the claim made in step (a), thus, the infimum exists.
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