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Many-particle entanglement is a key resource for achieving the fundamental precision limits of a
quantum sensor [1]. Optical atomic clocks [2], the current state-of-the-art in frequency precision, are
a rapidly emerging area of focus for entanglement-enhanced metrology [3–6]. Augmenting tweezer-
based clocks featuring microscopic control and detection [7–10] with the high-fidelity entangling
gates developed for atom-array information processing [11, 12] offers a promising route towards
leveraging highly entangled quantum states for improved optical clocks. Here we develop and employ
a family of multi-qubit Rydberg gates to generate Schrödinger cat states of the Greenberger-Horne-
Zeilinger (GHZ) type with up to 9 optical clock qubits in a programmable atom array. In an atom-
laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability
below the standard quantum limit using GHZ states of up to 4 qubits. However, due to their
reduced dynamic range, GHZ states of a single size fail to improve the achievable clock precision
at the optimal dark time compared to unentangled atoms [13]. Towards overcoming this hurdle,
we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase
estimation over an extended interval [14–17]. These results demonstrate key building blocks for
approaching Heisenberg-limited scaling of optical atomic clock precision.

Quantum systems have revolutionized sensing and
measurement technologies [18], spanning applications
from nanoscale imaging with nitrogen vacancy cen-
ters [19] to gravimetry with atom interferometers [20],
and timekeeping based on optical atomic clocks [2]. A
major precision barrier for such devices is the quantum
projection noise (QPN) arising from inherently proba-
bilistic quantum measurements. Because of QPN, a mea-
surement on N independent and identical quantum sen-
sors will have an uncertainty scaling as 1/

√
N , known as

the standard quantum limit (SQL). However, the funda-
mental precision bound given by quantum theory is the
Heisenberg limit (HL) with 1/N scaling for linear observ-
ables. Improving measurements from the SQL towards
the HL using entangled or non-classical resources is the
central thrust of quantum-enhanced metrology [1], an ap-
proach which has already yielded benefits in fundamental
physics [21, 22] and biology [23].

The intersection of programmable atom arrays with
optical atomic clocks provides a novel opportunity in this
endeavor. The former have emerged as one of the leading
architectures for quantum information processing [24–
26], with advances in Rydberg-gate design [27, 28] now
enabling controlled-phase (CZ) gate fidelites as high as
0.995 [11, 12]. The latter now routinely achieve fractional
frequency uncertainties at or below the 10−18 level [29–
35], with synchronous comparisons allowing for stabil-
ity near or at the SQL. Merging these capabilities be-
comes possible with tweezer-controlled optical atomic
clocks [7, 8], which have demonstrated a relative insta-
bility of 5 × 10−17/

√
τ [9] (where τ denotes the averag-
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ing time in seconds). The integration of high-fidelity en-
tangling gates for generating metrologically useful many-
body states in a clock-qubit atom array [36, 37] serves as
a natural path towards entanglement-enhanced measure-
ments at the precision frontier.
Of particular interest is the generation and use of

Schrödinger cats, coherent superpositions of two macro-
scopically distinct quantum states [38]. Specifically, the
maximally entangled GHZ-type cat state of N qubits

|GHZ⟩ = 1√
2

(
|0⟩⊗N

+ |1⟩⊗N
)
, (1)

accumulates phase N -times faster than unentangled
qubits and saturates the HL [39]. However, GHZ
states also suffer from increased sensitivity to dephasing
noise [13] and fragility to decay and loss, making them
difficult to create and use. This delicate nature is a core
reason that large GHZ-state production has become a
standard benchmark for quantum processors [40–42]. On
the other hand, quantum metrology faces the key ques-
tion of whether such fragility compromises the practical
utility of these states. A growing number of small-scale
demonstrations suggest that GHZ states can indeed per-
form below the SQL in a broad range of contexts [43–46],
though their application to clock operation has remained
largely unexplored in experiments.
In this article, we experimentally investigate the gen-

eration and metrological performance of GHZ states in
an array of strontium clock qubits. These explorations
mark the first realization of GHZ states in a neutral-atom
optical clock, as well as the first time that GHZ states
have been used for below-SQL performance in an atom-
laser comparison (with a restricted dark time). Under-
lying these results is the extension of the time-optimal
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Fig. 1. Global multi-qubit gates in a 88Sr atom array. a, Schematic of the experimental setup. 88Sr atoms in the
states |0⟩ (blue circles) and |1⟩ (red circles) are arranged into different ensemble sizes N in an optical lattice (gray lines, lattice
spacing alat ≈ 575 nm). The optical |0⟩ ↔ |1⟩ transition is driven by a clock laser (red arrow). To generate entanglement,
a separate laser (purple arrow) globally couples |1⟩ to a high-lying Rydberg state |r⟩ with decay rate γr (see level diagram).

This Rydberg laser realizes a global multi-qubit gate Û [see Eq. (2)] that simultaneously produces states of the form |GHZ⟩
[up to a global Z rotation, see Eq. (1) and Methods] with variable size N (yellow shaded areas). In a Ramsey sequence, |GHZ⟩
acquires N -times the single-particle phase θ (bottom Bloch spheres). b, Numerically determined duration TG (blue circles) for

the time-optimal multi-qubit gate Û with variable maximum GHZ-state size Nmax (bottom panel). The dashed line shows the
fitted scaling TG ∼ N0.59

max . The top panels show the time-dependent Rydberg laser phase ϕr for Nmax = 2, 4, 10. c, Generation
of Bell states using the time-optimal CZ gate implementation from Ref. [11]. The top row shows (left) the equivalent quantum
circuit used for preparing and characterizing Bell states and (right) a single-shot fluorescence image of the atomic pairs. The

bottom row shows (left) the expectation of the parity P̂z (blue circles) for variable phase ϕc and (right) the probability pi (bar
graph) to observe the two-particle state i. A sinusoidal fit to the parity (light-blue line) yields the contrast C = 0.975(3). With
p00 + p11 = 0.990(2), this corresponds to a raw Bell-state fidelity of Fraw = 0.983(2).

Rydberg-gate toolkit [11, 27] to a class of multi-qubit
operations for producing fully connected graph states.
Using these gates, we realize a raw Bell-state fidelity of
0.983(2) and create GHZ states of up to 9 atoms. In
an atom-laser frequency comparison, an instability be-
low the SQL (at the 10−14/

√
τ level) is achieved at a

fixed and sufficiently short Ramsey dark time of 3ms for
GHZ states of up to 4 atoms. Towards overcoming the
dark time restriction, we explore multi-ensemble metrol-
ogy with simultaneously prepared GHZ states of vary-
ing size to recover unambiguous phase estimation over a
range comparable to unentangled atoms.

Gate design and GHZ-state preparation

Our experiment features a 88Sr atom array trapped in
an optical lattice and programmably rearranged by opti-
cal tweezers [6]. The qubits are encoded on the optical
transition comprised of the ground 1S0 state (|0⟩) and

clock 3P0 state (|1⟩). Global single-qubit X̂(θ) rotations
are implemented by clock laser pulses with a typical Rabi
frequency of Ωc = 2π×300Hz, and global Ẑ(θ) rotations
by changing the clock laser phase; here θ denotes the
angle of rotation (see Methods). Entanglement is gen-
erated by globally coupling |1⟩ to the 47s 3S1 Rydberg
state (|r⟩), with typical Rabi frequencies in the range
Ωr = 2π×3–4MHz. High-fidelity clock and Rydberg op-
erations are a key enabling feature of this work (see Ex-
tended Data Fig. 1 and Methods).

Each experiment begins with atoms arranged into

small, isolated ensembles (see Fig. 1a). Starting from

|0⟩⊗N
, an X̂(π/2) rotation initializes all atoms into an

equal superposition of |0⟩ and |1⟩. We then turn on the
Rydberg coupling, during which strong Rydberg inter-
actions (compared to Ωr) suppress multiple excitations
to |r⟩ within an ensemble. This Rydberg blockade ef-
fect causes collective oscillations with a

√
n-enhanced

Rabi frequency for states with n atoms in |1⟩ [47–49];

explicitly, n̂ =
∑N

j=1 n̂j with n̂j = |1j⟩ ⟨1j | for an N -
atom ensemble indexed by j. By modulating the Ryd-
berg laser phase ϕr in time, the blockaded Rabi oscil-
lations for different n can be steered to simultaneously
return to the computational subspace while acquiring
an n-dependent phase. This is the core mechanism un-
derlying many recent implementations of Rydberg logic
gates [11, 12, 27, 28].
Here we apply optimal control to ϕr (see Methods) to

implement the multi-qubit gate

Û = exp
(
i
π

2
n̂2
)
. (2)

Up to a global phase and Ẑ(−π/2) rotation, Û applies
a CZ gate to every pair of qubits (see Methods). When

Û is applied to X̂(π/2) |0⟩⊗N
, the fully connected graph

state is produced, which connects to a GHZ state under a
global X̂(π/2) rotation (see Methods). Illustrative exam-

ples of ϕr are shown in Fig. 1b, with each implementing Û
for any ensemble size N ≤ Nmax. The gate duration TG
increases only sublinearly in Nmax, potentially improving
fidelities compared to a standard GHZ-state preparation
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circuit, with N − 1 two-qubit gates, when Rydberg de-
cay is the dominant error. We note that due to the fi-
nite range of the Rydberg blockade, multi-qubit Rydberg
gates are most practical for an intermediate range of N .

The GHZ-state fidelity of a state is the maximal over-
lap with |GHZ⟩ [Eq. (1)] under a global Ẑ rotation (see
Methods). It can be obtained by measuring the popula-

tions in |0⟩⊗N
and |1⟩⊗N

, in addition to the contrast of a
parity oscillation which characterizes the coherence (see

Methods); the N -qubit parity P̂z = (−1)Neiπn̂ has eigen-
values Pz = +1 (−1) for even (odd) N−n. Before imple-

menting Û , we benchmark our system by measuring this
fidelity for a two-qubit Bell state (|00⟩+ |11⟩) /

√
2, which

corresponds to |GHZ⟩ in Eq. (1) for N = 2. The Bell

state is generated by applying an X̂(−π/4) rotation after
a CZ gate (see Fig. 1c), and we use the CZ gate imple-
mentation with sinusoidal ϕr described in Ref. [11]. We
achieve a raw Bell-state fidelity of Fraw = 0.983(2) (see
Fig. 1c). This significantly improves Fraw = 0.871(16)
reported in our previous work using adiabatic dressing
gates [36], and is comparable to the best achieved in neu-
tral atoms on the alkali hyperfine qubit [11].

Next we apply the GRAPE-optimized form of ϕr to
implement Û and produce N > 2 GHZ states. The GHZ
state is generated by an X̂(π/2) rotation after apply-

ing Û (see Fig. 2a and Methods). For each N , we use
ϕr for Nmax = N (except for N = 9, in which we use
Nmax = 10). The fidelity is again extracted through pop-
ulations and parity contrast measurements (see Fig. 2b
and Methods). A summary of the raw fidelities is plotted
in Fig. 2c. We also show the raw parity contrasts, which
bound the GHZ-state fidelity from below and are the fig-
ure of merit in metrology applications. The contrasts
are > 0.6 for all N ≤ 9, certifying genuine 9-particle en-
tanglement [50]. The fidelities corrected for measurement
errors are all comparable to the raw values (see Extended
Data Table II and Methods). While larger neutral-atom
GHZ states have been produced on a short-lived Ryd-
berg qubit [51], these results represent the largest GHZ
states to be created on a long-lived neutral-atom qubit,
with fidelities on par with or better than the previous
state-of-the-art [11, 25].

The observed raw fidelities decrease approximately lin-
early in N , in contrast to the sublinear expectation based
solely on Rydberg decay (gray shaded area, see Fig. 1b
and Methods). A major challenge for multi-qubit Ry-
dberg gates is the finite, spatially decaying interaction.
The expected fidelities accounting for this effect (gray
points with dotted lines) are obtained from simulations
including the varying pair energies assuming a 1/r6 scal-
ing, with r the atomic separation; we note that this
scaling can break down for the closest atomic spacings
used (see Methods and Extended Data Table I). The ex-
pected blockade violation (multiple Rydberg excitations)
is ≲ 10−4 for the N shown, suggesting that the infi-
delity mainly arises from inhomogeneous effective Stark
shifts [27]. The finite blockade limits the maximum GHZ-
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Fig. 2. Preparing N-particle GHZ states with multi-
qubit gates. a, Equivalent quantum circuit for preparing
and characterizing N -particle GHZ states (shown for N =

Nmax = 4). The blue box represents the multi-qubit gate Û
in terms of CZ gates (see Methods). b, Measurement of the
N -particle parity (blue circles, left column) with sinusoidal
fits (light-blue line) and the probability pn to observe an N -
particle state with the population count n (bar graph, right
column). c, Raw GHZ-state fidelity (filled blue circles) for
variable ensemble size N using Fraw = (C + p0 + pN )/2 with
parity contrast C determined from the fits in panel b (shown
as gray markers). The empty hexagon marker corresponds to
the two-particle Bell state (Fig. 1c). The gray shaded area
shows an approximate upper bound due to finite Rydberg
state lifetime (see Methods). The gray points and dotted line
show the simulated fidelity only taking into account the finite
Rydberg blockade (see Extended Data Table I and Methods).
d, Coherence time of the N -particle GHZ states (filled circles)
extracted from the parity contrast C after variable hold time t
(see panel a). During t, the fluctuating atom-laser detuning
δ(t) is integrated into a random phase θ (see Methods), caus-

ing a rotation Ẑ(θ) (panel a). The light-red line corresponds
to the scaling T1/N . The empty hexagon marker shows the
lifetime for the two-particle Bell state and the empty diamond
marker shows the single-particle lifetime without applying U .
The inset shows the N = 4 data from which we extract the
lifetime using a Gaussian fit (light-red line).
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state size achieved along with technical restrictions on
our atom rearrangement (see Methods); mitigating this
effect by reducing Ωr is challenging due to recapture loss
(see Extended Data Fig. 2 and Methods). Various other
errors sources are considered in the Methods and Ex-
tended Data Fig. 3.

To characterize the coherence time of the GHZ states,
we repeat the parity contrast measurements with a vari-
able hold time t before the parity analysis X̂(π/2) ro-
tation (see Fig. 2d). A Gaussian decay of coherence is
observed, indicating inhomogeneous broadening that we
attribute to magnetic field noise (see Methods). Under
correlated, non-Markovian noise, the GHZ-state coher-
ence time is expected to obey TN = T1/N [25, 52], where
T1 is the coherence time for unentangled atoms. This
behavior is observed for N ≤ 4, but the data for N = 6
and 8 show a reduction relative to this.

GHZ-state atom-laser comparison

The ratio of sensitivity to QPN of a quantum state is
critical in determining the precision of a quantum mea-
surement. The phase sensitivity of an ideal N -atom GHZ
state is N -times enhanced (see Fig. 2b, up to contrast
reduction) compared to a coherent spin state (CSS) of
unentangled particles. Because only a single binary par-
ity outcome is obtained from those N -atoms, the QPN
increases by

√
N . Altogether, this yields the

√
N im-

provement in precision that suggests the potential for
GHZ states to reach the HL.

More concretely for optical clocks, the basic mode of
operation is to synchronize the output of a laser to an
atomic reference by regularly inferring the atom-laser
detuning from measurements of the atomic populations.
The critical metric characterizing the performance of this
procedure is the fractional frequency instability [2]. Us-
ing Ramsey interrogation, the instability for M copies of
N -atom GHZ states interrogated on each measurement
cycle is bounded from below by

σHL
y (τ) =

1

2πν0T
√
MN

√
Tcycle
τ

. (3)

Here ν0 is the clock transition frequency, T is the Ramsey
dark time, Tcycle the time for a single experimental cycle
and τ the averaging time. For a fixed total atom number
per cycle M ×N and all other parameters held constant,
the above bound is reduced by

√
N compared to the SQL

achieved by an ideal CSS [2], and can be interpreted as
the HL for clock instability in the ensemble size N (but
not the total atom number M ×N).
To test this paradigm, we investigate the performance

of the prepared GHZ states in an atom-laser frequency
comparison, employing Ramsey interrogation at a short
dark time of T = 3ms; T is chosen conservatively
to be well within the GHZ-state coherence time, and
Tcycle ≈ 1.26 s for these experiments. The protocol is
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Fig. 3. Atom-laser frequency comparisons with GHZ
states. a, Equivalent quantum circuit for repeated Ramsey
interrogation of the clock laser (atom-laser detuning δq) with
a GHZ state during the dark time T . The q-th interrogation
produces the correction signal −δqcorr via classical feedback
from a servo running on a computer (CPU). This correction
signal is applied to the frequency of the clock laser pulses
[X̂(π/2) rotations] in the (q + 1)-th interrogation performed
in the following experimental cycle. b, Overlapping Allan
deviation characterizing the fractional frequency instability
in an atom-laser comparison for M = 9 copies of ensembles
with size N = 4 (top left single-shot fluorescence image) and
dark time T = 3 ms. It is noted that this quantity is de-
termined from the linear phase estimator at the input of the
servo and not from the correction signal {−δqcorr} (see Meth-
ods). The gray shaded area indicates the region of improved
performance with respect to the SQL for M ×N = 36 atoms.
The instability, extracted from the fits shown as solid lines, for
the GHZ states (CSS) are 2.1(1) dB below [1.8(1) dB above]
the SQL. Due to imperfect qubit initialization (see Methods),
the mean total atom number per cycle was ≈ 34 for both.
(inset) By using similar fits, we show how the squared Al-
lan variance at fixed τ scales relative to the SQL (red circles)
or the CSS (red squares) for variable ensemble size N . The
arrows pointing to gray circles indicate the theoretically ex-
pected variance relative to the SQL after taking into account
the reduced parity contrast and fluctuating ensemble size ob-
served in the experiment.

similar to the coherence time measurements with a fixed
readout phase ϕc; additionally, the parity measurement
from each experimental cycle is converted into an atom-
laser detuning estimate which is used to correct the clock
laser frequency on the next cycle (see Fig. 3a and Meth-
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ods). Fig. 3b shows the overlapping Allan deviation
which characterizes the atom-laser instability for M = 9
copies of N = 4 GHZ ensembles (see top-left image). The
GHZ states operate at a fractional frequency instability
of 1.81(3) × 10−14/

√
τ ; the Allan variance reduction is

3.9(2) dB compared to the correspondingly prepared CSS
and 2.1(1) dB compared to the SQL forM×N = 36 total
atoms. A summary of the variance reduction for N = 2, 4
is shown in the top-right inset. We observe the improve-
ment growing both with respect to the CSS and the SQL,
though the reduction relative to the CSS remains short
of the naively expected HL (dashed line). Two contribu-
tions to this are parity contrast reduction and averaging
over smaller, less-sensitive GHZ states due to imperfect
rearrangement (see Methods); correcting the HL scaling
for these effects (arrows pointing to gray circles) accounts
for most of the discrepancy.

The metrological gain of a single GHZ-state size can be
practically harnessed for a restricted class of problems,
such as stabilizing certain forms of laser noise [53] or sens-
ing of time-varying signals at a specific bandwidth [3].
However, a key factor in achievable optical clock precision
is the atom-laser coherence time [33, 54]. For a CSS, this
coherence time limit is set by the condition that the inte-
grated Ramsey phase of the stochastically varying atom-
laser detuning must have sufficiently high probability to
remain within the interval [−π/2, π/2]; this interval is
the dynamic range over which the atomic readout can
be unambiguously converted into a detuning estimate.
Since the parity of an N -atom GHZ state oscillates N -
times more rapidly with phase, the width of this interval
is reduced by a factor of N . The optimal dark time for
the GHZ state is thus N -times shorter, cancelling out the
increased sensitivity. For the results presented here, we
note that the coherence-time limit is set by magnetic-field
noise as opposed to laser frequency noise.

Cascaded GHZ-state phase estimation

Extending the dynamic range is critical for allowing
GHZ states to reach HL scaling of clock stability at the
optimal dark time. In the entanglement-free context of
multi-pass interferometry, a similar hurdle was overcome
using protocols resembling the quantum phase estimation
algorithm [14, 15]; extensions of this scheme to optical
clocks with GHZ states were proposed in Refs. [16, 17].
The essential idea is to bridge the gap in dynamic range
between the CSS and a large GHZ state by using a
cascade of K steadily increasing GHZ-state sizes Nk

(k = 1, . . . ,K, each withMk copies); each Nk sufficiently
updates the prior information on the phase such that the
estimate by Nk+1 is no longer ambiguous. For instance, a
phase estimate with K bits of precision could utilize sizes
Nk = 2k−1 such that the k-th ensemble size determines
the k-th bit of precision. Importantly, near-HL scaling of
clock performance is expected to be maintained despite
the extra allocation of resources [16, 17].

To produce cascades, we exploit an important feature
of the multi-qubit gate Û : since Û applies all pairwise
CZ gates within an ensemble, regardless of the number
of qubits in the ensemble, a single global gate sequence
can produce a GHZ state for any N (or specifically in
our Rydberg implementation, any N ≤ Nmax). This en-
ables the simultaneous generation of multiple GHZ-state
sizes without additional local controls beyond initializa-
tion of the qubit ensembles (see Fig. 4a). In Fig. 4b,
we demonstrate the preparation and parity readout of a
GHZ-state cascade with K = 4 and Nk = 2k−1 using
the multi-qubit gate for Nmax = 8. For these data, we
attempt to prepareMk = 2 copies of each size on each ex-
perimental cycle (see Fig. 4a). While this scheme benefits
from reduced complexity, it suffers from degraded parity
contrast of ensembles N < Nmax, as shown in Fig. 4c.

In Fig. 4d, we explore phase estimation with cas-
caded GHZ states to demonstrate their extended dy-
namic range. The zero dark time data from Fig. 4b is
reanalyzed to interpret the analysis phase ϕc as an un-
known parameter ϕ which we would like to determine
from the parity measurement. An appropriate estimator
function is used to convert a set of parity outcomes ob-
tained from a single cascade measurement into a phase
estimate ϕest (see Fig. 4d and Methods). The estimator
we use is optimized for a Gaussian prior, which models
the laser phase diffusion typically encountered in atomic
clock operation; a standard deviation σϕ = π/6 is chosen
to be larger than the inversion range of the maximum-
size GHZ state. Repeating the measurement many times
yields the mean estimate ϕ̄est and the mean-squared error
(MSE) ∆ϕ2est.

In the right panel of Fig. 4d, ϕ̄est from a K = 4 cascade
with a linear distribution of copiesMk =MK +µ(K−k)
forMK = 2 and µ = 8 (bootstrapped total atom number
Ntot = 118) is shown, revealing that unbiased estimation
is recovered over a large fraction of the 2π-interval. Due
to limitations in the number of ensembles that we can
prepare simultaneously, this data is obtained by boot-
strap resampling over all repeated measurements at a
single ϕ (see Methods). We do this to investigate cas-
cades with more copies at smaller ensemble sizes, which
helps to mitigate large estimation errors [14, 15]. The ex-
perimental cascade (dark red) has only a slightly larger
MSE than that of a near-unity contrast CSS (gray) with
the same Ntot. A cascade with perfect parity contrast
(light red) would have significantly reduced MSE over
almost the entire range. In contrast, the MSE for multi-
ple copies of just the largest NK = 8 GHZ state (green)
is small only in a narrow region about ϕ = 0.

While the MSE is measured at zero dark time T = 0,
we are primarily interested in the performance of the cas-
cade during clock operation with T > 0. The effective
measurement uncertainty ∆ϕeff associated with a cycle
of Ramsey interrogation can be inferred by incorporating
a prior which reflects the distribution in integrated atom-
laser detuning at a specific T [53, 55, 56] (see Methods).
Using the same σϕ = π/6 Gaussian prior as used for the
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Fig. 4. Preparing cascaded GHZ states for multi-ensemble metrology. a, (left) Equivalent quantum circuit for
preparing K = 4 cascaded GHZ states using a global multi-qubit gate (Nmax = 8) and Nk = 2k−1. (right) Single-shot image of
atoms rearranged into different ensemble sizes. The color shading and circled numbers indicate the group of atoms in the image
and quantum circuit. b, Nk-particle parity (colored markers) and corresponding sinusoidal fits (colored lines, see Methods)
for K = 4 cascaded GHZ states prepared simultaneously within a single experimental shot (see panel a). The different Nk

are offset vertically for visual clarity. c, Raw GHZ-state fidelity (filled blue circles) for variable ensemble size N and constant
Nmax = 8. The gray circles correspond to the fidelities for Nmax = N from Fig. 2. The gray shaded region indicates the
Rydberg-decay limit for N = Nmax = 8. d, Phase estimation with cascaded GHZ states. (left) A single cascade produces
a set of binomial outcomes {mk} characterizing the number of even parity measurements for each size k, which is converted
to an individual estimate of ϕ by an estimator function ϕest({mk}). (right) Mean phase estimate ϕ̄est (red circles) obtained
by bootstrapping the cascaded GHZ-state parity measurements in panel b for MK = 2, µ = 8, and bootstrapped total atom
number Ntot = 118 (see main text). Dark (light) red line shows calculation assuming binomial distributions and fitted (perfect
contrast) parity models for each GHZ state. Solid gray line indicates corresponding estimate for a CSS of Ntot = 118 atoms.
The green hatched area indicates the inversion interval for the maximum GHZ-state size NK = 8. e, Mean-squared error of the
estimator for the same cascade parameters as in panel d. f, Measurement variance relative to SQL ∆ϕ2

effNtot (see main text)
for varying bootstrapped total atom number Ntot and maximum GHZ-state size NK . The experimental results (red circles)
are all obtained from the same K = 4 data. The black line is a calculation assuming GHZ-state fidelities limited by Rydberg
decay (see Fig. 2b, NK=6 = 32 extrapolated from scaling in Fig. 1b), and contrast further reduced by 0.99Nk to capture the
effect of the currently achieved measurement error rate (see Methods). The solid gray line is a calculation assuming perfect
contrast for all GHZ-state sizes. The dotted line is a reference showing π2 ln(Ntot)/Ntot (see Methods).

phase estimator, we find that the current experimental
results, all computed from the same K = 4 cascade data,
are only 2 dB above the SQL in effective measurement
variance. A major current limitation is the reduction
of contrast for smaller ensembles being subjected to a
larger Nmax gate (see Fig. 4c). Looking towards the fu-
ture, we compute the variance reduction up to K = 6
assuming fidelities limited by Rydberg decay and mea-
surement error (see Fig. 4f caption). With this realistic
model, the cascade is expected to demonstrate a substan-
tial improvement for hundreds of atoms (black). With-
out measurement errors, the variance reduction follows
closely to that of a perfect contrast cascade (gray); the
scaling is empirically found to be near the HL with both
constant and logarithmic overheads (see Methods).

Conclusion

We have demonstrated high-fidelity two-qubit entan-
gling gates and used multi-qubit gates to prepare GHZ
states of up to 9 optical clock qubits. Employing
these GHZ states for metrology, we have performed an
atom-laser frequency comparison below the SQL and ex-
tended the phase estimation dynamic range with a multi-
ensemble GHZ-state cascade; the latter capability re-
stores the compatibility of large GHZ states with the long
dark times available for unentangled atoms when local
oscillator noise dominates, as is the case for the state-
of-the-art optical lattice clocks. These results establish
key building blocks for GHZ-based optical clocks operat-
ing near the HL [16], which may also serve as a critical
element for remotely-entangled clock networks [17, 57].
Near-term goals involve further improving Rydberg gate
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fidelities while combining these high-fidelity clock-qubit
controls with recent advances in scaling to larger atom
arrays [58, 59]. A current limitation to cascade perfor-
mance is contrast reduction for smaller ensembles; this
issue could be mitigated by shelving coherence in other
degrees of freedom [37, 60] or using coherence-preserving
moves [10, 61] with entangling zones [24].

Besides GHZ states, the high-fidelity entangling op-
erations demonstrated also pair well with complemen-

tary strategies for generating metrological enhancements,
such as hardware-oriented variational optimization [55,
56, 62]. Comparing different entanglement strategies,
ranging from spin-squeezing [6] to GHZ-state genera-
tion, on their practical utility, accounting for trade-offs in
metrological gain and robustness, is an interesting avenue
for programmable clocks. Beyond metrology, the multi-
qubit gate technique demonstrated here can be extended
to any diagonal, symmetric phase gate in principle, such
as the multi-qubit controlled-Z gate [11].
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METHODS

State detection

To determine the population in the computational
states, we employ a detection scheme to map |0⟩ (|1⟩)
to being dark (bright) in a fluorescence image. Our de-
tection scheme begins by employing a push-out pulse
using resonant 461 nm light to remove atoms in |0⟩.
These atoms are successfully removed with probability
0.9999(1). We then apply a clock π-pulse to trans-
fer |1⟩ → |0⟩; this mitigates Raman scattering of the
clock state (see Effective state decay section) during the
≈ 30ms period over which we ramp off a large mag-
netic field in preparation for imaging. At the low-field
condition, we additionally apply 679 nm and 707 nm re-
pumping light which is intended to drive any remaining
population in |1⟩ back to |0⟩; note, however, that any
inadvertent population in 3P2 will also be repumped.

The atoms are then imaged by driving the ground
1S0 ↔ 1P1 transition while simultaneously sideband cool-
ing on the 1S0 ↔ 3P1 transition. For most data in the
main text, we use a long exposure time of 300ms. For
the data in Fig. 2d and Fig. 3b (as well as most of the
Extended Data Figures), we use a shorter exposure time
of 100ms to increase the data acquisition rate at the cost
of slightly increased imaging infidelity.

We estimate the imaging infidelity and loss by charac-
terizing the disagreement of two subsequently taken flu-
orescence images of the same atomic sample, but taken
with different exposure times. Here, the first image has
a much longer exposure time of 1200ms to significantly
lower the imaging infidelity (estimated from the photon
count histogram). This allows us to treat this image as
the ground truth after correcting for imaging loss which
we determine independently. By comparing the mea-
surement result of this first image, i.e., whether a site
is identified as bright or dark, to the second 300ms-long
image, we obtain an estimate for the imaging infidelity.
For the rearrangement pattern corresponding to the Bell-
state measurements, the inferred probabilities of identi-
fying a dark site incorrectly as bright or a bright site in-
correctly as dark typically take values pd→b ≈ 0.002 and
pb→d ≈ 0.002, respectively. We note that these prob-
abilities are significantly increased up to pd→b ≈ 0.009
and pb→d ≈ 0.003 for the larger ensemble sizes where the
atoms are rearranged into patterns with a single lattice
site spacing along one direction (see Extended Data Ta-
ble I). For reported measurement-corrected fidelities of
Bell states (N = 2) and N -atom GHZ states (see Ex-
tended Data Table II), we account for the imaging infi-
delity determined for representative rearrangement pat-
terns.

Rydberg excitation

Our Rydberg laser system has been described in detail
before [36], though some modifications have been made
for this work. Here we mainly describe aspects related
to pulse generation for Rydberg gates. 317 nm ultravi-
olet (UV) light is sent through an acousto-optic mod-
ulator (AOM) (AA Opto-Electronics MQ240-A0,2-UV)
in single-pass configuration to control the beam’s phase
and intensity. We measure a rise time of ≈ 15 ns. The
radio frequency (RF) tone for driving the AOM is gener-
ated by an arbitrary waveform generator (AWG) built in-
house by the JILA electronics shop. The Rydberg laser
is phase modulated by programming the AWG output
phase, which can be updated in 6.5 ns steps. To clean
up the spatial mode and suppress pointing fluctuations,
the first-order diffracted beam through the AOM is sent
through a short (≤ 1.5m) hydrogen-loaded, UV-cured
photonic crystal fiber [63] before being focused down on
the atoms.
A small fraction of the fiber output is diverted to a pho-

todetector (Thorlabs APD130A2) which is used to per-
form a sample and hold of the UV intensity for mitigation
of shot-to-shot Rabi frequency fluctuations; we measure
a fractional standard deviation in integrated pulse area
of 0.007-0.008. A limitation in the current setup is con-
version of phase modulation to intensity modulation; the
phase modulation alters the instantaneous RF frequency
and thus the deflection angle of the AOM diffraction,
which then leads to variable fiber coupling efficiency. We
mitigate this effect by careful alignment to the fiber, but
residual modulation at the 5-10% level was observed for
the larger Nmax gates. We also perform ex-situ hetero-
dyne measurements of the first and zero-order modes of
the AOM before the fiber to benchmark the transduction
of RF phase to optical phase; these measurements use a
higher bandwidth photodetector (Thorlabs APD430A2)
compared to the one used for the sample and hold. We
did not observe any significant distortions, and thus did
not apply any corrections to the numerically optimized
waveforms programmed into the AWG. We note that
there may be phase distortions introduced by the fiber
which we did not test [12].

Lattice release and recapture

We turn off the lattice during Rydberg excitation to
eliminate anti-trapping effects and spatially inhomoge-
neous Stark shifts. However, this causes heating and
imperfect recapture of the atoms. The combination of
single-photon Rydberg excitation and the optical lattice
used in this work causes this to be a significant effect,
particularly for the longer multi-qubit gates. Adiabati-
cally ramping the lattice to lower depths before release
helps to alleviate this issue, but the depth cannot be
set arbitrarily low due to tunneling. Based on gate fi-
delities, we empirically found that ramping to a lattice
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depth of around 50Er before quenching off was optimal;
Er = ℏ2k2l /2m ≈ 2πℏ × 3.4 kHz, with ℏ the reduced
Planck constant, is the single-photon recoil energy of the
λ = 2π/kl = 813.4275 nm photons used to generate our
2D bowtie lattice [36, 64].

To more quantitatively understand the magnitude of
errors, we develop a model for release and recapture. We
treat this as free-expansion of the ground-band Wannier
state in the 2D lattice; we ignore expansion along the
weakly confined axial direction, but in principle the cal-

culation straightforwardly generalizes to 3D. Let
∣∣∣wn,R⃗

〉
denote the Wannier state in the n-th band at site R⃗
and |ψn,q⃗⟩ denote the Bloch state in the n-th band at
quasimomenta q⃗ (the use of n to denote band index is
restricted to this section). We will work in units of the

bowtie lattice spacing λ/
√
2, wavevector

√
2kl and energy

2Er. Then R⃗ is a 2D vector of integers denoting sites of
the lattice and q⃗ = qxx̂ + qy ŷ with qx,y ∈ [−1/2, 1/2]
which defines the first Brillouin zone (BZ). The atomic
wavefunction after a free-expansion time t [in units of

ℏ/(2Er)] is given by |ψ(t)⟩ = e−iĤfreet |w0,0⟩ where Ĥfree

is the kinetic energy Hamiltonian. Using the definition∣∣∣wn,R⃗

〉
=
∫
BZ

dq⃗e−iq⃗·R⃗ |ψn,q⃗⟩ and the expansion of Bloch

states in the plane-wave basis |ψn,q⃗⟩ =
∑

m⃗ cn,q⃗m⃗ |q⃗ + m⃗⟩
(m⃗ is also a 2D vector of integers), we compute the state
overlap with any given Wannier state over time to be〈

wn,R⃗

∣∣∣ψ(t)〉 =

∫
BZ

dq⃗eiq⃗·R⃗
∑
m⃗

(
cn,q⃗m⃗

)∗
c0,q⃗m⃗ e−i(q⃗+m⃗)2t.

(4)

The asterisk denotes complex conjugation. The ex-
pansion coefficients can be obtained through a band
structure calculation, and here are defined such that∑

m⃗

(
cn

′,q⃗
m⃗

)∗
cn,q⃗m⃗ = δn′,n with δn′,n the Kronecker delta.

Once computed, these Wannier state overlaps can be
straightforwardly used to calculate various observables
of interest in the experiment.

Here we specifically consider the recapture probability
of atoms onto the same site, and the heating of those re-
captured atoms. Let nmax denote the highest band which
remains trapped by the lattice, explicitly determined as
the highest band with average energy below the lattice
potential maximum. The recapture probability is then

precapture =

nmax∑
n=0

|⟨wn,0|ψ(t)⟩|2. (5)

The heating is characterized by the average phonon num-
ber nr (this notation is also restricted to this section and
Extended Data Fig. 2b) of the recaptured atoms

n̄r =

∑nmax

n=0 nr|⟨wn,0|ψ(t)⟩|2

precapture
. (6)

Note that the band index n differs from the motional
quantum number nr by a combinatorial factor. In d-
dimensions, there are

(
nr+d−1

d−1

)
bands with the same nr.

Here we consider d = 2 such that this number is nr + 1.
While we consider an initial ground-band Wannier state
to good approximation for our system, a thermal average
over initially occupied higher bands n0 can be performed

by replacing c0,q⃗m⃗ → cn0,q⃗
m⃗ in Eq. (4). Finally, the effect

of the UV photon recoil is included by modifying the

kinetic energy (q⃗ + m⃗)
2 →

(
q⃗ + m⃗+ k⃗UV√

2kl

)2
in the same

equation; here |kUV| = 2π/λUV with λUV = 317 nm, and

we take k⃗UV along the x-direction.
In Extended Data Fig. 2b, we perform measurements

of survival as a function of trap turn-off duration for
both ground and Rydberg state atoms. We observe good
agreement of the data with the theory for precapture devel-
oped above. The Rydberg-state data includes Rydberg
π-pulses just after the release and just before the recap-
ture; we suspect infidelity in these pulses accounts for the
reduced survival at short times. We fit the quadratic de-
cay at short times to have a Gaussian 1/e time constant
of 8.7(1) µs, though we note that the decay is not Gaus-
sian at later times. For the longest Nmax = 10 gate, we
expect a recapture loss of < 0.01 based on this. We also
compute n̄r to get a sense of the degree of heating this
effect causes. For all GHZ-state data in the main text,
the lattice turn-off duration was < 2 µs, which suggests
n̄r at the 0.1 level.

Effective state decay

Various processes can cause an effective decay of pop-
ulation in |1⟩ and |r⟩ over time. Such processes not
only degrade the true GHZ-state fidelity, but also cause
leakage out of the computational basis which results in
misidentification for our state detection scheme. Thus, it
is critical to characterize the degree to which such decay
happens.
The natural lifetime of |1⟩ is generally much larger than

the relevant time-scales explored in this work. However,
atoms in the 3PJ manifold undergo Raman scattering in
the lattice [65]. Ultimately, this scattering will depopu-
late |1⟩ and repopulate |0⟩ due to the much shorter natu-
ral lifetime of the 3P1 state (see Extended Data Fig. 1a).
Let p0, p1 and p2 denote the ground, clock and 3P2 state
populations respectively (this notation is restricted to
this section). We model the dynamics of these popu-
lations as

dp0
dt

= Γ1→0p1 + Γ2→0p2,

dp1
dt

= − (Γ1→0 + Γ1→2) p1, (7)

dp2
dt

= Γ1→2p1 − Γ2→0p2.

We experimentally extract the scattering rates Γ by fit-
ting the above rate model to measurements of p0 and
p1 over time after initializing all atoms in |1⟩, shown in
Extended Data Fig. 1c. The fit also includes a separate
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measurement of p1 + p2 which is not shown; within the
rate model, this sum is equivalent to 1−p0. In principle,
there is a process driving 3P2 → |1⟩, but the fit procedure
yields a value consistent with zero when this term is in-
cluded. We obtain scattering rates of Γ1→0 = 0.48(1)Hz,
Γ1→2 = 0.26(2)Hz, and Γ2→0 = 0.47(3)Hz for measure-
ments performed at a lattice depth of ≈ 920Er; for the
rates where calculations have been reported, the fitted re-
sults are in good agreement with expectation [65]. From
this we estimate that the decay of initially prepared |1⟩
state is < 0.002 for most experiments presented, with
roughly 1/3 of that population ending up in 3P2 before
the fluorescence image.

Next we characterize the lifetime of the Rydberg state
|r⟩. Because there are many paths with which the Ry-
dberg decay may proceed, we follow the protocol dis-
cussed in Ref. [66] to group the decay into states dark
and bright to our detection protocol (see Extended Data
Fig. 1a). In both cases, the measurements proceed by
initializing all atoms in |r⟩ and waiting a variable du-
ration. To measure dark state decay, we apply a final
Rydberg π-pulse; to measure bright state decay, we ap-
ply a final Rydberg auto-ionization pulse [67]. The sur-
vival over time is plotted for these two protocols in Ex-
tended Data Fig. 1b. These experiments were performed
in optical tweezers and at a fixed trap turn-off duration
of 40 µs to mitigate the effect of release and recapture;
nevertheless, recapture failure accounts for a majority
of the population reduction at zero time. We fit the

curves simultaneously to the 3-parameter forms Ae−t/τd
r

and
(
Aτdr /τ

b
r

) (
1− e−t/τb

r

)
. This yields a τdr = 51(3)µs

dark-state and τbr = 86(3)µs bright-state decay time.
The expected Rydberg decay contribution is < 0.03 for
the largest Nmax = 10 gate used in this work.

Clock and Rydberg coherence

In order to achieve appreciable Rabi frequency on the
|0⟩ ↔ |1⟩ transition, all experiments in the main text
are performed at a magnetic field of 275G [68]. The
clock and Rydberg transition frequencies acquire a sub-
stantial sensitivity to field variations at this large bias
field due to quadratic Zeeman and diamagnetic shifts re-
spectively. In particular for the clock transition, field
fluctuations are the limiting factor in the 327(1)ms CSS
atom-laser 1/e coherence time shown in Fig. 2d. One ma-
jor source of field noise found in the system during this
work was a 0.5G peak-to-peak oscillation synchronized
with the 60Hz mains power. To mitigate this effect, we
apply a feed-forward to the clock laser frequency to com-
pensate the change in magnetic field. The feed-forward
was calibrated by performing clock Rabi spectroscopy as
a function of wait time with respect to a specific mains
phase. For the Rydberg, where pulses are essentially in-
stantaneous with respect to these mains variations, we
rely on performing the pulses at a specific point in the

mains phase where the field variation is minimal. In the
future, active stabilization of the magnetic field will be
used to mitigate this effect.
Another significant contribution to coherence reduc-

tion is non-zero temperature. In Extended Data Fig. 1c,
we show clock Rabi oscillations over many coherent cy-
cles. We believe the contrast reduction at later times
arises from imperfect motional state cooling, and we fit
the data to obtain a 1D ground state fraction of 0.96(1)
along the clock-laser propagation direction; we note that
in contrast to the direction shown in Fig. 1a (which was
chosen for visual clarity), the clock laser actually prop-
agates at a significant angle relative to the 2D lattice
axes (but still in the plane). This Rabi-oscillation mea-
surement does not include heating due to the release and
recapture.
We also perform Rydberg Rabi and Ramsey dephas-

ing measurements, shown in Extended Data Fig. 1b. In
both cases, we fix the total lattice turn-off duration to
5µs, independent of the Rabi/Ramsey time. These data
are used to estimate an upper bound on inhomogeneous
fluctuations in the Rabi frequency Ωr and detuning ∆,
which we assume to be characterized by Gaussians with
standard deviation σΩ and σ∆. Fitting to a Monte Carlo
simulation, we find a fractional Rabi frequency standard
deviation of σΩ/Ωr = 0.0055(7) and a detuning stan-
dard deviation of σ∆/(2π) = 49(2) kHz. The fractional
Rabi frequency fluctuations are slightly larger than would
be expected based on pulse area fluctuations as moni-
tored on a photodetector, which could be attributed to
pointing fluctuations or spatial inhomogeneity of the Ry-
dberg laser. For the Ramsey dephasing, we estimate
that Doppler dephasing yields a contribution of 27 kHz
standard deviation; the remainder we expect arises from
a combination of magnetic field, electric field and laser
phase noise.

Clock and Rydberg rotation fidelity

High fidelity clock and Rydberg rotations are crucial to
generating clock-qubit GHZ states. We characterize our
Rydberg and clock π-pulse fidelities in Extended Data
Fig. 1d and e. Fidelities are extracted by fitting to a
parabolic form. For the clock, we find a raw π-pulse fi-
delity of 0.9962(7). A majority of the error is accounted
for by imaging loss and infidelity and lattice Raman scat-
tering. These data were performed at 920Er, with typical
depths for clock operations ranging from 830–920Er. For
the Rydberg, we characterize both the single-atom and
blockaded two-atom π-pulses. An auto-ionization pulse,
with an auto-ionization timescale of 0.32(1) µs, was used
to achieve a Rydberg state detection fidelity of 0.995(1).
The data shown are corrected for state preparation and
measurement (SPAM) errors following the procedure de-
scribed in Ref. [67]; the correction includes imaging loss
and infidelity, clock state transfer fidelity, and Rydberg
state detection fidelity. The SPAM-corrected fidelities



13

are 0.995(2) for single atoms and 0.986(3) for pairs of
blockaded atoms.

GHZ preparation and fidelity measurement

In this work, GHZ states are prepared using a combi-
nation of global single-qubit clock rotations X̂(θ), Ẑ(θ)

and the multi-qubit gate Û . Here, θ denotes the angle
of rotation. Explicitly, for X̂ rotations on N -atoms we

have X̂(θ) =
∏N

j=1 exp
(
−i θ2 σ̂

j
x

)
, where σ̂j

x is the x Pauli
operator acting on the j-th atom; an analogous form ex-
ists for Z rotations with σ̂j

x → σ̂j
z. Starting with the

product state |0⟩⊗N
, we apply X̂(π/2)Ẑ(αc)ÛX̂(π/2) to

produce the GHZ state. While the exact form of Û re-
quires αc = 0 (see fully connected graph state from Û),
the Rydberg implementation causes an additional single-
particle phase. We experimentally calibrate αc by scan-
ning the clock laser phase before the final X̂(π/2) gate
and maximizing the observed GHZ populations p0 + pN .
To generate the Bell state, we instead applied the circuit
X̂(−π/4)Ẑ(αc)ÛCZX̂(π/2) with ÛCZ = eiπn̂1n̂2 the CZ
gate.

For an experimentally prepared density matrix ρ̂,
the GHZ-state fidelity can be defined as F =

maxθ

[
⟨GHZ| Ẑ(−θ)ρ̂Ẑ(θ) |GHZ⟩

]
. We characterize F by

measuring the populations in |0⟩⊗N
and |1⟩⊗N

, along
with the coherence between those states. We obtain the
populations by repeated measurements of p0 + pN at the
calibrated value of αc; p0 (pN ) describes the probability
of measuring n = 0 (n = N) atoms in |1⟩. We obtain the
coherence by taking parity measurements after applying
additional single-qubit analysis rotations X̂(π/2)Ẑ(ϕc)
with variable angle ϕc. For our measurement basis, the

parity operator is given by P̂z = (−1)Neiπn̂ =
∏N

j=1 σ̂
j
z.

The N -atom GHZ-state coherence is extracted from fit-
ting the oscillation of the parity expectation to the form
C sin [N(ϕc − ϕ0)] + y0; C is the contrast characterizing
the coherence, and ϕ0 and y0 are additional fitting pa-
rameters.

Fully connected graph state from Û

A graph state is associated with a graph G = (V,E)
consisting of a set of vertices V (representing qubits)
which are connected by a set of edges E (representing

CZ gates). Starting from the product state |+x⟩⊗V
where

|+x⟩ = (|0⟩+ |1⟩) /
√
2, the graph state |G⟩ can be defined

up to a global phase by [69]

|G⟩ =
∏

(a,b)∈E

Û (a,b)
CZ |+x⟩⊗V

. (8)

Here Û (a,b)
CZ = eiπn̂an̂b is a CZ gate acting on the qubits at

the vertices a, b ∈ V , or equivalently the qubits connected
by the edge (a, b) ∈ E.

The form Û , given in Eq. (2), can be understood by

expanding out n̂2 =
∑N

j=1 n̂
2
j+
∑

j<k 2n̂j n̂k. Noting that

n̂2j = n̂j , Û can be re-expressed as

Û = eiNπ/4Ẑ
(
−π
2

)
exp

iπ∑
j<k

n̂j n̂k

 . (9)

The third factor describes performing a CZ gate on

each pair of qubits. By applying this to |+y⟩⊗N
=

X̂(π/2) |0⟩⊗N
with |+y⟩ = (|0⟩+ i |1⟩) /

√
2, we obtain

the graph state |G⟩ (up to a global phase) associated
with the fully connected graph G of N -vertices, in which
there is an edge between all vertex pairs. The fully con-
nected graph is equivalent to the GHZ state under local
unitary operations [69].

Here we explicitly show that X̂(π/2)ÛX̂(π/2) pro-
duces the GHZ state. We begin by noting that U = 1 (i)
for even (odd) n. It is straightforward to see then that

Û can be expressed as

Û =
1 + i

2
Î +

1− i

2
(−1)N P̂z. (10)

Here Î denotes the identity. Noting that
X̂(π/2)σ̂j

zX̂(π/2) = σ̂j
z and X̂(π) = −iσ̂j

x, we then
have

X̂
(π
2

)
ÛX̂

(π
2

)
=
e−iπ

4

√
2

[
(−i)N−1P̂x + (−1)N P̂z

]
,

(11)

where P̂x =
∏N

j=1 σ̂
j
x, which is the parity along a different

axis. Applying this to |0⟩⊗N
, we obtain the GHZ state

X̂
(π
2

)
ÛX̂

(π
2

)
|0⟩⊗N

=
e−iπ

4

√
2

(
|0⟩⊗N

+ (−i)N−1 |1⟩⊗N
)
.

(12)

Applying an additional global Ẑ
[
− (N−1)π

2N

]
rotation

yields the form |GHZ⟩ in Eq. (1) up to a global phase.

Optimal control for multi-qubit gates

To find optimal Rydberg pulses for implementing Û ,
we closely follow the protocol described in Ref. [27].
We consider a time-dependent Rydberg coupling of the
form Ωre

−iϕr(t). We assume an infinite Rydberg block-
ade strength such that the dynamics of each excita-
tion sector n can be described by considering an arbi-

trary product state |ψn⟩ = |0⟩⊗(N−n) |1⟩⊗n
and a cor-

responding W-state |Wn⟩ of a single Rydberg excita-
tion [47, 49, 70, 71]. |ψn⟩ is evolved for duration TG
under the two-level Hamiltonian

Ĥn =

√
nΩr

2
[cosϕr(t)σ̂x,r + sinϕr(t)σ̂y,r]− i

γr
2

|Wn⟩ ⟨Wn| .
(13)
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σ̂x(y),r denote the Pauli operators on the two-level sub-
space spanned by |ψn⟩ and |Wn⟩. We include a non-
Hermitian loss at rate γr = γdr + γbr (see Extended Data
Fig. 1 and effective state decay section) to estimate opti-
mal achievable fidelities given accessible Rydberg param-
eters. Additionally, we multiply Ωr by a time-dependent
envelope function to capture finite rise-time effects on the
experiment. The figure of merit to optimize is explicitly
given by

F =
1

4N
maxαc

∣∣∣∣∣
N∑

n=0

(
N
n

)
in

2

einαc ⟨ψn|ψn(TG)⟩

∣∣∣∣∣
2
 .
(14)

A discretized form for ϕr(t) is assumed to utilize
GRAPE [72]; the time-step is naturally set by the up-
date rate for the AWG performing the modulation. We
use a first-order approximation for the gradient of F
with respect to the control phase, and employ the Broy-
den–Fletcher–Goldfarb–Shanno algorithm for gradient
descent.

Ensemble size scaling for multi-qubit Rydberg gates

The largest ensemble size the multi-qubit gate can be
successfully applied to depends on the number of atoms
Nb that can be placed in a single Rydberg blockade radius
Rb. Here we outline general considerations for how Nb

scales with Rydberg principal quantum number n (nota-
tion restricted to this section). For these arguments, we
assume a fixed laser intensity; other conditions can be
reasonably considered, such as fixed Rabi frequency or
decay fraction, but do not change the qualitative conclu-
sions.

The Rydberg blockade radius is given by Rb =

(C6/Ωr)
1/6

. The C6 interaction coefficient and Rydberg
Rabi frequency Ωr vary as C6 ∝ n11 and Ωr ∝ n−3/2 [73],
yielding a scaling of the blockade radius Rb ∝ n25/12. Be-
cause atoms cannot be placed arbitrarily close together,
Nb is additionally limited by a minimum spacing Rmin.
In two dimensions, the number of atoms fitting in the
blockade radius then scales as Nb ∝ (Rb/Rmin)

2
. Exper-

imentally, Rmin could be set by the lattice spacing alat
in optical lattices, or alternatively the beam waist for
optical tweezers; this spacing is independent of n, yield-
ing a scaling Nb ∝ n25/6 favoring larger n. However, a
separate limitation for Rmin is the presence of molecular
resonances at small interatomic spacings which can dras-
tically degrade the blockading interaction at certain sepa-
rations. To avoid these effects, one can restrict to placing
atoms outside the radius R× of the outermost resonance,
which can be estimated to scale as R× ∝ n8/3 [74]; this
then yields Nb ∝ n−7/6 which instead favors lower n.

In practice, the n25/6 scaling will apply for small n
where R× ≪ alat, and the n−7/6 scaling should apply for
large n where R× ≫ alat. From this, we generally expect

that the maximum Nb will be achieved for n such that
R× ∼ alat. Because the impact of molecular resonances
varies drastically with interatomic spacing, the limita-
tion imposed by R× may be partially circumvented by
fine-tuning the atomic separation [74]; this requires ac-
curate modeling for the Rydberg series of interest and
careful atomic positioning, and the suppression improves
for tighter atomic confinements. While we did not in-
tentionally engineer such a suppression for this work, we
note that such an effect may be relevant for the N ≥ 6
data with single lattice site spacing as alat < R× < 2alat
for the n = 47 Rydberg state used in this work.

Atom rearrangement for GHZ states

Performing rearrangement in an optical lattice is cru-
cial for the all-to-all multi-qubit gates presented, enabling
small interatomic spacings which allows many atoms to
be placed within a single Rydberg blockade. The rear-
rangement protocol used for this experiment has been
described in detail previously [75]. For the data pre-
sented in this work, the per-atom rearrangement success
rate varies between 85-98%. Generally, we rearrange the
atoms within a GHZ ensemble into a rectangular grid of
2–3 rows and columns with spacings between 1–3 lattice
sites in each direction; for details of eachN , see Extended
Data Table I. On each run of the experiment, we prepare
2 × 2, 3 × 2 or 3 × 3 copies of fixed-size ensembles; for
GHZ-state cascades, we prepare the distribution shown in
Fig. 4a. The minimum spacing between ensembles along
a single direction is 14alat. The maximum GHZ-state size
of 9 achieved is limited by the principal Rydberg quan-
tum number of 47 and a few technical limitations on the
exact rearrangement patterns we are able to currently
prepare. Based on the current trend in measured raw fi-
delities, resolving these technical challenges might enable
preparation of up to 16-atom GHZ states without going
to higher-lying Rydberg states.

GHZ-state fidelity measurement correction

Errors in our state detection scheme can cause the mea-
sured GHZ-state fidelity to be different than the true fi-
delity prepared in the experiment. We stress that the raw
parity contrast is generally robust to known effects that
could cause an overestimation of the fidelity, and thus the
0.61(1) raw parity contrast measured for N = 9 certifies
genuine 9-particle entanglement. Nevertheless, perform-
ing measurement correction can help to more accurately
assess the preparation fidelity of the GHZ state; we de-
scribe the procedure we use here. The measurement-
corrected fidelities are shown in Extended Data Table II.
Misidentification of bright sites as dark and vice versa

(see State detection) tends to reduce the observed GHZ-
state fidelity. To correct these errors, we follow a similar
procedure to Ref. [51]. Let pn,raw denote the measured
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probability of detecting n atoms in |1⟩, and let pn,true
denote the true probability which we would like to deter-
mine. We assume that these probabilities are related by
a measurement matrix Mmn such that

pm,raw =

N∑
n=0

Mmnpn,true. (15)

Mmn describes the probability that a state with n atoms
in |1⟩ is detected as havingm atoms in |1⟩. Whenm ≤ n,
we have

Mm≤n,n =

min(n,N−m)∑
k=n−m

[(
n

k

)
pkb→d(1− pb→d)

n−k×(
N − n

k − n+m

)
pk−n+m
d→b (1− pd→b)

N−k−m

]
. (16)

When m > n, we instead have

Mm>n,n =

min(N−n,m)∑
k=m−n

[(
N − n

k

)
pkd→b(1−pd→b)

N−n−k×(
n

k −m+ n

)
pk−m+n
b→d (1− pb→d)

m−k

]
. (17)

We note that this procedure assumes that the infidelity
rates are independent across the atoms in an ensemble.
To extract pn,true, we perform numerical minimization of∑N

m=0

∣∣∣pm,raw −
∑N

n=0Mmnpn,true

∣∣∣2. This correction is

relevant for both the populations and parity oscillation
measurements.

An error which can cause the GHZ-state fidelity to be
overestimated is leakage out of the computational sub-
space, which leads to an incorrect association of bright
sites with |1⟩ and dark sites with |0⟩. This includes loss
from the trap (see Lattice release and recapture) and
decay to other states (see Effective state decay). In prin-
ciple, the inferred GHZ-state populations p0+pN can be
increased or decreased due to this; here we are only con-
cerned with correcting for a possible overestimation. To
do this, we use the scan of the phase αc for the X̂(π/2)
rotation initializing the GHZ state (see GHZ preparation
and fidelity). p0 + pN oscillates with a period π as αc

varies; a discrepancy in this value between the calibrated
αc and αc + π indicates a contribution from states with
leakage. We fit the measured populations as a function
of αc to the form

p0 + pN =

[
C −A sin2

(
αc − α

2

)]
f(αc − α) + y. (18)

Here C, A, α and y are fit parameters, and f(αc) is the
analytically computed function describing the oscillation
in p0 + pN for a perfect GHZ-state. For N = 6, 8, 9,
we subtracted off |A| from the GHZ-state populations.
For N = 4, the fit implied that we had measured the
populations at the lower value, and thus we did not apply

this correction. For N = 2 where an X̂(−π/4) rotation
was instead used to initialize the Bell state, we perform
an additional π-pulse to invert the populations to obtain
the correction. Since the coherence is inferred from the
contrast of the parity oscillation, we expect that it is
robust to this error and do not apply a corresponding
correction.

Sources of error in GHZ-state preparation

We perform master equation simulations with stochas-
tic sampling of fluctuating parameters to model the ef-
fects of various errors present in the experiment. The re-
sult of this model for the Bell state and 4-atom GHZ state
protocols are shown in Extended Data Fig. 3b. The sim-
ulation includes the ground, clock and Rydberg states,
as well as an additional state capturing scattering and
decay into and out of 3P2 . The fidelity is calculated
explicitly including the parity rotation in the simulation.
We use a 2alat spacing for the Bell state, and a square
arrangement with the same minimum spacing for the 4-
atom GHZ state. The release and recapture is not explic-
itly included in the simulation, though we estimate the
recapture loss due to single-photon recoil based on the
calculated time spent in the Rydberg state. For both the
Bell state and the 4-atom GHZ state, our model is able
to account for roughly 1/3 of the observed measurement-
corrected infidelity.

There are a number of error sources which are more
challenging to accurately characterize, but which we ex-
pect might explain a significant fraction of the unac-
counted error. Numerically, we find that the multi-qubit
gates are significantly more sensitive to variations in the
Rydberg Rabi frequency Ωr (see Extended Data Fig. 3a);
imperfections in our calibration procedure of Ωr not only
directly cause infidelity, but will also increase the infi-
delity contribution from shot-to-shot fluctuations or in-
homogeneity in Ωr. In the future, more precise calibra-
tion procedures [11] as well as robust pulse design [76]
could help to mitigate these errors. Transduction of the
Rydberg phase modulation to amplitude modulation (see
Rydberg excitation section) is another source of uncon-
trolled error on our gates. This can be straightforwardly
mitigated by an additional pass through an AOM to
counteract the deflection. Beyond that, a more careful
characterization of the laser amplitude and phase pro-
files for various Nmax will be necessary to discern po-
tential discrepancies between our model of the Rydberg
pulse and the actual experiment, for instance due to
sharp jumps in the phase modulation (see Nmax = 10
in Fig. 1b). Finally for the N ≥ 6 ensembles with certain
atoms separated only by a single lattice spacing, it may
be important to further understand the degree to which
the complicated Rydberg interaction spectrum at small
separations affects the dynamics [74].
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GHZ-state stability in atom-laser comparison

For the atom-laser comparison, we attempt to pre-
pare M -copies of N -atom GHZ ensembles on each run
of the experiment q. Let j = 1, . . . ,M index the en-
sembles on a single shot q. Because of imperfect rear-

rangement, each ensemble will have N
(q)
j ≤ N atoms;

critically, the form of Û ensures that these partially filled
ensembles will still be prepared in a GHZ state. Un-

filled ensembles N
(q)
j = 0 are removed, and M is reduced

for the shot to only count the number of ensembles with

N
(q)
j > 0. During the Ramsey dark time T , each GHZ

state will accumulate a phase θ
(q)
j =

∫ T

0
2πN

(q)
j δ(t)dt,

where δ(t) is the stochastically varying atom-laser detun-
ing. This phase is converted into a parity measurement
by an X̂(π/2) rotation, with the phase ϕc calibrated to be
near a zero-crossing of the parity oscillation for all pos-
sible ensemble sizes. The measurement yields M binary

parity outcomes P(q)
z,j = ±1 for each ensemble. Taking

⟨P̂(q)
z,j ⟩ = C

N
(q)
j

sin θ
(q)
j as the parity expectation model,

we use the locally unbiased estimator about δ = 0 to

convert the measured P(q)
z,j into a single-shot detuning es-

timate δ
(q)
est =

1
M

∑M
j=1 P

(q)
z,j /(2πN

(q)
j C

N
(q)
j
T ). Here C

N
(q)
j

is the parity contrast at t = 0 for anN
(q)
j -atom GHZ state

after application of the Nmax = N gate. Because we only
calibrated the contrast CN of the maximum GHZ-state

size N before these experiments, we used
∣∣∣CN

(q)
j

∣∣∣ = |CN |

independent of N
(q)
j ; note that this will overestimate the

noise and thus provide an upper bound on the reported
instability.

A low-bandwidth digital servo converts these detuning

estimates into corrections −δ(q)corr, which are used to sta-
bilize the clock laser frequency to the atomic transition.
The overlapping Allan deviation is computed for the frac-
tional frequency detuning y = δest/ν0. We use the servo

input (δ
(q)
est ) as opposed to the servo output (−δ(q)corr) since

the latter is dominated by variations in the magnetic field
(see Clock and Rydberg coherence). The exact same pro-
cedure and analysis are used for the CSS, where the only
change is in the initial assumption where insteadM×N -
copies of “1-atom GHZ states” are prepared.

Phase estimator for cascaded GHZ states

A single measurement of a cascade with K different
GHZ-state sizes Nk yields K binomial outcomes mk. mk

describes the number of even parity events (successes)
observed out of Mk copies (trials) with probability of

success on any single trial Qk(ϕ) =
[
1 + ⟨P̂z,k(ϕ)⟩

]
/2.

⟨P̂z,k(ϕ)⟩ is a model of the parity expectation value as a

function of ϕ which we take to be of the sinusoidal form

⟨P̂z,k(ϕ)⟩ = Ck sin [Nk (ϕ− ϕk)] + yk. (19)

Ck, ϕk and yk are model parameters which we fit for
in Fig. 4b. For comparison to an ideal cascade we take
Ck = 1, ϕk = 0 and yk = 0.
To convert a set {mk} from a single cascade measure-

ment to a phase estimate, we employ the minimum MSE
estimator [56, 77] defined as follows. The conditional
probability of observing {mk} given ϕ is

P ({mk}|ϕ) =
K∏

k=1

(
Mk

mk

)
[Qk(ϕ)]

mk [1−Qk(ϕ)]
Mk−mk .

(20)

The posterior probability can then be com-
puted from Bayes’ law using P (ϕ|{mk}) =
P ({mk}|ϕ) P (ϕ)/P ({mk}). We take the prior
knowledge to be a Gaussian of standard deviation
σϕ

P (ϕ) =
1√
2πσϕ

exp

(
− ϕ2

2σ2
ϕ

)
. (21)

For our proof-of-principle phase estimation experiments
performed at T = 0, we chose σϕ = π/6 larger than the
inversion range of the maximum size NK=4 = 8 GHZ
state such that the cascade is required to make unam-
biguous estimates; σϕ must also not be too large as to
possess significant weight beyond the maximum dynamic
range [−π, π] (though additional schemes can be em-
ployed to overcome this limitation [78, 79]). For clock
applications, σϕ should be chosen to reflect the spread in
integrated atom-laser detuning at the Ramsey dark time
being used for interrogation [55, 56]. The marginal dis-
tribution P ({mk}) is given by integrating the conditional
over the prior P ({mk}) =

∫∞
−∞ dϕP ({mk}|ϕ)P (ϕ). Fi-

nally, the minimum MSE estimator is given by

ϕest ({mk}) =
∫ ∞

−∞
dϕP (ϕ|{mk}) ϕ. (22)

This estimator then provides a map from any possible
outcome set {mk} to real numbers. It can be fully defined

once a model ⟨P̂z,k(ϕ)⟩ is given for any Mk and Nk.
This performance of this estimator can be evaluated

by considering the mean estimate

ϕ̄est =
∑
{mk}

P ({mk}|ϕ)ϕest({mk}), (23)

and the MSE

∆ϕ2est =
∑
{mk}

P ({mk}|ϕ) [ϕest({mk})− ϕ]
2
. (24)

For all theoretical curve in Figs. 4d-f, P ({mk}|ϕ) is ob-
tained using the binomial expression (20); for the ex-
perimental results, it is approximated based on a boot-
strap resampled distribution from the data in Fig. 4b
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(see Bootstrapping of phase estimation data). Ideally,
the MSE ∆ϕ2est is as small as possible while maintaining
unbiased estimates ϕ̄est = ϕ for as large a range of ϕ as
possible. Because the cascades considered in this work
have ⟨P̂z,k(±π)⟩ ≈ 0 for all k, large estimation errors are
made at the edge of the range [−π, π]. Though these er-
rors do decrease for larger K cascades, it may be possible
to more efficiently mitigate this issue by using local clock
rotations [6, 10].

Effective measurement uncertainty for frequency
estimation

The performance of the cascade for frequency estima-
tion during clock operation, which uses nonzero dark
time, can be predicted from the MSE [55, 56]. This is
done by associating the distribution of integrated atom-
laser detunings, under a noise model at a specific dark
time T , with a prior knowledge used for Bayesian fre-
quency estimation [53, 80]. For a Gaussian prior of stan-
dard deviation σϕ, the effective measurement uncertainty
on a single cycle of the clock interrogation is

∆ϕeff =
∆ϕBMSE√

1− (∆ϕBMSE/σϕ)
2
. (25)

Here, ∆ϕBMSE is the Bayesian MSE given by

∆ϕBMSE =

∫ ∞

−∞
dϕP (ϕ)∆ϕ2est, (26)

which quantifies the performance of the estimator given
the prior knowledge. The expected Allan variance reduc-
tion relative to SQL is given by ∆ϕ2effN , which is shown
in Fig. 4f. By using a noise model to determine a re-
lation between σϕ and T , an absolute instability can be
computed from ∆ϕeff [55, 56].

Bootstrapping of phase estimation data

To explore GHZ-state cascades with a larger number
of copies than can be prepared in a single run of the
experiment, the distribution P ({mk}|ϕ) is obtained by
bootstrap resampling of the parity data in Fig. 4b. The
procedure is repeated for each phase ϕ, so the following
protocol applies for a fixed value of ϕ. On each run of
the experiment, ensembles of various sizes are prepared
across 8 different locations, and a binary parity outcome
is obtained from each; due to imperfect rearrangement,
some ensembles will have fewer atoms than intended.
To perform the analysis for a cascade with K different
sizes Nk (and Mk copies each), we start by collecting
the parity outcomes across all experimental repetitions

and ensemble locations into K different sets {P(l)
z }Kk=1;

in the k-th set, l indexes each time an ensemble of size

Nk was prepared, and the P(l)
z are the corresponding bi-

nary parity outcomes. A single bootstrap outcome r is

obtained by drawing Mk random samples from each set

{P(l)
z }k; with m

(r)
k counting the number of even parity

outcomes from the k-th sample, the set {m(r)
k } is con-

verted using the estimator function ϕest ({mk}) into a

single bootstrap estimate ϕ
(r)
est. Repeating this R = 2000

times, we obtain a distribution of phase estimates from
a bootstrapped sampling of P ({mk}|ϕ). The mean esti-

mate and MSE are computed as ϕ̄est =
1
R

∑R
r=1 ϕ

(r)
est and

∆ϕ2est =
1
R

∑R
r=1

(
ϕ
(r)
est − ϕ

)2
.

Scaling of cascade measurement uncertainty

In Fig. 4f, a reference line corresponding to ∆ϕeff =
π
√
lnNtot/Ntot is shown. We empirically found that this

line captures the scaling of an ideal cascade reasonably
well. Here we comment on a couple of theoretical con-
siderations which roughly inform this guide.

This first consideration is that with finite prior infor-
mation, the standard HL 1/N is not saturable asymp-
totically. Using optimal Bayesian estimation, it has been
shown that the asymptotic precision scaling is instead
tightly bounded by a π-corrected HL [81, 82], which is
π/Ntot for the standard spin-1/2 σ̂z/2 phase-encoding
Hamiltonian. Because this is only asymptotic, the un-
certainty of a finite size system can be better than this
limit. Nevertheless, comparing the scaling of ∆ϕeff to a
π-corrected limit is a natural starting point.

The second consideration is that a non-constant cor-
rection can arise due to the resource overhead of using
smaller GHZ ensembles. It was explicitly shown for a cas-
caded GHZ clock, using binary estimates up to the largest
GHZ size, that the scaling in the optimal number of
copies to sufficiently suppress rounding errors leads to a
logarithmic correction over the HL [16, 17]. These works
considered a restricted distribution of copies, where the
number of copies could increase with the number of dif-
ferent GHZ sizes K, but was (mostly) fixed across sizes
k for a given K. In the problem of pure phase estima-
tion, it has been shown that further allowing the num-
ber of copies to vary with k, specifically such that there
are more copies of smaller ensembles, allows the loga-
rithmic overhead to be removed and HL scaling up to a
constant overhead to be recovered [14, 15]. The theoret-
ical results for an ideal cascade shown in Fig. 4f suggest
that such a linear distribution does not remove the loga-
rithmic correction in the protocol we considered, though
there are a number of potentially important differences.
One such difference is the application of known phase
shifts on each ensemble to perform readout in different
measurement bases, which is a technique that has been
recently demonstrated in optical clocks [10, 83].
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Error bars and fitting

Error bars on populations and parity measurements
are 68% Clopper-Pearson confidence intervals. Error bars
on the Allan deviation represent 68% confidence intervals
assuming white phase noise. Fits of the experimental
data are done using weighted least squares and error bars
on fitted parameters represent one standard deviation fit
errors.
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Extended Data Fig. 1. Characterizing clock and Rydberg operations. a, Effective level diagram for clock qubits with
Rydberg coupling. Wavy lines indicate Rydberg decay. We categorize the many possible Rydberg decay paths by whether the
final state is dark (dark pink) or bright (orange) to our standard state detection scheme; note that these final states include the
ones that are explicitly shown, with the background color indicating dark or bright. Jagged lines indicate Raman scattering
paths (intermediate state not shown). Straight lines indicate coherent drives. b, (left) Decay of Rydberg state over time to
states dark (dark pink circles) and bright (orange squares) to the detection protocol. We fit an exponential 1/e decay time
to dark (bright) states of τd

r = 1/γd
r = 51(3) µs (τb

r = 1/γb
r = 86(3) µs ). (middle) Single-atom Rydberg Rabi oscillations

at Ωr = 2π × 3.7 MHz with a fitted 11(1) µs Gaussian 1/e decay time. (right) Single-atom Rydberg Ramsey oscillations at a
1 MHz detuning with a fitted 4.5(2) µs Gaussian 1/e decay time. c, (left) Population of |1⟩ (turquoise circles) and |0⟩ (green
squares) over time due to Raman scattering in the lattice. Fitting to a rate model (see Methods) yields scattering rates of
Γ1→0 = 0.48(1) Hz, Γ1→2 = 0.26(2) Hz, and Γ2→0 = 0.47(3) Hz in an ≈ 920 Er deep lattice 2D lattice. (middle) Clock Rabi
oscillations at Ωc = 2π × 0.31 kHz yielding a fitted ground state fraction of 0.96(1). (right) Clock Ramsey oscillations at an
84 Hz detuning with a fitted 217(17) ms Gaussian 1/e decay time. We note that the longer coherence time reported in Fig. 2d
is obtained by a different method in which the Ramsey fringe contrast is carefully measured at each dark time and out to
significantly longer times. d, Rydberg π-pulse fidelity for single atoms (purple) and two-atom blockade (red). These data are
SPAM-corrected (see Methods and Ref. [67]). Parabolic fits yield SPAM-corrected Rydberg π-pulse fidelities of 0.995(2) for
single atoms and 0.986(3) for two-atom blockade. e, Clock π-pulse fidelity. A parabolic fit yields a raw clock π-pulse fidelity of
0.9962(7).
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Extended Data Fig. 2. Release and recapture in optical lattices. a, Schematic of the release and recapture process. The
atoms expand from an initially well-localized state while the lattice is off, and when excited to the Rydberg state, the atoms will
additionally undergo a center of mass displacement due to the momentum recoil of the UV photon. When the lattice is turned
back on, the wavefunction will be projected both into higher band Wannier orbitals as well as nearby sites, causing both loss
and heating. b, (top) Measured survival as a function of time that the lattice is turned off for the ground state (blue circles)
and Rydberg state (purple). The solid lines are theoretical predictions for the recapture probability from an approximately
50Er lattice (see Methods). At short times, the Rydberg-state survival decreases quadratically, and we fit a Gaussian 1/e decay
time of 8.7(1) µs. (bottom) Theoretically predicted increase in mean phonon number (see Methods) for recaptured atoms over
the same duration. The heating is quadratic at short times, but begins to taper off as the highest energy atoms are lost. The
lattice turn-off duration is < 2 µs for all data shown in the main text.
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Extended Data Fig. 3. Error modeling for GHZ-state fidelities. a, Sensitivity of multi-qubit gate Û to Rydberg Rabi
frequency and detuning deviations for various Nmax. Solid lines indicate infidelity for N = Nmax GHZ state; dashed lines
indicate infidelity for N = 2 Bell state. b, Modeling of various error sources for N = 2 Bell state (blue) and N = 4 GHZ state
(red, hatched). For the Bell state, we consider the CZ gate protocol shown in Fig. 1c; for the 4-atom GHZ state, we consider
the general Nmax = N scheme shown in Fig. 2a. The measurement corrected Bell state [4-atom GHZ state] infidelity (see
Extended Data Table II) is shown as the blue, dashed [red, dotted] line. In both cases, our error model accounts for roughy
1/3 of the observed infidelity. The presence of pulse discretization/rise time error for only the Bell state is because we use the
exact time-optimal CZ gate implementation described in Ref. [11] as opposed to a modulation optimized for our pulse model.
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N ∆x ∆y ly lx Umin

(alat) (alat) (rows) (columns) (ℏΩr)

2 2 or 3 N/A 1 2 99(2)
4 2 or 3 2 2 2 32.7(6)
6 3 1 3 2 32.7(6)

8 or 9 2 1 3 3 9.0(2)

Extended Data Table I. Atomic arrangement parameters for different GHZ ensemble sizes. All patterns are oriented
in a rectangular pattern of ly rows by lx columns on the square lattice, with spacings ∆x and ∆y along each direction. The

minimum blockade is computed as Umin = C6/r
6
max, where r6max =

√
(lx∆x)2 + (ly∆y)2 and C6 = 2π × 10.4(2) GHz · µm6 is

obtained from measurements of the transition frequency for two-photon excitation of |11⟩ → |rr⟩; we note that this C6 value is
roughly 15% larger than we reported previously in Ref. [6]. Umin is given in units of Ωr = 2π×4 MHz, even though the actually
Rabi frequency used in various experiments varies between 3–4 MHz. The N = 8 data used the same pattern as N = 9, but
with a single corner atom removed.

Raw Measurement-corrected

N p0 + pN C F p0 + pN C F

2 0.990(2) 0.975(3) 0.983(2) 0.988(4) 0.983(3) 0.985(2)
4 0.940(7) 0.88(2) 0.912(8) 0.955(7) 0.91(2) 0.933(8)
6 0.908(6) 0.77(1) 0.837(6) 0.90(5) 0.82(1) 0.86(2)
8 0.822(8) 0.68(1) 0.750(7) 0.77(6) 0.75(1) 0.76(3)
9 0.80(1) 0.61(1) 0.707(9) 0.8(1) 0.68(1) 0.75(5)

Extended Data Table II. Summary of raw and measurement-corrected GHZ-state fidelities. The measured values
of the GHZ-state populations p0 + pN , parity oscillation contrast C and GHZ-state fidelity F are shown for both the raw data
and after applying measurement correction (see Methods) for varying size N .
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