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For an arbitrary quantum evolution, it is shown that the integral of the uncertainty of energy with
respect to time is independent of the particular Hamiltonian used to transport the quantum system along
a given curve in the projective Hilbert space. It is the distance along this curve measured by the Fubini-
Study metric. This gives a new time-energy uncertainty principle. New geometric meanings to time as
measured by a clock and the transition probability during a quantum measurement are also obtained.

PACS numbers: 03.65.—w

It is well known that geometric ideas have played an

important role in physics. For example, Minkowski's

geometric reformulation of special relativity by means of
a space-time geometry was very useful in the construc-
tion of general relativity by Einstein. But it may be fair
to say that there was a lack of the geometric approach to
quantum theory until Berry's remarkable discovery' that
there is a geometric phase in the cyclic evolution of an

adiabatically evolving system. This geometric phase was
reformulated and generalized to nonadiabatic cyclic evo-

lutions by using the projective Hilbert space P, which
is defined as the set of rays of the Hilbert space H. The
geometric phase factor was obtained as the holonomy
transformation or parallel transport around a closed
curve with respect to the natural connection over P given

by the inner product on the Hilbert space. The
geometric phase has also been interpreted as an area en-
closed by the closed curve with respect to a natural sym-
plectic structure in P. This approach has the advantage
that, in addition to removing the restriction of adiabatic-
ity, there is a nontrivial geometric phase even for a
closed system for which the Hamiltonian is constant in

time, unlike in Berry's approach in which the Hamil-
tonian must vary with time.

In this Letter we shall develop a geometric approach

I
~E(t), (3)

is independent of the particular H(t) used to transport
the state along a given curve C in P. Hence it is a

geometric quantity analogous to the geometric phase
and is in fact the distance along C as measured by the

Fubini-Study metrics which is defined naturally from
the inner product in Hilbert space.

To prove this, Taylor expand I tlt(t +dt)) to second or-

der in dt, and use (1) and its time derivative:

towards all quantum evolutions, not merely cyclic evolu-
tions. We assume that a quantum evolution of a state

I
tit(t)) is governed by the Schrodinger equation

t 6 Itlt(t)& =H (t)ltit(t)),d
dt

where H is the Hamiltonian. For an isolated system to
move in P, it is necessary and sufficient that it is not a
stationary state, i.e. , it has a nonzero value for the uncer-
tainty hE(t) in energy defined by

aE'=&tltIH'I tlt&
—

&@IHIP'&'.

We shall now consider the most general case when H
may depend on t and show that the quantity

7

I y(t+dt)& =
I y(t) &

—'"'
Hl y(t) & —,' t

I y(t))+ —'H-'I y(t) & +o(dt ') .
2A dt

(4)

Since H is Hermitian, so is dH/dt and H Then, on us--.
ing (2),

l&y(t) lti (t+dt)&l'=1 —,+O(a' t' ) .
dt 2hE2

(5)

Therefore, AE dtlh is independent of the phases of
lv (t)»nd I v (t+dt)) and therefore depends only on the
points in P to which they project. There are infinite
number of Hamiltonians which would evolve the state
along a given curve C in P. In general, they give rise to
different phase factors for the state vector. But they all
give the same value for the dimensionless quantity s

I define by (3). Since s is independent of the particular
Hamiltonian used to achieve the motion, we expect it to
have a geometric meaning analogous to the geometric
phase for closed curves in P.

To investigate the meaning of s we introduce some
geometric concepts. Suppose 5' has dimension %+1
where A is a non-negative integer or infinity. The uni-

tary group U(N+ I ) acting on i'V =C' +' can be
identified with the set 8 of orthonormal bases of P be-
cause each element of 8 can be obtained from a fixed
element of 5 by the action of a unique element of
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U(N+1). On defining an equivalence relation between
two orthonormal bases whenever the first element of both
bases is the same, the corresponding quotient set of 8,
which is the same as U(iV+1)/U(N), may be identified
with the set of unit vectors of i't and is called a Stiefel
manifold S&. The equivalence relation on S& identifying
any two unit vectors related by multiplication by a phase
factor gives the quotient set U(N+1)/U(N) XU(1)
which can be identified with P=Pq(C ), i.e., the N-

dimensional complex projective space. Now, U(N+1)
is a principal fibe bundle over S& with projection map 4
(say) and structure group U(N). Also, Sz is a principal
fiber bundle over P with projection map fI (say) and
structure group U(l), which is sometimes called the
Hopf bundle. Also, U(N+1) may be regarded as a
principal fiber bundle over P with projection map IICi

and structure group U(N) x U(1).
There are natural metrics on the above bundles

defined as follows: A tangent vector X of U(N+1) is a
(N + 1)-dimensional Hermitian matrix. Define the
metric h in 9 by the condition h(X, Y) =2tr(XY),
where I and V are tangent vectors at any point in

%=U(N+1), assuming for the present that N is finite.
It is easily verified that this metric is real and positive
definite and when restricted to the SU(N+1) subgroup
it is the Cartan-Killing metric. Let g be the metric in

S~ such that 4 is a Riemannian submersion, i.e., d4 is
an isometry when restricted to the orthogonal comple-
ment of the kernel of d@. Similarly, define a metric f on
P such that 1I is a Riemannian submersion. This f is the
Fubini-Study metric. There are now natural connec-
tions on each of the three bundles defined as follows:
The horizontal space at each point is orthogonal to the
fiber at that point with respect to the metric in that bun-
dle. The geometric phase factor e'~ is obtained as the
parallel transport around a closed curve of P, with
respect to the connection in Sq.

We now obtain an expression for the Fubini-Study
metric directly in terms of representative state vectors of
points in P. Let ~y~) and ~p) be two arbitrary normal-
ized vectors in 'iY. Extend ~y~) to an orthonormal ba-
sis [~y, ), a=1,2, . . . , N+1} E 9 such that ~5)
=cos( —,

' 8)
~
y~)+sin( —. 8) ~yz), 8 C [0,2ir]. Now, the

curve in 9 through this basis defined by s
exp(isK)

~ y, ), where the only nonzero elements of K
in this basis are &@A~K~ y~) =(y~ ~K~ y2&

= —', is a horizon-

tal geodesic in 9 with s being the distance along this
curve as measured by the metric h. Therefore, this curve
projects to a geodesic in P with s now being the distance
measured by the Fubini-Study metric f Clearly, this.
geodesic is a closed curve of total length 2z. Since, ~@)

=exp(isK)
~ y~) when s =8, II(~ y~)) and 1I(~p&) are

points in P which lie on this geodesic separated by the
distance 8. If ~ill) is ~y~) multiplied by an arbitrary
phase factor, then

i(yiy) i-' =cos'-( —,
' 8) .

When 8AO, ~y) and ~p) span a two-dimensional sub-

space 6 of P. The set of rays of P- is the complex
one-dimensional projective space P~(C), which is also a
real two-dimensional sphere and a submanifold of P.
The Fubini-Study metric when restricted to this sphere is

the usual metric on a sphere with unit radius. Every
geodesic joining II(~y)) and II(~p)) is a projection of a
horizontal geodesic in %, which can be written in the
above form by an appropriate choice of basis. Therefore
it must lie on this sphere. If O~n, then there are exactly
two geodesics joining II(~y)) and II(~p)) which together
form a great circle on this sphere. If 0=x, correspond-
ing to ~y) and ~p) being orthogonal, there are infinite

number of geodesics with the same length joining 1I(~ y))
and II(~p)), which are opposite points on the sphere.
The normalization of our metrics was chosen so that (6)
is valid for any geodesic joining these two points for arbi-
trary states

~ y& and
~
p).

We therefore conclude that the probability of transi
tion ~(y~p)~ between any two states satisfies (6), where 8
is the distance along any geodesic joining II(~y)) and

II(~p)). Thus, the result of every measurement made on

a quantum system in the laboratory has this geometric
meaning. In particular, consider the filtering measure-
ments studied by Pancharatnam by sending light
through a sequence of polarizers, which provided the first
known example of the geometric phase. ' '' In such a
measurement a state undergoes the transition

~ y)
~p)(&~y). The new state has a well-defined phase and

has undergone a fractional reduction of intensity

~(y~p)~. The phase can be determined by the theo-
rem '" which states that the new state can be obtained

by parallel transporting ~y) along the shortest geodesic
joining II(~y)) and II(~p)) in f' and multiplying by the
non-negative number ~(y~p)~. But we now also have a
geometric interpretation for this number as cos( —,

' 8),
where 8C [O, ir] is the distance along this geodesic seg-
ment.

Suppose that
~ y) and

~

y'& =
~ p& are such that II(~ y) )

and II(~y')) are separated by an infinitesimal distance.
Then, setting ds =8 in (6), we obtain the following ex-

pression for the Fubini-Study metric g„,—:

ds'=2g„„,dZ" dZ' =4(1 —-I' yl y &I-), (7)

where Z" are coordinates in P. ' Equation (7) may be
regarded as an alternative definition of the Fubini-Study
metric. Clearly, this definition is valid also for an
infinite-dimensional &. A unitary or antiunitary trans-
formation leaves ~(ill~@')~ invariant and is therefore an
isometry in P. Hence the unitary time evolution (l) and
all unitary and anti uni tary symmetries in & are
isometrics in P. It may be noted that while symmetries
such as rotations and Galilei boosts have a projective
representation in &, they always have a faithful repre-
sentation in P. For example, the rotation of fermion
wave functions by 2z rad results in a sign change in P,
but the corresponding isometry in P is the identity.
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From (5) and (7),
ds = 2 AE dt/6 (8)

is the infinitesimal distance between II(l y(t))) and

II(litf(t+dt))) T. his proves that (3) is the distance
along the evolution of the system in P, as measured by
the Fubini-Study metric, for both finite- and infinite-

dimensional Hilbert spaces.
In the adiabatic limit considered by Berry' in which

l y(t)) evolves as an eigenstate of H(t), AE 0 whereas
dt ~ so that ds is finite and nonzero. Hence this is a
degenerate limit which is not useful in the study of phys-
ical manifestations of the Fubini-Study metric. Also, the
above considerations show that even in the adiabatic lim-
it, P is more useful and more geometrical than the pa-
rameter space used by Berry, which provides further sup-
port to the reformulation of the geometric phase using

As a simple application of this result, consider a spin-
particle precessing in a homogeneous magnetic field.

In this case /f =C, P=P~(C) is a sphere and the
Fubini-Study metric defined above is the usual metric on
this sphere corresponding to unit radius. At any instant
of time, coordinate axes can be chosen so that the Ham-
iltonian H = —pa and the state is l y) = (cos —,

'
8,

sin —,
' 8), where p) 0 and 8C [O, n]. Then, from (2),

AE =p sin8. Also, from (1), 2p dt/h =dP which is the
infinitesimal angle by which the state is rotated about
the instantaneous direction of the magnetic field in the
infinitesimal time dt Hen.ce, 2AEdt/6 =sin8dg, which
verifies (8).

Equation (8) gives a new geometric meaning to the
uncertainty in energy hE for an arbitrary quantum sys-
tem: ds/dt =2AE/A, is the magnitude of the velocity of
the system in the projective Hilbert space. It follows
that the evolution of the system in P completely deter-
mines AE; no other information from H is needed to
determine AE. On the other hand, the distance s given
by (3) is independent of even the rate of evolution and
depends only on the unparametrized curve in P that is
determined by the evolution.

yl lcr: =I&+@2 fexp(ip+)lax =I&+exp(ip —) la'x =1

2

Also, the time-energy uncertainty principle acquires a
new geometric meaning as follows. To distinguish be-
tween two states in the history of the quantum system it
is necessary for these states to be orthogonal, because
they must be eigenstates of some Hermitian observable
with diAerent eigenvalues. Since the shortest possible
distance between orthogonal states, which is along a geo-
desic, is n, the actual distance s ~ z, where s is given by
(3) for the actual evolution between the two states. This
may be rewritten as

(AE)At ~ —,
' h, (9)

where (AE) is the time-averaged uncertainty in energy
during the time interval At and h is Planck's constant.
The inequality (9) is independent of our normalization
convention for the Fubini-Study metric. It is more
stringent than the usual time-energy uncertainty relation
which has h/2 on the right-hand side. ' Equality in (9)
holds if and only if the system moves along a geodesic in

P. In this case the evolution may be said to have
minimum uncertainty analogous to how a Gaussian wave
packet is said to have minimum position-momentum un-

certainty at a given time. More generally we can de6ne
the efficiency of an evolution e=sp/s, where sp is the dis-
tance along the shortest geodesic joining the initial and
final points of the evolution that are distinct points on P.
Then e(1, which contains (9) as a special case, but is
valid more generally even when the system does not pass
through orthogonal states.

As an application, consider a double-slit interference
experiment in which we observe through which of the
slits 1 and 2 the particle goes by letting it interact with a
second system, which we take to be a spin- 2 particle ini-

tially in the state la =I). The particle interacts with
the second system if and only if it goes through slit 2.
The Hamiltonian of the interaction is H=g(t)a„f(n),
where f(1)=0 and f(2) =1 corresponding to the parti-
cle going through slit 1 or 2, respectively. The corre-
sponding wave functions of the particle will be denoted
by y~ and y2, respectively. Then the wave function of
the combined system after the interaction is

II/I'~ + l/I2exp(if+ )I la„=1)+ teal+ y2exp(ip )j la„= —1) . (10)
1 1

From the left-hand side of (10), the distance along a
geodesic joining the initial and final spin states in the
projective Hilbert space of the spin when it interacts
with the particle, on using (6), is

8 =
l p+ —

p —
l

or 2' —
l y+ —

it - l .

From the right-hand side of (10), lp+ —
p l

is the phase
diff'erence between the particle state through slit 2 for
the two possible spin eigenstates of H, which has a new
geometric meaning given by (11). In particular when

0=x, there is no interference between the two beams.
Therefore, regardless of how weak the interaction be-
tween the two systems is, so long as the spin state under-
goes a transition to an orthogonal state, the interference
pattern is destroyed because of the minimum distance z
between the two orthogonal states in the spin projective
Hilbert space. Since the inequality (9) expresses the ex-
istence of this minimum distance, the loss of coherence
in this experiment may also be regarded as due to this
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J
Iilr„, &=(2J+ I) 'i' g exp

n= —J
IH &, (13)

m= —J, . . . , J,
which may be regarded as the "pointer positions" of the
clock.

A possible Hamiltonian for the evolution (12) satisfies
HIn& =nrlIn&, n = —J, —1+1, . . . , J. Then from (2),

i3.E = (rl/ J3)(J +J) ' ' (14)

which, of course, is independent of t. Therefore, from
(3),

s = (2rl/436) (J +J) '"l . (is)
Hence, the Fubini-Study distance between two succes-
sive states (13), corresponding to the time interval
i5.1 =h/(2J+ I)q, is

4~(J'+ J) '"
h,s=

JS(2J+ i )

which tends to the universal value 2n/v3 as J
This limiting distance is nonzero even though ht 0 as
J ~. Also, it is greater than the shortest distance n

between the states, as it should be because the clock is
not moving along a geodesic. If it is desired to keep the
Hamiltonian bounded below then J cannot become
infinite. But J can be made arbitrarily large.

It is therefore clear that, for arbitrarily large J, the
number of pointer positions through which the clock
passes is proportional to s. Since time is measured by
counting these pointer positions, the clock really mea-
sures s. The parameter t represents correlation between
the Fubini-Study distances determined by different
clocks. The above treatment clarifies the relationship be-
tween the parameter t which occurs in Schrodinger's
equation and the time measured by a clock. Also, the
greater hE the larger the change in s for a given change
in t and hence the more accurate the reading of time by
the clock. This is a particular application of the tirne-
energy uncertainty principle.

Also, let lid be the variable conjugate to n The inner.
product in the p space is defined by

2z

(f,g) = „, f(y)g(y)dilly.

time-energy uncertainty principle.
As a further application, we show how a quantum-

mechanical "clock" directly measures the Fubini-Study
distance and that "time" is derived from this distance.
A simple model of a clock is represented by the normal-
ized state vector

J
I9(r)&=(2J+I) '" g exp —'""'

In&, (i2)
n= —J

where IIn&I are fixed orthonormal states, il is a positive
constant, and J i's a large positive integer or half integer.
This state vector passes through the sequence of ortho-
normal state vectors

sin j(J+ —,
' )XI

(2J+ I )
- ii2

sin( —,
' x)

(i7)

where x =(p —rlr/li). Hence, for large J, iif(p, r) is

sharply peaked around p = rlt/h, . Indeed, (2J+ 1) 'lz

xilr(p, l) tends to the Dirac delta function 8'(4i —rlr/h, )
as J ~. The center of ilr(p, t) moves around p space
with constant angular speed co = g/h, with its shape fixed.
Therefore, the clock is well behaved at all times as
J ~. From (15), co is proportional to ds/dt. Hence,
the measurement of s by the clock is in eA'ect also a mea-
surement of angular distance traveled in li& space, corre-
sponding to the displacement of its pointer position.
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