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Abstract

The Standard Model plus gravitation is derived from general relativity with three di-
mensions of time. When general relativity is calculated with three dimensions of time, a
complete unified field theory results. The theory is called 3DT, which stands for three di-
mensions of time. 3DT is different than other higher-dimensional theories because it allows
fields to depend upon the higher-dimensional coordinates. It shows how predictions at the
Planck mass can be tested at low energies. Quark confinement and asymptotic freedom are
produced. The theory of 3DT provides an explanation for the mass of the electron, the
value 1/137 of the fine structure constant, the masses of the muon and tau, the masses of
the electron’s, muon’s and tau’s neutrinos, the masses of the W, Z and the photon. The
calculation of these parameters is made possible by applying the well-known quantum mass
correction equation found in QED to 3DT’s electroweak sector. 3DT is anomaly-free. The
relationship between quantum mechanics and general relativity is demonstrated. 3DT solves
all these problems and many more without introducing any new problems or asking any
unanswered questions. The known elementary particles are solutions to the field equations
generated by the theory’s Lagrangian. All fields come naturally from the same place. 3DT
predicts that there is no Higgs boson and no sparticles. Instead, it predicts that there are
seven new intermediate vector bosons with the masses 4.56 TeV, 7.32 TeV, 27.36 TeV, 29.43
TeV, 31.22 TeV, 33.04 TeV and 38.79 TeV.
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Part I. The Classical Theory

1. Introduction

Einstein added one dimension of time to the three dimensions of space. It is only natural
to add two more dimensions of time, bringing the number up to three. There are three
dimensions of time because there are three dimensions of space. That there are three dimen-
sions of time is the first postulate upon which this work is based. This will finish the job
Einstein started of adding dimensions of time and making time symmetrical to space.

To specify a theory of three dimensions of time (3DT), one need look no further than
the general theory of relativity. The Lagrangian for any theory contains all of that theory’s
physical information. The Lagrangian for general relativity is the curvature scalar. The
Lagrangian for 3DT is also the curvature scalar. This is the second and last postulate upon
which this work is based.

The theory of 3DT is just like relativity because it adds dimensions of time and has the
curvature scalar as its Lagrangian. But it is like relativity in a third way. It is a theory of
pure gravitation because its Lagrangian is the curvature scalar alone. The theory of 3DT
continues the over-300-year-old tradition started by Newton and continued by Einstein of
placing gravitation in the position of greatest importance.

The postulate of three dimensions of time implies a six-dimensional spacetime. The six-
dimensional curvature scalar R̂ will give a complete description of the elementary particles.
We will start off calculating the Christoffel symbols Γ̂α

βγ and wind up describing the elemen-
tary particles. This document is at the same time both general relativity and high energy
physics, a necessary condition for a unified field theory.

With widespread dissatisfaction with the current state of theoretical physics, one may
wonder whether strings and supersymmetry are correct. Indeed, everything that follows
from a faulty initial assumption may very well be wrong. One may wonder if there are
better starting points. You will never find better starting points than gravitation and three
dimensions of time. With the genius of Albert Einstein and Isaac Newton backing them up,
they are prime candidates for a unified field theory.

The original Kaluza-Klein (KK) [1,2] theory is not realistic. For example, Kaluza’s
original theory produced just two terms in its Lagrangian — those for the gravitational and
electromagnetic fields. All other fields and terms that we now know exist do not appear in
the Lagrangian. Kaluza assumed fields were independent of the fifth coordinate. When this
restriction is lifted, one can produce the balance of the Standard Model (SM) [3-6].

Klein postulated that the fifth dimension was microscopic and closed, resulting in an
infinite tower of harmonics. This tower constituted a field’s higher-dimensional (HD) co-
ordinate dependence. The fundamental was massless. The higher order particles, which
represented the dependence on the fifth coordinate, had Planck masses. In 3DT, this depen-
dence will produce the fields and terms that we now know exist. This will be the realization
of Einstein’s dream [7–9] of accounting for all physical phenomena from the “pure marble”
of geometry, without the “base wood” of additional matter fields. Many terms in the La-
grangian for the SM represent separate assumptions. These terms will be produced by just
one assumption, the curvature scalar R̂ of 3DT. The SM is a Lagrangian that can be derived
from the curvature scalar.
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Previously, it was thought that fields could not depend on the HD coordinates because
they would be too massive to detect. However, as part of 3DT’s complete explanation
of masses, I show that quantum field theory reduces the Planck masses of these massive
harmonics to ordinary elementary particle masses, producing the usual elementary particles.
See Table 1.
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Table 1. Tower of harmonics in 3DT. The vectors and leptons have quantum numbers |lm〉.

This conversion of Planck masses to elementary particle masses allows predictions at
the Planck mass to be tested at low energies. The conversion is allowed by quantum field
theory that is modified by particles that are not points, but are line segments of charge.
The line segments spin, producing a three-dimensional distribution of charge. Presumably,
these particles avoid the violation of causality or special relativity usually associated with
extended particles just like the particles of string theory, but this is conjecture.

Ten masses and coupling constants are derived in Part II. Neither the symmetry group
SU(3) × SU(2) × U(1) nor the Higgs mechanism will be derived. These are shown to be
superfluous in Part II. They are not needed because particles in 3DT are not points. Point
particles require the condition of renormalizability, which is preserved by gauge symmetry
and the Higgs mechanism. If particles are extended, as claimed by string theory and 3DT,
renormalizability and the gauge symmetry that preserve it become unnecessary. Likewise,
the Higgs mechanism is not needed. This is unlike today’s Kaluza-Klein theories, where
the observed elementary particles lie in the zero-mass sector of a Kaluza-Klein theory and
receive a mass from the Higgs mechanism. In this case a determination of the masses of
the elementary particles is out of the question. They are completely unexplained. In 3DT,
however, complete explanations for masses are given.

The purpose of this document is to establish enough evidence for 3DT to warrant further
investigation. This is accomplished by the demonstration that 3DT produces the observable
features of the SM. The Standard Model is quite an achievement, but 3DT is far superior.
One must allow for the possibility that such a simple and effective theory exists.

3



The organization of Part I is as follows: Section 2 presents a comparison of 3DT with other
Kaluza-Klein theories. Section 3 breaks down the six-dimensional (6D) metric tensor into
four-dimensional and HD quantities. Section 4 specifies the Lagrangian. Four-dimensional
gravitation is derived in Sec. 5. A cosmological constant is eliminated in this section. In
Sec. 6, the term for Maxwell’s equations and mass terms for the photon, W and Z are
obtained. Methods for dealing with the HD coordinates in each term in the Lagrangian are
given in Sec. 7. Section 8 introduces fermions and derives the Dirac equation from the 6D
curvature scalar. Terms for leptons interacting with the W, Z and photon are deduced in
Sec. 9. Section 10 derives the strong interactions. Quarks, confinement, asymptotic freedom
and chiral symmetry breaking are produced in Sec. 11.

2. Kaluza-Klein theories

I will now present a comparison of 3DT with other Kaluza-Klein (KK) theories. This
will follow closely the review by Overduin and Wesson [10]. The single biggest difference
between 3DT and other KK theories is that fields in 3DT depend on the higher-dimensional
coordinates θ and φ, the usual spherical coordinates.

DeWitt [11] was the first to suggest incorporating the non-Abelian symmetry SU(2) of
the SM into a KK theory. Others [12–14] took up the challenge, ending with Cho and Freund
[15,16]. The main difference between these KK theories and 3DT is the origin of vectors
in the theories. In the former, each dimension produces one vector in the usual way. In
3DT, one dimension produces all vectors needed for the SM. This is made possible by the
expansion of the lone vector in terms of spherical harmonics. This represents the vector’s
dependence upon the HD coordinates θ and φ. This procedure is superior because it accounts
for the SU(2)×U(1) structure of electroweak symmetry. Here the photon is associated with
the lowest order l = m = 0 spherical harmonic and the W± and Z0 are associated with the
next higher order l = 1, m = −1, 0, 1 harmonics. See Table 1.

The disadvantage of previous non-Abelian KK theories is that they naively require one
dimension for each vector produced. Thus, many higher dimensions are required to produce
the group SU(3) × SU(2) × U(1) of the SM. In addition, there is no reason why some of
the higher dimensions should be different than others. This would be required to explain
the group SU(3)× SU(2)× U(1). In particular, the question of why the photon is different
than the W and Z is left unanswered. Likewise for the difference between the strong and
electroweak interactions.

The theory of 3DT and these non-Abelian KK theories, however, are similar in the
following respect: All matter fields are contained within the 6D curvature scalar. There are
no external, additional matter fields. This embodies Einstein’s vision of nature being the
result of pure geometry. Likewise, each of these KK theories is pure gravitation with indices
allowed to run to values greater than four.

References [17–24] give the physical implications of HD coordinate dependence for general
relativity in the macroscopic realm — such as its effect on the advance of the perihelion of
Mercury. The theory of 3DT gives its implications for microscopic physics — elementary
particles.

Compactification in non-Abelian KK theories can be a problem. However, with only two
higher dimensions that form an ordinary 2-sphere, compactification in 3DT is trivial, just
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as it is for the original KK theory with one higher dimension. We do not have to worry
about compactification as in, for example, the theories of Cho and Freund [25–29], in which
the higher dimensions have general curvature. In this case, one runs into difficulties with
the consistency of the field equations when the dependence upon the HD coordinates is
eliminated (Duff [30–33]). The theory of 3DT does not have this problem. Even if it did we
would solve it by allowing fields to depend on the HD coordinates and agree with Cho’s call
[34–37] for abandonment of the “zero modes approximation.”

In 3DT, one does not need any of the various compactification mechanisms such as
altering Einstein’s equations by incorporating torsion [38–41], adding higher-derivative terms
such as R2 to the Lagrangian [42], or by adding matter fields. This last method, with the
right matter terms, is known as spontaneous compactification. The first example of this is
that of Cremmer and Scherk [43,44].

All previous unified field theories that include gravity (theories of everything) suffer from
the same problem — the inability to make sufficient contact with low-energy phenomenology.
In other words, the theories are not realistic. These include the original KK theory in five
dimensions, the extensions of this theory with more than one higher dimension (intended to
account for non-Abelian symmetry), Supergravity, string theory, and the present-day theory
of everything, M-theory.

For example, none of these theories produces the right particle spectrum. The KK theo-
ries without supersymmetry have no fermions. The incorporation of fermions in such theories
is apparently without explanation. Supersymmetry meliorates the situation. However in this
case, the most abundant type of particles is scalars. The theory of d=11, N=8 Supergravity
has 70 of them. This is in contradiction to observation, which indicates that there are no
scalars. The presently-accepted way out is to assume that the scalars are too massive to be
detected. This means 70 additional assumptions. This is unsightly, to say the least.

The solution to this problem is to incorporate the branch of mathematics known as spinor
theory [45] into KK theory. Spinor theory dictates that a null vector (the photon) may be
equated to a pair of spinors (fermions). When this is combined with 6D KK theory with the
proper HD coordinate dependence, all of the observed fermions are produced. And because
there is no relation between fermions and scalars as with supersymmetry, this produces no
scalars. Agreement with observation is at hand.

The current method of choice for the incorporation of fermions into KK theory is su-
persymmetry. This is more natural than their incorporation by hand, but there are severe
drawbacks. For example, the fermionic superpartners of KK’s bosons have not been detected.
Similarly, the bosonic superpartners of the observed fermions are not observed. Thus there
is little evidence from experiment for supersymmetry. By comparison, the evidence for 3DT
is the fermionic physics of the SM — it will reproduce the observable features of the SM.
Spinor theory dictates that the photon may be equated to many pairs of fermions in the
Lagrangian. These fermions are the observed ones. Spinor theory in 3DT is proven every
day in particle accelerators. It will account for pair production by producing spinor-vector
interaction terms in the Lagrangian (the assumption of minimal coupling in the SM). With
two spinors and one vector as factors, this term represents a Feynman diagram with two
external fermionic lines and one external bosonic line.

In addition, one of the new terms to appear as a result of HD coordinate dependence is
the term for the Dirac equation. This equation and all it implies must be assumed in other
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theories such as d = 11 Supergravity, for example.
One advantage of Supergravity is that it provides a number for the dimensionality of

spacetime. Nahm [46] showed 11 is the maximum number of dimensions of spacetime for
supersymmetric gravity. In 11 dimensions, nature is maximally supersymmetric. Witten [47]
proved 11 is the minimum number of dimensions required for the incorporation of the group
SU(3) × SU(2) × U(1) of the SM. However, this assumes the one-vector-for-one-dimension
aspect, along with its disadvantages, of the non-Abelian theories mentioned above. Cremmer,
Julia and Scherk [48] showed that in 11 dimensions there is only one choice for additional
matter fields. Freund and Rubin [49] showed that d=11 Supergravity naturally compactifies
to four macroscopic and seven microscopic dimensions.

3DT also provides a number for the dimensionality of spacetime. Instead of a symmetry
between bosons and fermions, it postulates a symmetry between space and time. This implies
there are three dimensions of time. There are three dimensions of time because there are
three dimensions of space. Spacetime has six dimensions. In six dimensions all the observable
features of the Standard Model, in all their complexity and with all their idiosyncracies, will
be produced. Thus, we choose six dimensions because it will work.

The theory of d = 11 Supergravity lost its status as the theory of everything in the
mid 1980’s. There were several reasons for this. First, the extra spacetime did not contain
quarks or leptons, nor the gauge group for the SM. Second, one cannot build chirality,
necessary for an accurate description of fermions in the Standard Model, into a theory with
an odd number of dimensions. Third, it had a large cosmological constant, contradicting
observation. Fourth, it had anomalies. 3DT naturally accounts for what appears to be the
gauge group for the SM with its expansions in terms of spherical harmonics for electroweak
theory and the HD part of the 6D rotation group for the strong interactions. In 3DT,
these expansions, together with spinor theory, do indeed produce quarks and leptons. In
six dimensions, chirality is possible. The large cosmological constant appearing in the 4D
version of Kaluza-Klein theory is naturally eliminated in 3DT. Finally, it will be easy to
show 3DT is anomaly-free.

String theory [50] is supposed to be able to predict the parameters of the Standard Model.
It does not do this. I will show 3DT does this. There are about 20 unexplained parameters
in the SM. 3DT explains ten of these at the present time. String theory explains none.

String theory has three separate uniqueness problems. First, the number of supersym-
metric generators can have any value from N=1 to N=8. Second, there are five different
classes of string theory. Finally, within each class there are thousands of different string
theories, each corresponding to a different way one can compactify seven higher dimensions.
In contrast, there is only one theory of 3DT. 3DT does not have supersymmetry, with its
multiple values for N. Particles in 3DT are not strings, which would be classified into five
types. Finally, there is only one way to compactify the two higher dimensions. It is a trivial
compactification to the 2-sphere, similar to the compactification of the one HD of original
Kaluza-Klein to the 1-sphere or circle. Therefore, 3DT does not suffer from uniqueness
problems.

String theory has matter terms known as Chapline-Manton terms [51] that must be added
to the Lagrangian. In six dimensions, 3DT has no matter terms.

Green and Schwarz [52] and Gross et al. [53] showed all anomalies vanish for SO(32)
and E8 ×E8 string theory, respectively. String theory may provide an anomaly-free path to
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quantum gravity [54]. However, I claim quantum gravity is not the unification of gravity and
quantum theory. I can produce a unification of the Standard Model and gravitation without
it. How can a theory whose effects are entirely negligible be important? The relationship
between gravity and quantum theory is given below. But if you must have a quantum theory
of gravity, my new way of doing quantum field theory will help.

This being said, I will now show why 3DT is anomaly-free. First, as will be shown below,
the 6D metric tensor in this theory contains all types of 4D matter fields. In addition,
the 6D curvature scalar contains all types of 4D matter terms. These are accomplished by
expanding the vector ĝ5µ in terms of spherical harmonics, spinors and 6D rotation group
generators. Now, the Lagrangian for 3DT is the 6D curvature scalar. There are no other
terms, which could be called 6D matter terms. In other words, in six dimensions, spacetime
is empty. There are no currents. Thus, there are no conservation laws. Now, anomalies are
quantum mechanical violations of conservation laws. Without conservation laws there are
no anomalies. Therefore, 3DT is anomaly-free.

Quantum mechanics is not philosophical in origin. It results in part from the properties
of waves. For example, it is the fact that one cannot simultaneously determine the position
and momentum of a wave that leads to the Uncertainty Principle. This applies to macro-
scopic waves as well as microscopic ones. The waves follow from wave equations, which are
field equations. The field equations originate from the Lagrangian. The Lagrangian is the
6D curvature scalar of 3DT. The curvature scalar is the Lagrangian for general relativity.
Therefore, the Uncertainty Principle is derived from general relativity. Proceeding in this
manner, it seems to me likely that one can derive all aspects of quantum mechanics from
general relativity.

The worst disadvantage of string theory is that it does not make predictions. They reside
at the Planck mass. M-theory is worse than string theory because it is nonperturbative as
well. The electroweak sector, which contains the testable predictions of 3DT, is perturbative.
In addition, 3DT has a mechanism for converting Planck masses to elementary particle
masses. Thus, it makes clear-cut physical predictions. 3DT predicts the observable features
of the Standard Model as will be shown. In addition, it predicts new intermediate vector
bosons with precisely determined masses.

3. The 6D metric tensor

In this section, we break down the 6D metric tensor into 4D and HD quantities in prepa-
ration for its substitution into the 6D curvature scalar. The postulate of three dimensions
of time implies a 6D spacetime. Included in this postulate of six dimensions is the size,
shape, spacelike or timelike nature and connection to 4D spacetime of the higher dimen-
sions. Therefore, we will further postulate that the two HD’s form the surface of a sphere
with radius T . This radius is the Planck time T . We have

T = 5.39× 10−44 sec, (1)

cT = L = 1.62× 10−33 cm, (2)

where L is the Planck length and c is the speed of light. I claim the Planck length is important
because the radius of the higher-dimensional sphere is the Planck time. The reason the two
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higher dimensions are so small is cosmological in origin. We will not consider cosmology
further in this document.

Hawking [55] proposed the use of imaginary time. That is, one uses the coordinate it
instead of t, where i =

√
−1. This is only natural, because one can not see time, unlike

space, so it exists only in one’s imagination. Therefore, it is imaginary. One is allowed to
multiply the coordinate t by i because multiplying a coordinate by a constant amounts to
choosing one’s coordinate system, which one is free to do. The following example illustrates
all of this.

Consider a two-dimensional spacetime with coordinates x and t. We have the line element

ds2 = gijdx
idx j = dxdx− c2dtdt.

If instead one uses the coordinates x 1 = x and x 2 = ict for the same spacetime, one arrives
at the line element

ds2 = gijdx
idx j = dx 1dx 1 + dx 2dx 2.

As ’t Hooft [56] noted, the coordinate t is timelike because g22 for this coordinate is negative,
while the coordinate x 2 = ict is spacelike because g22 for this coordinate is positive. Thus, we
have incorporated the minus sign usually associated with timelike diagonal components of the
metric tensor into the coordinate of time, resulting in a positive sign for these components.

It is known that timelike higher dimensions lead to a negative-energy electromagnetic
field. In addition, ’t Hooft [56] related that timelike higher dimensions lead to unbounded
and tachyonic masses for the elementary particles. Clearly, one must have spacelike higher
dimensions to avoid these difficulties. So we multiply the HD coordinates of time by i,
rendering the higher dimensions spacelike. We multiply all three coordinates of time in
3DT by i =

√
−1. Therefore, like in the above example, the signature of the metric tensor is

diag. ( + + + + + + ). This is another step in making time symmetrical to space. Hawking’s
idea of imaginary time may solve other important problems. It may eliminate the singularity
at the center of a black hole and at the beginning of the universe.

I claim all coordinates must be spacelike. Of course, the first three coordinates of our
6D spacetime are coordinates of space and are therefore spacelike. It is known that the HD
coordinates must be spacelike. This leaves the usual dimension of time. We have shown how
even this coordinate can be spacelike. Indeed, it would be well worth it, if this designation
were to remove the singularity at the center of a black hole, which has been called by Wheeler
to be the greatest problem facing theoretical physics.

The differential line element for the two coordinates of time θ and φ that form a sphere
of radius T is

ds2 = ĝijdx̂
idx̂ j = −c2T 2 dθ2 − c2T 2 sin2θ dφ2, (3)

where i, j take the value five or six and θ and φ are the usual spherical coordinates. A hat
over a symbol denotes a 6D quantity. However, instead of choosing x̂ 5 = θ and x̂ 6 = φ with
ĝ55 = −c2T 2 and ĝ66 = −c2T 2 sin2θ, we set

x̂ 5 = icT θ, (4)

x̂ 6 = icT (sinθ)φ, (5)

ĝ55 = ĝ66 = 1, (6)

ĝ56 = ĝ65 = 0. (7)
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These assignments for the HD coordinates lead to the same line element Eq. (3) and follow
the strict definition of the metric tensor as the dot product of unit vectors.

The incorporation of the factors of cT into x̂ 5 and x̂ 6 makes the HD coordinates more
like the 4D ones, which have the units of distance. This suggests we incorporate the factor of
sinθ into x̂ 6 instead of ĝ66. This eliminates a cosmological constant while keeping the higher
dimensions small. This is described in Sec. 4. The value 1 for ĝ66 gives the appearance of
what is called Ricci-flatness of the HD’s. This means [31] the cosmological constant is zero
and, with the elimination of the scalar field ĝ66, there is no Higgs mechanism. Both these
features are not typical of today’s KK theories.

For use in calculating the Lagrangian in Sec. 4, We tabulate here the differentials and
derivatives of the two HD coordinates x̂ 5 and x̂ 6 according to Eqs. (3)–(5)

dx̂ 5 = icT dθ, (8)

∂5 =
∂

∂x̂ 5
=

1

icT

∂

∂θ
, (9)

dx̂ 6 = icT sinθ dφ, (10)

∂6 =
∂

∂x̂ 6
=

1

icT sinθ

∂

∂φ
. (11)

The 6D metric tensor is denoted by ĝαβ, where indices in the beginning of the Greek
alphabet such as α, β, γ, and δ run from one to six. The indices µ, ν, ρ, and σ in the
middle of the Greek alphabet range from one to four. The first four coordinates of the 6D
spacetime are those of the ordinary 4D spacetime of experience.

We postulate the connection between the HD sphere and 4D spacetime as follows: The
4D worldline of the particle under consideration is the z-axis of the 3D embedding space of
the HD sphere. This means the z-axis of the embedding space of the HD sphere is a line of
4D spacetime. This overlap of the 4D and HD spaces is necessary because if one assumes an
infinitesimal surface area perpendicular to a line in 4D spacetime is part of the HD sphere,
one is inescapably lead to the conclusion that the surface must curve around the line. The
line and the sphere then exist in the same 3D space.

The circular sixth dimension, parameterized by the coordinate φ, is perpendicular to
the z-axis. Taking this axis to be x1, x2, x3, or x4, we have ĝ6µ = 0. The coordinate
φ, along with a line of 4D spacetime, forms a cylinder, and the metric tensor for these
perpendicular coordinates is zero. It is not realized that this most common type of HD
geometry causes the vector ĝ5µ in the original KK theory to be zero. The fifth dimension
in 3DT is parameterized by the coordinate θ. It is measured from the positive z-axis. It is
not, in general, perpendicular to the z-direction consisting of 4D spacetime. Therefore, the
vector ĝ5µ is not zero. This is responsible for the existence of all elementary particles, which
will be contained in the vector Aµ = ĝ5µ. It is only because of this peculiar overlap of the
4D and HD spaces that Aµ and all matter is not zero.

Allowing fields to depend on the HD coordinates will produce the fields and terms nec-
essary for the Standard Model. At the same time, this makes 3DT more self-consistent and
correct because an arbitrary field should depend on all six coordinates, not just the first
four. The 2 HD coordinates should be treated like the first 4 coordinates, upon which fields
depend. This removes the ad-hoc assumption in Kaluza-Klein theory that fields do not de-
pend on the HD coordinates. This dependence upon the HD coordinates is represented by
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a Fourier expansion in terms of spherical harmonics. We have

gµν(x̂
α) =

∞∑

l=0

l∑

m=−l

glmµν (x
ρ)Ylm(θ, φ), (12)

Aµ(x̂
α) =

∞∑

l=0

l∑

m=−l

Alm
µ (xν)Ylm(θ, φ), (13)

where the Ylm(θ, φ) are the spherical harmonics.
The 6D metric tensor is defined in terms of 4D quantities as follows



ĝµν ĝµ5 ĝµ6
ĝ5ν ĝ55 ĝ56
ĝ6ν ĝ65 ĝ66


 =



gµν + AµAν Aµ 0

Aν 1 0
0 0 1


 . (14)

For an example of how to obtain an equation like (14), see Ref. [57].
The contravariant metric tensor, introduced via the relations ĝ αβ ĝβγ = δ̂ α

γ, is



ĝ µν ĝ µ5 ĝ µ6

ĝ 5ν ĝ 55 ĝ 56

ĝ 6ν ĝ 65 ĝ 66


 =



gµν −Aµ 0
−Aν 1 + AµAµ 0
0 0 1


 . (15)

4. The Lagrangian

The Lagrangian density for 3DT is

L = kR̂, (16)

where R̂ is the 6D curvature scalar and k = c3/16πG, where c is the speed of light and G is
the constant of gravitation. We have

R̂ = ĝ αβR̂αβ , (17)

where R̂αβ is defined in the usual way

R̂αβ = ∂γΓ̂
γ
αβ − ∂βΓ̂

γ
αγ − Γ̂ δ

βγΓ̂
γ
αδ + Γ̂ δ

αβΓ̂
γ
δγ . (18)

Here
Γ̂ γ

αβ = ĝ γδΓ̂δαβ , (19)

where

Γ̂δαβ = 1

2
(−∂δĝαβ + ∂αĝβδ + ∂β ĝδα) . (20)

The action integral for 3DT is

I = k
∫
R̂
√
ĝ d 6x̂, (21)
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where ĝ is the determinant of the 6D metric tensor. This determinant may be expressed in
terms of the 4D metric tensor gµν . If we multiply the middle column of Eq. (14) by Aν and
subtract the resulting column from the first, we obtain

√
ĝ =

∣∣∣∣∣∣∣

gµν Aµ 0
0 1 0
0 0 1

∣∣∣∣∣∣∣

1/2

=
√
g . (22)

Using Eqs. (22), (8) and (10), the 6D volume element becomes −√
g c2T 2 sinθ dθ dφ d4x. The

constant −c2T 2 may be ignored as the entire Lagrangian is multiplied by it and the field
equations remain the same after its removal.

The dependence upon the two HD coordinates has a profound effect on 6D Kaluza-Klein
theory. Instead of obtaining only the terms for 4D gravitation and electromagnetism (the
Kaluza-Klein miracle), one now obtains literally hundreds of new, odd-looking terms. This
is because terms with ∂5 or ∂6 are not zero now. This embarrassment of riches may be why
Kaluza did not allow dependence upon the extra coordinate.

The shortcut to understanding what these terms mean is to consider those with as few
factors as possible. The proper procedure starts by determining the free-field terms for
each field of interest. These are obtained by setting all other fields to zero in each term
in the Lagrangian. Thus, the free-field terms have in them only the type of field under
consideration. Interaction terms have more than one type of field in them.

There are three classes of terms in the Lagrangian. First are the terms for the free-gµν
field, which will contain the graviton field. These contain only gµν or g µν ; they are obtained
by setting Aµ = 0. These terms are important macroscopically, where the sources of gµν ,
e.g., masses, add and those for the Aµ field cancel. Second are the terms for the free-Aµ

field, which will contain the photon field. These are obtained by setting gµν = δµν , which is
the Kronecker delta. Note one cannot set gµν = 0; however it can be frozen out by setting
it equal to a constant. This causes all derivatives of gµν and g µν to vanish. These terms are
important microscopically, where the sources of the Aµ field, e.g., charges, do not cancel and
those for the gµν field are very small. Third are the terms for the interaction of the gµν and
Aµ fields. These contain at least one factor of A and at least one derivative of gµν or g µν .
These terms vanish both macroscopically and microscopically, where Aµ vanishes and gµν is
constant, respectively. We will not consider this class of terms further.

5. Four-dimensional gravitation

There are three types of free-field terms in the Lagrangian for gµν : the 4D curvature
scalar R and terms with HD derivatives with two factors of gµν and four factors of gµν .
Neglecting the terms with HD derivatives and four factors of gµν , we have

k R (23)

− k g µν∂ 2

5 gµν (24)

− k g µν∂ 2

6 gµν (25)

−1

2
k ∂5g

µν∂5gµν (26)

−1

2
k ∂6g

µν∂6gµν (27)
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Because the size of the HD sphere is of the order of the Planck length, one cannot
observe the HD coordinate dependence of gµν . To eliminate it, one must integrate over
the HD coordinates, thereby averaging over them and obtaining a 4D description of the 6D
curvature scalar.

Term (23) contains the set of terms for 4D gravitation. These are obtained by setting
gµν = g00µν |00〉 and g µν = g µν

00 〈00|. One may group all the kets together and all the bras
together to yield a single bra 〈00| and ket |00〉, which when multiplied together yield one.
The result is the curvature scalar R(g00µν), which contains g00µν and g µν

00 only. We interpret g00µν
as the graviton field. Therefore, 3DT contains 4D gravitation.

The procedures for taking the derivatives with respect to the HD coordinates and inte-
grating over θ and φ for Terms (24)–(27) are the same as those for Terms (33)–(36) described
in Sec. 7. Considering only the glmµν with l = 1 or 0, we arrive at the following result for these
terms

+
9− 3

√
3

12c2T 2
k g µρ

00 g
νσ
00 g

1,−1

ρσ g11µν (28)

+
9− 3

√
3

12c2T 2
k g µρ

00 g
νσ
00 g

11

ρσg
1,−1

µν (29)

+
2
√
3 +

√
30

12c2T 2
k g µρ

00 g
νσ
00 g

10

ρσg
10

µν , (30)

where we have considered only the g µν
00 term in g µν and only the g00µν field in the factor of√

g in the differential volume element.
As g µν

00 is the graviton field, Terms (28)–(30) are mass terms for the g1mµν fields. The field

g00µν does not have a mass term because its associated spherical harmonic Y00 = 1/
√
4π does

not depend on the HD coordinates. Therefore, g00µν is massless, which is consistent with our
interpretation of it as the graviton. The factor of c2T 2 in the denominator of the coefficients
of these terms implies that the g1mµν have Planck masses. Possibly, quantum corrections of
the type in Part II reduce these masses to the usual elementary particle mass scale. In any
case, the l > 0 fields are weaker than the massless graviton field in small-scale spacetime
because they have masses. This is for the same reason the weak interaction is weaker than
the electromagnetic. Thus, they, like the graviton, may be neglected in this arena. In large-
scale spacetime, they play no role because their masses limit the range of their interaction.
This is where they differ from the graviton and are eliminated from physical importance.

Therefore, one may approximate gµν with g00µν , which becomes the 4D metric tensor.
Thus, g µν

00 and g00µν raise and lower 4D indices, respectively. In addition, only g00µν appears in
the factor of

√
g in the volume element. The tensor gµν contains only one known elementary

particle, the graviton. As will be shown later, all other elementary particles, including
the W and Z, leptons, quarks and gluons are contained within Aµ. This is accomplished
by expanding Aµ in terms of spherical harmonics, spinors and/or the strong-interaction-
group generators. The various components of Aµ thus produced will be identified with the
elementary particles.

There arise in the Lagrangian kR̂ the terms

−kĝ 55ĝ 66∂ 2

5 ĝ66 − 1

2
kĝ 55∂5ĝ

66∂5ĝ66. (31)
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With our choice of x̂ 5 and x̂ 6, the field ĝ66 = ĝ 66 = 1. Therefore, these terms are zero.
However, had we made the usual choice for the HD coordinates x̂ 5 = θ and x̂ 6 = φ, then
ĝ66 = −c2T 2 sin2θ, ĝ 66 = −1/(c2T 2 sin2θ) and ĝ 55 = −1/(c2T 2) + AµAµ. Terms (31) would
then contain the term 2k/(c2T 2), which is a cosmological constant roughly the size of the
Planck mass. Therefore, incorporating sinθ into the coordinate x̂ 6 instead of the scalar ĝ66
eliminates this large cosmological constant.

6. The electroweak vectors

In this section we derive Maxwell and mass terms for the photon, W and Z. The free-
Aµ-field terms have anywhere from one to six factors of A. Of these, we consider here only
terms with one or two of these factors. These terms are more important and are easier to
obtain. They are

+1

2
kδρσ δµν (∂ρAµ∂νAσ − ∂ρAµ∂σAν) (32)

+2k δµν ∂µ∂5Aν (33)

−2k δµν Aµ∂
2

5 Aν (34)

−2k δµν ∂5Aµ∂5Aν (35)

−1

2
k δµν ∂6Aµ∂6Aν . (36)

A word of warning about this calculation. Like many calculations in general relativity,
arriving at these terms is a straightforward, but lengthy calculation. One must devote many
hours to it if one is to arrive at the correct result. One should limit oneself to terms with
two or less factors of A as soon as possible in the calculation. Terms (32) are the Kaluza-
Klein miracle — they lead to Maxwell’s equations for the photon when the HD coordinate
dependence of Aµ is neglected and ∂5 = ∂6 = 0. In this case the calculation is much simpler
and takes less than an hour. Terms (34)–(36) are similar to Terms (24)–(27), which are
much easier to obtain. Terms like (33), with only one factor of A, appear only twice in the
Lagrangian before they are added together. Because these terms have one second derivative,
one may neglect the terms within the products ΓΓ, which have two first derivatives, in the
curvature scalar when deriving them.

Terms (32) will lead to Maxwell’s equations for the photon, W and Z and predicted inter-
mediate vector bosons. Term (33) will lead to the Dirac equation for fermions. Terms (34)–
(36) will lead to mass terms for vectors and interaction terms for spinors with vectors. Terms
with three to six factors of A are self-interaction terms for vectors, similar to those found in
the Standard Model.

The procedures for evaluating these terms by differentiating and integrating over the
spherical harmonics in them are described in the next section. Because g µν = δµν , then δµν

acts as the contravariant 4D metric tensor and is associated with the bra 〈00| in these terms.
Because the vector Aµ is really two separate fields, δµν and Aν , it should be written as δµνAν

when integrating over θ and φ; otherwise the result of integration will be incorrect. This is
explained in the next section. The expansion for Aµ is carried to l = 1 for now.

Terms (32) are the only terms with two factors of A and two 4D derivatives. The result
for these terms is

−k
4
F µν
00 F

00

µν − k
4
√
3
F µν
1,−1F

11

µν +
k

4
√
3
F µν
10 F

10

µν − k
4
√
3
F µν
11 F

1,−1

µν , (37)
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where F lm
µν = ∂µA

lm
ν − ∂νA

µν
µ . We will identify A00

µ with the photon field shortly.
We introduce the reality condition

∑
Aµ

lmYlm = (
∑

Aµ
lmYlm)

∗ (38)

and equate coefficients of like Ylm on both sides of this equation. This produces the relation

A
µ
lm = (−1)mAµ

l,−m, (39)

where no sum over m is implied. Further, we introduce the convention of representing the
contravariant fields Aµ

lm and F µν
lm as the complex conjugates A

µ
lm and F

µν
lm. Terms (37) now

become
−k

4
F

µν
00F

00

µν +
k

4
√
3
F

µν
11F

11

µν +
k

4
√
3
F

µν
10F

10

µν +
k

4
√
3
F

µν
1,−1F

1,−1

µν , (40)

where F
µν
lm = ∂µA

ν
lm − ∂νA

µ
µν .

The signs of the Maxwell terms for A11
µ , A1,−1

µ , and A10
µ are opposite what they should be.

This will also be the case for their mass terms. This means these fields have negative energy.
However, this is no more of a problem than the existence of the negative energy positron,
which follows from the Dirac equation. Both problems are dealt with as follows. Negative
energy states were thought to be unstable because there would be no “barrier” preventing
them from decaying into negative energy states with increasingly lower energy. However, if
the ground state is defined to be the state closest to zero energy instead of lowest energy,
then this cannot happen. Particles with negative energy tend to gain energy, not lose it. We
adopt this convention so that there is a symmetry around zero energy. Note that the term
for the photon has positive energy.

If this interpretation of negative energy is correct, then one could still have an electron
decay into a positron, which is no further than an electron from zero energy. The decay
of an electron into a positron is prohibited by the apparent impossibility of an elementary
particle with charge 2, necessary for the transition. The reason why charge 2 elementary
particles cannot exist is described in Part II. The decay could take place with more than
one charge 1 particle but terms describing this have more vectors than the minimal coupling
term described in Sec. 9 and are therefore much smaller than this term. This is because each
vector in the term must be redefined to have the right units, producing factors of the inverse
of their normalization factor described immediately below in Eq. (41). One could have terms
with more spinors, but these are smaller by a factor greater than cT for each spinor pair due
to their normalization factor in Eq. (72). Therefore, these terms involving more than one
intermediary are negligible.

The fields are now redefined to yield the conventional coefficient of the Maxwell term for
the photon

A′lm
µ =

(
c4

16πG

)1/2

Alm
µ , (41)

where we have included the factor of c from x4 = ict in the differential volume element in
the redefinition. Terms (40) now become

−1

4
F

′µν
00 F

′00
µν + 1

4
√
3
F

′µν
11 F

′11
µν + 1

4
√
3
F

′µν
10 F

′10
µν + 1

4
√
3
F

′µν
1,−1F

′1,−1

µν , (42)
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where F ′lm
µν = ∂µA

′lm
ν − ∂νA

′lm
µ . Henceforth, the redefinition of A′lm

µ will be understood and
we will drop their prime. These terms appear in the Lagrangian for the SM. They are the
free-field (Maxwell) terms for the photon, W and Z. The photon is identified with A00

µ ; the
W−

µ is A1,−1
µ , the Z0

µ is A10
µ , and the W+

µ is A11
µ .

We have

ĝµ5 = Aµ (43)

=
∞∑

l=0

l∑

m=−l

Alm
µ Ylm(θ, φ) (44)

= A00

µ Y00 + A1,−1

µ Y1,−1 + A10

µ Y10 + A11

µ Y11 + . . . (45)

= A00

µ Y00 +W−
µ Y1,−1 + Z0

µ Y10 +W+

µ Y11 + . . . (46)

The photon is denoted by A00
µ , so as not to be confused with Aµ, which is given in Eq. (43).

We use only the physical fields; there is no auxiliary vector Bµ as found in the SM, nor
subsequent mixing. Note that we have given the W and Z the same normalization as the
photon. This is the simplest thing to do and will be absolutely necessary in order to obtain
the masses of the W and Z from the coefficients of their mass terms. This normalization
for the W and Z leaves a factor of 1/

√
3 in their Maxwell terms. This does not contradict

observation as it would for the photon because one does not detect the W and Z directly;
one can only observe their decay products.

The result for Term (33) is
√
3

2
π(cT ) −1kδµν∂µA

10
ν . This term is a divergence, which

can be transformed into a surface integral at infinity, where the fields vanish. Therefore,
Term (33) is zero for the Alm

µ .
Terms (34)–(36) are the only ones with two factors of A and two HD derivatives. The

result for these terms is

−9 + 4
√
3

12c2T 2
δµν A1,−1

µ A11

ν (47)

−9 + 4
√
3

12c2T 2
δµν A11

µ A
1,−1

ν (48)

+

√
30

3c2T 2
δµν A10

µ A
10

ν . (49)

We employ the above-mentioned convention of representing the first factor of A in each term
as a contravariant vector whose complex conjugate is taken. The result for these terms is
now

+
9 + 4

√
3

12c2T 2
A

µ
11A

11
µ (50)

+
9 + 4

√
3

12c2T 2
A

µ
1,−1A

1,−1
µ (51)

+

√
30

3c2T 2
A

µ
10A

10
µ . (52)

These are mass terms for the W and Z. Like g00µν , the field A00
µ does not have a mass term

because its associated spherical harmonic Y00 = 1/
√
4π does not depend on the HD coor-
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dinates. Therefore A00
µ is massless, which is consistent with our identification of it as the

photon.
It is a miracle that the 6D curvature scalar R̂ leads to the 4D curvature scalar R plus the

Maxwell term −1

4
F µνFµν when fields do not depend on the HD coordinates x̂5 and x̂6. The

calculation is simple and seems to unify gravitation with electromagnetism. It is miraculous
that so little effort leads to such a good result. However, there is a fly in the ointment.
There is no reason why fields should not depend on the HD coordinates. If general relativity
is truly six-dimensional, fields should depend on all six coordinates, not just the first four.
After all, this is how four-dimensional general relativity works. The fields depend on all four
coordinates in this case. Therefore, we will make our theory more correct by allowing fields
to depend on all six coordinates. Then the miracle continues.

Flowing directly from the HD coordinate dependence of Aµ is the existence of the W and
Z. And following from terms with two 4D and two HD derivatives are the terms that describe
them. Orthogonality of the spherical harmonics produces one Maxwell and one mass term
for each of the W’s and Z when the Lagrangian density is integrated over θ and φ. Terms
with three to six factors of Aµ lead to self-interaction terms for the W and Z similar to the
Yang-Mills self-interaction terms found in the SM. This is an example of the details following
from properly fixed postulates.

The theory of 3DT explains why there are three weak vectors and one electromagnetic
vector. It explains why the weak vectors have charges −1, 0, +1. It explains why the
photon has no charge. (Charge is the momentum canonically conjugate to the coordinate
dependence eiφ.) It explains why the W and Z have mass while the photon does not. This
derivation of the existence of the photon, W and Z, and their properties explains the origin
of what appears to be the local symmetry group SU(2) × U(1), which must be assumed in
the Standard Model. We have produced all necessary terms for these fields using spherical
harmonics and the curvature scalar as Lagrangian density — both natural parts of general
relativity with three dimensions of time.

7. How to differentiate and integrate over the Ylm(θ, φ)

This section may be omitted in a first reading. It describes how to go from ‘raw’ terms in
the Lagrangian such as Terms (32)–(36) to their more final forms such as Terms (47)–(49).
Without an organized procedure for this, one soon runs into expressions that cannot be
evaluated because of infinities. In addition, there will be more than one way to do certain
calculations, each with a different result. The right way must be specified.

If one attempts to multiply three or more expansions in terms of spherical harmonics
found in terms with three or more factors of A in the Lagrangian, one soon runs into a mess
consisting of too many factors of

√
π as well as a plethora of other square roots. These do

not all disappear after the term is integrated over θ and φ as they do in terms with only two
expansions. There must be a better way. Indeed there is: One must convert the spherical
harmonics to kets. Then products of two kets may be written as single kets using Clebsch-
Gordan coefficients. This process is continued until there is just one ket for the contravariant
group of factors and one ket for the covariant group. Then the ket for the contravariant group
is written as a bra and the final bra and ket are multiplied together representing the integral
over θ and φ. Or, if one chooses, the final bra and ket may be reconverted to spherical
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harmonics. Because we are integrating here over just two spherical harmonics, the excess
factors of

√
π and other square roots appearing in each spherical harmonic will not appear

in the answer. Thus, we will have converted integrals over three or more spherical harmonics
into those over just two.

Before the procedures for taking the higher-dimensional derivatives and integrating over
the spherical harmonics are discussed, I will show how to deal with the bras and kets in each
term. As described in Sec. 4, g µν

00 is the 4D contravariant metric tensor and raises 4D indices.
Therefore, we have equations like

Aµ
lm = g µν

00 A
lm
ν . (53)

This shows that g µν
00 is the contravariant part of Aµ

lm. Since every ‘contravariant’ tensor may
be written in this fashion, then g µν

00 is the only true contravariant tensor. It matters whether
Aµ

lm or g µν
00 is the contravariant tensor because the results of integrating over θ and φ depend

upon which is chosen. For example, if Aµ
lm is the contravariant tensor, we would have

A
µ
11〈11|A11

µ |11〉 = A
µ
11A

11

µ , (54)

while if g µν
00 is the contravariant tensor, then the same expression could be written as

−g µν
00 〈00|A1,−1

µ |1,−1〉A11

ν |11〉 = 1√
3
A

µ
11A

11

µ , (55)

where the kets |1,−1〉 and |11〉 are combined first. There is a factor of
√
3 difference between

these expressions. Equation (55) is correct because g µν
00 is the only true contravariant tensor.

This applies, however, only until the integration over θ and φ is taken in this section.
Because factors are expanded in terms of spherical harmonics, which are then converted

into kets, which do not commute, factors in a term must be ordered properly. This order
is determined by the above definition of the curvature scalar in terms of the metric tensor.
We will be dealing with terms with no more than two nontrivial covariant factors. Therefore
the order of the two covariant factors does not matter because integration with 〈00|, which
is the only bra we will be using, and two kets acts like a dot product between the two kets.

As the kets are nonassociative, the order of the multiplication of factors in a term must
be specified. This order is largely implied by the structure of the equations that define the
curvature scalar. First, the products of the factors of A in each of Eqs. (14) and (15) are
taken. Then the factors within Γ̂ δ

αβ , R̂αβ and R̂ are combined in that order. In practice,
these rules are not necessary because we will be dealing here with terms with no more than
two nontrivial covariant factors. This means there is only one nontrivial multiplication,
making the order of multiplications irrelevant.

Note that the order of factors and the order of multiplications in a term pertain only to
the covariant factor [for example, Alm

ν in Eq. (53)] within the seemingly contravariant factor
[Aµ

lm in Eq. (53)]. The contravariant factors g µν
00 are not tied down to a particular position

in the term nor in the order of multiplications like the covariant factors, because they are
associated with the ket |00〉 only. Therefore, we may group all of the 4D contravariant metric
tensors in a term together and place them to the left of the covariant group of factors. The
adjoint is then taken of the group of g µν

00 . The reason the g µν
00 are grouped together is that

we will want to combine the kets of the contravariant factors and, separately, the kets of the
covariant factors. We then write the adjoint of the resultant ket for the contravariant factors
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as a bra. This is so that there will be one bra and one ket, representing the contravariant
and covariant factors, respectively. The final bra and ket are then combined, representing
one integral over θ and φ. If the contravariant factors were not grouped together, we would
have more than one integral over θ and φ per term. The contravariant group of factors is
placed to the left of the covariant group because bras must be placed to the left of kets if
their products are to represent integrals. Note that the only bra we will ever have to consider
for the contravariant factors is 〈00|.

Term (34) has the factor ∂ 2
5 , which equals −1/(c2T 2)∂ 2

θ , according to Sec. 3. Here
∂θ = ∂/∂θ. To see how this term is integrated over θ and φ, we examine the case where l = 0
or 1 in the expansion for Aµ. The derivatives with respect to θ are taken: ∂ 2

θ Y00 = 0 and
∂ 2
θ Y1m = −Y1m. If l > 1, this simplification for ∂ 2

θ Y1m is not possible and the expression for
∂θ described in the procedure for Term (35) must be used.

The spherical harmonics of the contravariant and covariant factors are now written as
kets Ylm → |lm〉 in preparation for combining them. Next, the two covariant expansions are
multiplied and the products of kets are written in terms of single kets using Clebsch-Gordan
coefficients. For example,

|11〉|1,−1〉 = 1√
6
|20〉+ 1√

2
|10〉+ 1√

3
|00〉. (56)

Because the metric tensor must be constant for the free-Aµ fields, the special relativity metric
applies to the free-Aµ-field terms, including Term (34). Therefore, we set g µν

00 = δ µν , where
δ µν now has the ket |00〉. We are using the Kronecker delta instead of the Minkowski metric
because we have incorporated the minus sign of η 00 = −1 into the coordinate x̂ 4 = ict,
where i =

√
−1. The adjoint of the contravariant factor is taken and its ket is written as a

bra. The contravariant and covariant expressions are now multiplied together. The integrals
over θ and φ may be expressed in terms of the orthogonality of the kets: 〈00|lm〉 = δ0lδ0m.

If one is doing this calculation for Alm
µ with l > 1, factors of e±2iφ must be combined with

the kets of the differentiated factor before the kets of the two covariant factors are combined.
For example, e2iφ|2,−1〉 = −|21〉. Otherwise, a different result is obtained. This procedure
must be correct because it leads to the equation ∂ 2

θ Y1m = −Y1m for the case l = 1. (Note,
however, that e2iφ|2,−2〉 cannot be combined preliminarily because it does not equal another
ket.)

Term (35) contains two factors of ∂5. It is dealt with in the same way as Term (34),
except that ∂θ is rewritten

∂θ =
1

2h̄

(
e−iφL+ − eiφL−

)
, (57)

where L+ and L− are the raising and lowering operators, respectively, for the spherical
harmonics. We have

L±Ylm = [l(l + 1)−m(m± 1)]1/2 h̄Yl,m±1. (58)

This definition for ∂θ follows from combining L+ = Lx + iLy and L− = Lx − iLy, where

Lx = ih̄(sinφ ∂θ + cotθ cosφ ∂φ), (59)

Ly = ih̄(− cosφ ∂θ + cotθ sinφ ∂φ), (60)

which are the x and y components of the angular momentum vector L written in spherical
coordinates. Rewriting the operator ∂θ is necessary to write ∂θYlm properly in terms of
spherical harmonics, which can then be written as kets.
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When one uses this expression for ∂θ, one winds up with factors of eiφ in the term.
In order to evaluate these expressions, the terms have their final bra and ket rewritten as
spherical harmonics according to the transformations 〈00| → Y00 and |lm〉 → Ylm and the
terms are explicitly integrated over θ and φ in the usual way. Note that the factors of eiφ

must cancel if the integral over φ and the term is to be nonzero. For terms without functions
of φ, use may be made of the orthonormality of the kets.

Term (36) contains two factors of ∂6, where ∂6 = ∂/(icT sinθ∂φ) from Sec. 3. This term is
dealt with in the same way as Term (34). First, the derivatives with respect to φ of the Ylm
are taken ∂φYlm = imYlm. In order to evaluate these terms with two factors of 1/ sinθ from
the two factors of ∂6, they have the spherical harmonics of both covariant factors written in
terms of spherical harmonics with their l and |m| values decreased by one. (The quantum
number m is increased by one if it is negative.) Some examples of this are

Y1,±1 = ∓
√

3

2
Y00 sinθe

±iφ, (61)

Y2,±2 = ∓
√

5

4
Y1,±1 sinθe

±iφ, (62)

Y3,±1 = ∓
√

7

12

(√
5 Y20 + Y00

)
sinθe±iφ. (63)

The factors of sinθ in the ∂6’s cancel with those extracted from the covariant factors in
Eqs. (61)–(63). This eliminates the factor of 1/ sin2 θ, which would otherwise result in infinity
when integrating over θ. The spherical harmonics are now written as kets and combined.

8. Leptons

Now that we have the four electroweak vectors, we also have fermions. This follows
directly from Chapter 41 of Misner, Thorne and Wheeler [45], the classic textbook. This
book details standard spinor theory, which states that any vector is equivalent to a second
rank spinor. One does not have to invent a fantastic theory like supersymmetry to obtain
fermions. They could come from a textbook. For any vector Wµ, we have

Wµ = −1

2
σBV̇
µ wBV̇ , (64)

where wBV̇ is a second rank spinor. A sum is implied over the indices B and V̇ . These

indices take the values 1, 2 and 1̇, 2̇, respectively. The −→σ BV̇ are the Pauli spin matrices and
σBV̇
0 is the unit matrix. These matricies are the basis vectors for an expansion of a vector.

The spinor field components are its coefficients.
When the vector is null, like for example, the photon, the second rank spinor is equated

to the product of two 2-component spinors. This produces the product form ψψ of spinors
necessary to reproduce the Lagrangian for the Dirac equation. For example, for the photon
we have

A00

µ |00〉 = −1

2
σBV̇
µ ξBηV̇

1√
2

∣∣∣1
2

1

2

〉 ∣∣∣1
2
,−1

2

〉
+ 1

2
σBV̇
µ τBωV̇

1√
2

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
, (65)

where
|00〉 = 1√

2

∣∣∣1
2

1

2

〉 ∣∣∣1
2
,−1

2

〉
− 1√

2

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
. (66)
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The spinor ξB or ωV̇ has the ket
∣∣∣1
2

1

2

〉
, while ηV̇ or τB is in the state

∣∣∣1
2
,−1

2

〉
. By convention,

the first ket in each pair in Eq. (65) is identified with the spinor with an undotted index,
while the second is matched with the dotted-index spinor. We have

A00

µ = −1

2
σBV̇
µ ξBηV̇ (67)

for the first pair of kets and

A00

µ = −1

2
σBV̇
µ τBωV̇ (68)

for the second.
The spinors in this expansion may recombine to form A10

µ (the Z0). We have

A10

µ |10〉 = −1

2
σBV̇
µ ξBηV̇

1√
2

∣∣∣1
2

1

2

〉 ∣∣∣1
2
,−1

2

〉
− 1

2
σBV̇
µ τBωV̇

1√
2

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
, (69)

where
|10〉 = 1√

2

∣∣∣1
2

1

2

〉 ∣∣∣1
2
,−1

2

〉
+ 1√

2

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
. (70)

The derivative ∂5 in Term (33), which will lead to the Dirac equation, eliminates A00
µ |00〉

from the expansion of Aµ. The factors of eiφ in the spherical harmonics for A1,±1
µ eliminate

them upon integration over θ and φ. This leaves A10
µ |10〉. After substituting this only

nonzero term into Term (33), the spinor kets are converted to |10〉 and |00〉 (for example,∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
= 1√

2
|10〉 − 1√

2
|00〉). This results in
√
3πik

8cT
δµνσBV̇

µ (ξB∂νηV̇ + ∂νξBηV̇ ), (71)

plus a similar set of terms involving the spinors τB and ωV̇ . The spinors ηV̇ and ξB will be
identified with the electron field and its complex conjugate, respectively, while ωV̇ and τB
will be the neutrino and its conjugate, respectively. These identifications are suggested by
the associations these fields have with their kets above, according to their quantum numbers
l and m given in Table 1.

We will ignore the neutrino terms for now and concentrate on deriving the Dirac equation
for the electron. The fields are redefined to give them the right units

ξ ′
B =

( √
3 c3

128h̄GcT

)1/2

ξB, (72)

with an identical redefinition for ηV̇ . The result for Term (33) is now

+ ih̄c δµνσBV̇
µ ξ ′

B∂νη
′
V̇

(73)

+ ih̄c δµνσBV̇
µ ∂νξ

′
Bη

′
V̇ . (74)

Spinor mass terms are not contained directly within the 6D curvature scalar. One must
introduce spinors into the Lagrangian with the above-mentioned substitution for vectors,
which does not allow terms of the form −mξ ′

Bξ
′B. However, new terms may result from a

particle’s motion on the HD sphere. This motion produces energy and must be represented
in the Lagrangian. Motion on the HD sphere is isospin. Electric charge will be related to the
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z-component of isospin in Part II. Further, spinors acquire mass from their charge according
to the classical radius equation considered in Part II. Therefore, we introduce the mass terms

−mξ ′
Bξ

′B −mη ′V̇ η ′
V̇ . (75)

Although these mass terms are not contained directly within R̂, they do not produce anoma-
lies because they are derived from R̂. It is R̂ that puts a moving electron on the HD sphere.
This is indicated by the electron’s HD angular momentum, which is given by the operators
Lz and L2 operating on its ket.

Each of Terms (73) or (74) leads to the Dirac equation. We will consider only Term (73)
in what follows. Lagrange’s equations for ξ′B and η′

V̇
are

ih̄c δµνσBV̇
µ ∂νξ

′
B = mη ′V̇ , (76)

ih̄c δµνσBV̇
µ ∂νη

′
V̇ = mξ ′B. (77)

Using the equations [45] ζBξ′B = −ζBξ ′B and η ′V̇ = εV̇ Ẇη′
Ẇ
, where the only nonzero com-

ponents of εV̇ Ẇ are ε1̇2̇ = −ε2̇1̇ = 1, Eq. (76) becomes

−ih̄cσµ

BV̇
∂µξ

′B = mη′V̇ . (78)

Here the σµ

BV̇
are the associated basic spin matrices. They are computed from the σBV̇

µ via
the relations

σµ

BV̇
σBV̇
ν = −2δµν . (79)

The σµ

BV̇
are equal to [45] minus the σBV̇

µ , except for σ2

BV̇
, which equals σBV̇

2 .
Equations (78) and (77) may be put in matrix form

(
i∂0 + i−→σ · −→∇

)
ξ =mη, (80)

(
i∂0 − i−→σ · −→∇

)
η =mξ, (81)

where the −→σ are the Pauli spin matrices and

ξ =

(
ξ ′1

ξ ′2

)
, η =

(
η ′
1̇

η ′
2̇

)
. (82)

We have set h̄ = c = 1, which applies for the remainder of this section. Adding and
subtracting Eqs. (80) and (81), we obtain [58]

i∂0ϕ+ i−→σ · −→∇χ =mϕ, (83)

−i∂0χ− i−→σ · −→∇ϕ =mχ, (84)

where ϕ = 1√
2
(ξ + η) and χ = 1√

2
(ξ − η).

Equations (83) and (84) may be recast as

iγµ∂µψ = mψ, (85)
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where

ψ =

(
ϕ
χ

)
, (86)

γ0 =

(
1 0
0 −1

)
, −→γ =

(
0 −→σ

−−→σ 0

)
, (87)

where each element of the matrices in Eqs. (87) is itself a 2 × 2 matrix. Eq. (85) with (86)
and (87) constitute the Dirac equation for the electron in the Dirac representation for ψ.

A similar derivation of the Dirac equation for the neutrino involving the spinors τB and
ωV̇ may be made. In addition, the photon may be expanded in terms of spinors with l > 1

2
.

The muon and its neutrino are associated with the kets
∣∣∣3
2
,−1

2

〉
and

∣∣∣3
2

1

2

〉
, respectively. The

tau and its neutrino are in the respective states
∣∣∣5
2
,−1

2

〉
and

∣∣∣5
2

1

2

〉
. Continuing in this manner,

3DT predicts an infinite number of fermions, each corresponding to a state |lm〉, where l
and m are half-odd integral. The reason why the number of generations of leptons appears
to be limited to three is explained in Part II. Thus the expansion of ĝ5µ = Aµ in terms of
spherical harmonics produces multiple generations of leptons.

I claim that the fact that the positron appears to have negative energy is not merely
appearance but is deep-rooted and cannot be transformed away. The negative energy of the
positron is dealt with in the same way as that for the Z0: The ground state is defined to be
that closest to zero energy instead of lowest energy.

In order to reproduce the SM fully, one must produce the chirality of the weak interac-
tions. Chirality is allowed in 3DT because it has an even number of dimensions. A massless
particle must have its right-handed field equal to zero. This is because one cannot slow
down a left-handed particle and reverse its direction if it travels at the speed of light. The
nearly zero mass of the neutrino is derived in Part II. Therefore, νR = 0 and ν = νL because
ψ = ψL + ψR. This prevents an interaction term involving right-handed neutrinos, the W
and electrons, producing the required chirality.

The Dirac equation originates from the 6D curvature scalar of 3DT. This occurs because
the divergence ∂µA

µ
10 splits into terms of the form of the Dirac term ψ γµ∂µψ when the spinor

form ψγµψ of the vector Aµ
10 is used.

One may wonder why the Maxwell term does not apply to spinors. If a vector is equal
to its spinor equivalent, one could substitute its spinor form into the Maxwell Terms (32).
However, examination of Terms (32) and (33) reveals that the Dirac term, which contains
∂5, is larger by a factor 1/(cT ). Therefore, the spinor form of the Maxwell term is negligible
compared to the Dirac term.

We have expanded each Alm
µ in terms of the Pauli matricies just like we expanded Aµ in

terms of shperical harmonics. This was made possible by the existence of the vectors Alm
µ ,

each of which may be equated to the product of two 2-component spinors. This is another
example of the details following from properly fixed postulates.

Our method of introducing fermions into a purely bosonic Kaluza-Klein theory has several
advantages over supersymmetry. Substituting two spinors for each vector in the theory
relates the known spinors to the known vectors. This is highly economical and efficient. It
does not introduce entire classes of supersymmetric particles for which there is little evidence.
And it is consistent with our program of keeping the curvature scalar as Lagrangian and
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therefore pure gravitation as the theory. Finally, one cannot derive the Dirac equation from
supersymmetry. It must be assumed, like supersymmetry itself.

9. Interaction terms

Interaction terms for intermediate vector bosons and leptons may be derived from the
vectors’ mass Terms (47)–(49). This is done by expanding one of the vectors in these terms
in terms of spinors. For example, Term (49) starts off as

+

√
30

3c2T 2
kδµνA10

µ A
10

ν . (88)

This term ends up as

−8

3

(
10

π

)1/2√
h̄c Z0

µ (e γ
µe + νeγ

µνe) , (89)

Thus, the bare weak charge of the electron or neutrino interacting with the Z0 from the 6D
curvature scalar is

g
R̂
= −8

3

(
10

π

)1/2 √
h̄c = −4.75766

√
h̄c . (90)

To see where this coefficient comes from, we write each of the factors that go into its
formation. The coefficient is equal to

( √
30

3c2T 2

)

1

(
c3

16πG

)

2

(c)
3

(
16πG

c4

) 1/2

4

(
128h̄GcT√

3 c3

)

5

(
−1

2

)

6

(
1

2

)

7

, (91)

where the factors have been numbered for future reference.
The 1st factor is the coefficient of the Z mass term from Sec. 6. We note that cT = L =

(h̄G/c3)1/2 is the Planck length. Factor 2 is the constant k from Sec. 4, by which the entire
Lagrangian is multiplied. This gives the Lagrangian the units of energy. The 3rd factor
comes from the relativistic time coordinate dx4 = icdt in the differential volume element of
the action integral for the term. Factor 4 results from the redefinition of one vector field in
the term described in Sec. 6. Factor 5 is from the redefinition of two spinors in the Dirac
term in Sec. 8. Factor 6 is from Eq. (64), which equates vectors to spinors. The 7th factor
arrises when |10〉 is written in terms of l = 1/2 kets, each pair of which are multiplied by
the Clebsch-Gordan coefficient 1/

√
2. This Clebsch-Gordan coefficient is squared when the

spinors’ l = 1/2 kets are reconverted to the kets |10〉 and |00〉, which is done to combine
them with the bra 〈00|. Another way of looking at Factor 7 is that the Z0 is composed of
one-half an electron-positron pair and one-half a neutrino-antineutrino pair.

We now consider interaction terms involving the muon µ−. The Clebsch-Gordan coeffi-
cient that relates |10〉 to the muon-antimuon’s l = 3/2 pair of spinor kets is 1/

√
20. This

means A10
µ (the Z) may also be considered to be 1/20th a muon-antimuon pair. This pro-

duces a factor of 1/20 in Factor 7 in Eq. (91) instead of the factor of 1/2 for the electron.
Thus, the coefficient of the weak interaction term from R̂ for the muon would appear to
be 1/10th that of the electron. Because the above-mentioned Clebsch-Gordan coefficient
for the muon is 1/10th that of the electron in the Dirac term as well, the resulting Dirac
equation for the muon would have a factor of 1/10 as coefficient for the Dirac term as well
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as the weak-interaction term. Since, at this point, these are the only two terms in the Dirac
equation for the muon, one may multiply the entire equation by 10 and recover the Dirac
term with coefficient one as well as a weak charge that is the same as that for the electron.
The weak charge of the tau from the 6D curvature scalar remains the same as that for the
electron by the same reasoning used for the muon.

Spinors may combine to form the W+ and W−

A11

µ |11〉 = −1

2
σBV̇
µ ξBωV̇

∣∣∣1
2

1

2

〉 ∣∣∣1
2

1

2

〉
, (92)

A1,−1

µ |1,−1〉 = −1

2
σBV̇
µ τBηV̇

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2
,−1

2

〉
, (93)

which, when substituted into Terms (47) and (48), yield

+
16 + 12

√
3

3
√
π

√
h̄c W+

µ νeγ
µe (94)

+
16 + 12

√
3

3
√
π

√
h̄c W−

µ e γµνe. (95)

There is no photon-electron interaction term in R̂. This term results from motion on
the HD sphere because it depends on the charge of the electron. As noted above, additional
terms in the Lagrangian may result from this motion. Therefore, we introduce the interaction
term

qA00

µ e γµe, (96)

where q is the charge on an electron. This is similar to the introduction of the mass terms
for spinors in Sec. 8.

Interaction terms are an important part of the SM, which produces them through a
covariant derivative used in the Dirac term. This is done to maintain the symmetry SU(2)×
U(1). In 3DT, however, we have a different but equally effective method for generating
interaction terms. Here the spinor form ψ γµψ of the vector Aµ is substituted into a mass
term of the form AµAµ, creating a term of the form ψ γµψAµ. One may substitute two
spinors for both vectors in terms like (88). Four-spinor interaction terms result. These are
negligible compared to vector-spinor interaction terms because they contain an extra factor
of cT from the additional spinor redefinition. [See Factor 5 of Eq. (91).] This explains why
there are no four-point Fermi interactions and why the weak interactions are carried by
intermediate vector bosons.

10. The strong interactions

General relativity can be considered to be the result of local Lorentz transformations in
four dimensions. But what about Lorentz transformations in six dimensions? When one
makes the transition from four to six dimensions, the Lorentz group requires nine additional
generators to describe a Lorentz transformation. Each of these additional generators corre-
sponds to a rotation or boost in a coordinate surface with at least one coordinate x̂ 5 or x̂ 6.
What force is produced by these nine additional types of Lorentz transformation? It is the
strong interaction.
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The Lorentz group becomes the rotation group for our coordinates because coordinates
of time multiplied by i are spacelike. This is reflected in the signature diag. ( + + + + + + )
of the metric tensor.

The nine generators corresponding to an infinitesimal 6D rotation involving x̂ 5 or x̂ 6 are
denoted by λa, where a = 0, . . . , 8. Eight of the nine HD generators λ1, . . . , λ8 are colored
and produce the strong interaction. These generators correspond to rotations in planes with
one HD coordinate (θ or φ) and one 4D coordinate. The ninth HD generator λ0 is white and
corresponds to the known white elementary particles such as the electron and photon. This
white generator corresponds to a rotation in the HD sphere of both HD coordinates θ and
φ, without a 4D coordinate. Fields associated with this generator are analogous to ĝ55 = 1,
which has two indices equal to five and has no HD angular momentum.

We will construct our theory of the strong interactions based on our electroweak theory.
The generators of the HD part of the 6D rotation group are analogous to the spherical
harmonics. We will expand fields in terms of these nine generators, just like we expanded
the vector Aµ in terms of spherical harmonics. The reason for this is the same: it is because
the HD’s are so small.

We expand glmµν and Alm
µ in terms of the nine generators λa of the HD part of the 6D

rotation group

g lm
µν =

8∑

a=0

g lma
µν λa, (97)

Alm
µ =

8∑

a=0

Alma
µ λa. (98)

The Latin indices a, b, c range from zero to eight. Henceforth we will observe the convention
of summing over these indices when they appear twice in a term. Up until now, we have ne-
glected the strong interactions. With these expansions, this is no longer possible. Previously
defined fields like the photon and graviton are now redefined—the photon and graviton are
no longer A00

µ and g00µν . They are denoted now by A000
µ and g000µν ; the W and Z are now the

A1m0
µ .
In the 4D differential volume element, the

√
g refers to g000µν , which equals δµν in mi-

croscopic spacetime. The
√
g is not expanded in terms of HD rotation group generators

because δµν is constant and after an HD rotation, the field’s values are oriented the same
way in spacetime. Therefore, it has no strong charge with respect to an HD rotation. Sim-
ilarly, in microscopic spacetime, the Aµ

lma are written in terms of the Alma
µ using the 4D

contravariant metric tensor δµν according to the formula

Aµ
lma = δµνAlma

ν . (99)

Thus, the only contravariant fields we will ever have to consider are the δµν and the only
generator we will ever have to consider for the contravariant fields is λ0.

Before we proceed to consider terms with factors expanded in terms of HD rotation
generators, we describe how to deal with the generators in each term. To eliminate the
HD rotation generators from the terms in the Lagrangian and make the terms scalars, we
determine one generator for each of the covariant and contravariant groups of factors in a
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term and multiply the two generators together in a scalar or dot product. This product is
defined such that

λa · λb = δab. (100)

This is similar to integrating over the orthogonal kets representing the covariant and con-
travariant groups of factors.

Each factor in a term is expanded in terms of the nine generators λa, eight of which
are colored and one is white. It remains to determine which type of product exists between
factors with these generators within each of the covariant and contravariant groups.

There are three possible products for the λa vectors of the covariant factors: scalar (dot
product), vector (cross product), or a tensor product. In order to produce one λa for the
covariant factors and yet involve all of them, a cross product seems most appropriate

λa × λb = [λa, λb] =
∑

c

cabcλc, (101)

where the cabc are the structure constants of the HD part of the 6D rotation group. This
is similar to the expression of products of kets in terms of single kets using Clebsch-Gordan
coefficients.

Because the generators are not associative under cross product multiplication, parenthe-
ses must be used to specify the order of multiplications. This would be the same as that
given in Sec. 7.

According to the vector identity A · (B×C) = (A×B) ·C, the dot product may be
interchanged with the last cross product in the term without affecting the value of the term.
This would be how to obtain the familiar form of mass and Maxwell terms with two strongly
interacting fields Aµ —with the dot product between these factors as opposed to between the
covariant factors of Aµ and contravariant δµν . The cross product that now exists between the
covariant and contravariant groups of factors drops out because the contravariant group of
factors has only the generator λ0. This leaves only a trivial ordinary multiplication between
the covariant and contravariant groups.

Expanding Terms (32) first in terms of spherical harmonics and then in terms of HD
rotation generators, we arrive at the terms

−1

4
F

µν
00aF

00a
µν + 1

4
√
3
F

µν
11aF

11a
µν + 1

4
√
3
F

µν
10aF

10a
µν + 1

4
√
3
F

µν
1,−1aF

1,−1a
µν , (102)

where F lma
µν = ∂µA

lma
ν − ∂νA

lma
µ .

The term with one factor of A, with only this factor expanded in terms of colored rotation
generators, is zero due to the orthogonality of the generators. (With only one factor of colored
λa, there is no way to make the term a scalar.)

Doubly expanding the factors of A in Terms (34)–(36), we obtain

+
9 + 4

√
3

12c2T 2
Aµ

11aA
11a
ν (103)

+
9 + 4

√
3

12c2T 2
A 1,−1a

µ A1,−1a
ν (104)

+

√
30

3c2T 2
A 10a

µ A10a
ν , (105)
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which are mass terms for the A1ma
µ .

The Lagrangian for 3DT should contain terms with anywhere from two to six strongly
interacting vectors or gluons. However, strong interactions with diagrams with five or six
external gluon lines, corresponding to terms with five or six gluons, are not observed. 3DT
provides the explanation for this. If one examines the definition of the curvature scalar
described in Sec. 4, one finds that the only way to obtain terms with five or six factors of
Aµ is through the presence of ĝ 55 = 1 + gµνAµAν . Now since the strong interaction cross
product between the two factors of A here is purely antisymmetric, while the multiplication
of these two factors by gµν symmetrizes them, the resulting terms with five or six gluons are
zero.

11. Quarks, confinement, asymptotic freedom and chiral symmetry breaking

The main aspects of strong interaction phenomenology are quarks, quark confinement,
asymptotic freedom and chiral symmetry breaking. These are not hard to achieve in 3DT.
The existence of quarks can be explained by expanding the photon in terms of HD rotation
generators and spinors. In final form, for example

A00

µ |00〉 = −1

2
σBV̇
µ χp

B̟
q

V̇
λpq

1√
2

∣∣∣1
2

1

2

〉 ∣∣∣1
2
,−1

2

〉
+ 1

2
σBV̇
µ ζpBι

q

V̇
λpq

1√
2

∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
. (106)

We have neglected to consider the terms corresponding to the one white generator in the
expansion for A00

µ . This is the photon. The index for the eight colored generators of the HD
rotation group has been rewritten as pq where p and q take the values r,g,b, which stand for
red, green and blue. A sum over p and q is implied. The spinors χq

B and ιp
V̇
are associated with

the ket
∣∣∣1
2

1

2

〉
, while ̟p

V̇
and ζqB have

∣∣∣1
2
,−1

2

〉
as their HD angular momentum representation.

Transforming the spinors according to Sec. 8, we find the up quark up corresponds to ιp
V̇

while the down quark dp corresponds to ̟p

V̇
.

By expanding A00
µ in terms of rotation generators and spinors with l > 1

2
, quarks in

other families may be produced. The strange and charmed quarks are associated with the
states

∣∣∣3
2
,−1

2

〉
and

∣∣∣3
2

1

2

〉
, respectively. The top (bottom) quark is in the state

∣∣∣5
2

1

2

〉 (∣∣∣5
2
,−1

2

〉)
.

According to 3DT, there are an infinite number of quarks, each corresponding to a state |lm〉,
where l and m are half-odd integral. Thus, expanding Aµ in terms of spherical harmonics,
rotation generators and spinors produces multiple generations of quarks. It is not unlikely
that the number of generations appears to be limited by the same reason given in Part II
for leptons.

Terms for the interactions of quarks with gluons may be derived from the gluons’ mass
terms. This occurs by substituting a quark-antiquark pair for one gluon in the gluon mass
terms. It is highly unlikely that quarks have charges exactly one-third that of the electron
because the value of a particle’s charge will be shown in Part II to result from quantum
corrections and these are notoriously uneven in value. There does not appear to be any
way of achieving one-third integral charges from the methods used in Part II. Thus, we will
subscribe to the original theory of the strong interactions, the Han-Nambu model [59,60],
in which quarks have integral charges. This is possible because our theory does not have
an exact strong interaction symmetry of the Lagrangian. Quarks of different colors have
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different charges. The symmetry is broken. Instead of quarks having color, they are non-
singlet SU(3)′ states in the Han-Nambu model. Thus, when I use the word ‘color,’ I am
referring to this property and not color as it is usually used.

Terms describing free quarks (the Dirac term), quark masses and the electromagnetic
interactions of single quarks are zero. This is because the colored generators of the quarks
are orthogonal to the white generator of δµν or A000

µ (the only other fields in the terms) and
their dot or scalar product is zero. With only one set of colored generators there is no way
to make the term a scalar.

The SM assumes the Dirac or free-quark term in its Lagrangian, thereby postulating free
quarks. It then goes to great lengths to eliminate the same free quarks. Why not just leave
out the free-quark term? In 3DT, the free-quark term is zero. This means there are no
free quarks. How can one have free quarks without a free quark term in the Lagrangian to
describe them? The only way a quark can exist is if it is interacting with a gluon. Certainly
this method of quark confinement is much simpler than the charge-antiscreening-due-to-
vacuum-polarization method, which requires the use of supercomputers for its calculations
and still does not work. My method requires virtually no calculations, is far simpler and
is more effective. And it is just another example of determining the correct Lagrangian for
each field of interest. Sometimes it is not what you put in a Lagrangian, but what you leave
out.

Although there are no mass terms for quarks in R̂, masses for quarks can be generated by
their color, in much the same way that the classical radius equation can be used to generate a
mass for the electron from its charge. Thus, we would have only strong interaction and mass
terms for quarks. New terms for quarks, however, can be generated by expanding the white
vectors Alm0

µ |lm〉 in terms of spinors that are white combinations of quarks. In this case,
the terms that applied to previously considered spinors now apply to white combinations
of quarks. In this way, we arrive at free-field and photon interaction terms for white quark
combinations known as hadrons. Because the free-quark terms vanish but the free-hadron
terms do not, quarks can only be found in white combinations—hadrons.

The theory of 3DT’s strong interaction sector may be tested by detecting free gluons.
These are allowed in 3DT because the free-field (Maxwell) terms for gluons do not vanish.
Free gluons are forbidden by confinement in the SM.

The chiral symmetry breaking of the strong interactions is caused by a nonzero pion
mass. According to the classical radius equation presented in Part II, a particle that has
charge must have mass. The pion has a mass because the quarks and gluons of which it
is composed have masses due to their strong interaction charges or color. Therefore, 3DT
explains chiral symmetry breaking.

We now describe an effective potential for confinement in 3DT. Although this potential
does not really exist, it provides a convenient framework for the discussion of confinement.
Each of the gluons with which the quarks interact must have a mass because it has color,
which would, like electric charge, yield a mass by the classical radius equation in Part II.
Because free quarks are forbidden by the vanishing of the free-quark term they must always
be interacting. Now, in order for two quarks to remain interacting, they must be within
range of the strong interaction. Therefore, they cannot be separated by a distance greater
than the Compton wavelength λ = h/mc of a gluon. The mathematical expression for this
is an infinite square-well potential with radius equal to the Compton wavelength of a gluon
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surrounding each quark. Inside this infinite square well, the quarks are free to move about
because the gluons that influence the quarks have masses due to their color, rendering the
interaction weak. Thus, aside from the infinite square-well confining potential, the strong
interaction is really weak. This finishes the explanation of quark confinement and asymptotic
freedom.
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Part II. The Quantum Theory

12. Quantum field theory in 3DT

This part derives the values of ten previously unexplained parameters in the Standard
Model (SM) from the theory of three dimensions of time (3DT). Additionally, masses of
3DT’s predicted particles will be determined.

Particles in 3DT are extended with sizes of the order of the Planck length. Particles
were thought to have to be pointlike in order to avoid violations of either special relativity
or causality, but string theory has shown that extended particles can, in fact, be viable.
With the properties of elementary particles in 3DT, such as a particle’s nonzero size and a
tiny mass for the photon, one can replace QED by a simplified theory that does not have
regularization, renormalization, and gauge invariance. I will begin to do this here by using
one-loop quantum correction equations from present-day QED.

Renormalization is the method for handling infinities when particles are pointlike but if
the particles are extended, the infinities never develop. Instead, there are cutoffs. The cutoffs
cause quantum corrections to be finite, which allows the calculation of actual quantities from
finite bare quantities. Therefore, extended particles eliminate the need for renormalization
and allow the calculation of previously unexplained parameters. For example, consider the
equation [61]

m = m0 + δm (107)

from QED. Here m is the mass of the electron, m0 its bare mass and δm the quantum mass
correction. In a renormalizable model, both m0 and δm are infinite and cancel and m must
be inserted by hand. Thus, m here is completely unexplained. However in 3DT, both m0

and δm are finite and precisely determined, allowing a determination of m to be made. In
this way, one can calculate masses. Similarly, the equation in QED for the quantum charge
correction allows one to calculate coupling constants.

We will now show how to determine m. The equation for the one-loop electron quantum
mass correction [61] for electromagnetism is

m = m0 + δm, (108)

where

δm =
3α

4π
m

(
ln

Λ2

m2
+

1

2

)
. (109)

Here α is the fine structure constant. The mass m0 for the electron is apparently its classical
free mass. This is the mass when the charge of the electron is zero and without a quantum
mass correction. The mass Λ is the classical interacting mass for the electron. This is the
mass of the electron when it has charge, but before the quantum mass correction is made.
The mass m is the quantum-corrected interacting mass. This is the mass of the electron
with its charge and after the quantum mass correction has been taken. It is the actual mass
of the electron.

In 3DT, the mass m0 is zero [from Part I]. This is because, unlike vectors and tensors,
there are no mass terms in the 6D curvature scalar R̂ for spinors. In addition, because m0
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is calculated with its charge equal to zero, the electron does not acquire a mass from its
charge. Producing mass from charge is described in the next section. We have

m0 = 0. (110)

One now combines Eqs. (108), (109) and (110) and solves for m. The result is the mass
formula

m = exp
(
1

4
− 2π

3α

)
Λ. (111)

This is the most important equation in the quantum part of this document. It con-
verts Planck masses Λ to elementary particle masses m, without fine tuning. This allows
predictions at the Planck energy to be tested at low energy. It renders observable the HD
coordinate dependence in a Kaluza-Klein theory by converting the masses of the higher or-
der harmonics from Planck masses to elementary particle masses. The massive harmonics
become the elementary particles. This equation follows directly from Itzykson and Zuber
[61], the classic quantum field theory textbook.

The problem of deriving the mass of the electron on purely theoretical grounds now
translates into finding the proper values for Λ and α. The search for the values of these
parameters for each elementary particle occupies the bulk of the remainder of this document.
If one substitutes the Planck mass for Λ and sets α to 1/137, the mass m obtained is much
smaller than the electron mass. This problem is opposite the usual one, where the mass
of the elementary particle is too large. The question arrises, “What will α have to be to
convert a Planck mass to an ordinary mass?” If Eq. (111) is solved for α, with Λ the Planck
mass and m the mass of the electron, one finds α must be larger than 1/137. Perhaps α
in Eq. (111) is the bare fine structure constant. The bare fine structure constant should be
larger than 1/137.

As will be shown, the fine structure constant α starts out at 1, is then reduced to 1/19
by charge screening due to vacuum polarization and finally reduced to 1/137 by the vertex
correction. Because charge screening due to vacuum polarization is allowed by the Feynman
diagram for the mass of the electron, while the vertex correction, which has an external
photon line, is not, the value for α in Eq. (111) is 1/19.

Thus, the ordinary mass scale is actually the quantum-corrected Planck mass. Equa-
tion (111) solves the mystery of why there are these two widely separated levels of mass in
physics. This has been referred to as the hierarchy problem.

Section 13 derives an expression for Λ. This expression contains the photon’s radius,
which is calculated in Sec. 14. Section 15 determines the value 1/19 for α in the quantum
mass correction equation. Section 16 derives the mass of the electron and the value 1/137
for the fine structure constant. Masses for the muon, tau and the neutrinos are deduced in
Sec. 17. New fermions are described in Sec. 18. The reason why only the observed elementary
particle interactions take place is explained in Sec. 19. Section 20 explains the masses of
the W± and Z0 from scratch (instead of from the weak interaction coupling constant GW

as is presently done in the Standard Model). The main prediction of the theory — new
intermediate vector bosons with precisely determined masses — is given in Sec. 21.

13. The classical photon mass Λ

The electron does not have a mass term in the 6D curvature scalar R̂. However, the
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electron acquires a mass through its electric field. An electric field contains energy and since
the electron always carries this field with it, this energy may be considered to be a rest mass.
Equivalently, the source of the electron’s mass may be ascribed to its charge. It requires
energy to keep together an assemblage of electric charges of the same sign, which tend to
repel each other. This is represented by the equation for the electron’s classical radius

mc2 =
e2

rc
, (112)

where e is the electron’s charge and rc its classical radius, which is of the order of the size
of its charge distribution. Equation (112) shows why a particle that has charge must have
mass. This origin of mass is one of the two sources of mass in 3DT. The other is explicit
mass terms in the 6D curvature scalar. One reason the classical radius origin of mass is
not more accepted is that the classical radius equation concept as it stands is flawed; the
situation is fixed in Sec. 14.

The remainder of this section is essentially a derivation of the classical radius equation
for the case of the photon. We choose the photon because Λ in QED is defined [61] to be
the large mass of a ficticious massive photon. I contend, however, that Λ is the Planck mass
of the real photon, that is, its mass before the quantum mass correction. We will have to
calculate Λ from the photon’s charge because there is no mass term for the photon in R̂.
This section also demonstrates how to construct an elementary particle by determining its
distribution of charge.

The photon must have some type of charge because anything that interacts with the
photon can be said to have charge and one photon interacts with another during photon-
photon scattering [61]. The Feynman diagram for photon-photon scattering has four external
photon lines, four internal electron lines, four verticies and one loop. In this interaction,
photons do not interact with each other directly, but indirectly through electrons. Thus
the actual charge of each photon is zero. Nevertheless, it is instructive to assign to each of
the two photons involved an effective charge as if the two photons had interacted directly.
The four vertices in the diagram for this interaction imply that the coupling constant is
proportional to e4, where e is the charge on an electron. I claim the effective charge qγ for
each of the two photons in this interaction is

qγ =
e2

4π
√
h̄c
. (113)

In analogy with the electron, the classical interacting mass for the photon will be equal
to its electrostatic energy H . Equation (112) for the classical radius of the electron is derived
from classical electrodynamics but is valid for quantum electrodynamics as well. Therefore,
we will derive the classical interacting mass of the photon from classical electrodynamics [62].
We have

Λc2 = H, (114)

where the electrostatic energy is derived from the electric field E

H =
1

8π

∫
|E|2 d3x. (115)

32



The electric field is obtained from the potential Φ(x)

E = −−→∇Φ(x). (116)

Finally, the potential is derived from the charge density ρ(x)

Φ(x) =
∫

ρ(x ′)

|x− x ′| d
3x ′. (117)

A prime on a coordinate means that is the coordinate for a point of the charge density.
Because x ′ is the variable of integration and x is the observation point, it is useful to
separate the variables in 1/|x− x ′|

1

|x− x ′| = 4π
∞∑

l=0

l∑

m=−l

1

(2l + 1)

r′l

rl+1
Y ∗
lm(θ

′, φ ′)Ylm(θ, φ), (118)

where r = |x| and the Ylm(θ, φ) are the spherical harmonics. The next step is to determine
the charge density ρ(x ′).

The charge is located, of course, where the particle is located. The particle is located in
ordinary three-dimensional space (3DS). However, one cannot localize the photon field to a
distance smaller than 2rγ, where rγ is the radius of the photon, along its direction of motion
because this would mean that it would be localized on the HD sphere. This localization on
the HD sphere is impossible because the photon’s higher-dimensional wave function, which
is the spherical harmonic Y00(θ, φ) = 1/

√
4π, is by definition spread out uniformly over the

HD sphere. The coordinate θ of the sphere projects onto the photon’s 4D world line, which
is the z-axis of the embedding space of the HD sphere. (The coordinate θ is the ordinary
spherical coordinate measured from the positive z-axis or 4D world line.) The photon’s
quantum mechanical spin causes the length 2rγ to form a sphere of radius rγ in 3DS. The
photon is therefore a line segment of a certain type of charge of length 2rγ spinning about
its midpoint.

The charge density of the photon will be proportional to the magnitude squared of its
wave function. This is because the charge is located where the particle is located and the
probability of finding the photon at a given point is equal to the magnitude squared of its
wave function. We have

ρ(x ′) = qγ |ψ(x ′)|2. (119)

The wave function ψ(x ′) of a photon as localized as possible in 3DS is equal to its radial
wave function R(r ′) times its spin wave function S(θ ′, φ ′)

ψ(x ′) = R(r ′)S(θ ′, φ ′). (120)

The radial wave function is given by the projection of the HD wave function onto the 4D
world line parameterized by the coordinate z. As with any projection of an object, this
projection will be proportional to the size of the original object, in this case the HD wave
function. Therefore, the radial wave function R(r ′) in 3DS is proportional to the higher-
dimensional wave function Y00, which is constant. This result applies to any Ylm — the
projection of Ylm onto the z-axis is proportional to Ylm.
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After normalization, the radial function is given by a new constant c

R(r ′) = c, rγ ≥ r ′ ≥ 0 (121)

R(r ′) = 0, ∞ > r ′ > rγ . (122)

The spin wave function is given by

1√
3




1
0
1


→ 1√

3
Y11(θ

′, φ ′) + 1√
3
Y1,−1(θ

′, φ ′) = S(θ ′, φ ′), (123)

where we have omitted the longitudinal polarization state Y10(θ
′, φ ′) of the photon. The

constant c is determined by the condition

∫
ρ(x ′) d3x ′ = qγ . (124)

We find

ρ(x ′) =
9qγ
8πr 3

γ

sin2θ ′, rγ ≥ r ′ ≥ 0 (125)

ρ(x ′) = 0, ∞ > r ′ > rγ . (126)

Substituting this into Eq. (117), it follows from Eqs. (115)–(118) that

H =
q 2
γ

2rγ
. (127)

This is the monopole contribution in Eq. (117). The higher order terms are negligible. There-
fore, the dependence of H upon the angular and radial dependence of ρ(x ′) is negligible. The
energy behaves as if the charge were uniformly distributed throughout a sphere of radius rγ.

Equations (127) and (114) yield for the classical mass of the photon

Λ =
q 2
γ

2c2rγ
=

βh̄

2c rγ
, (128)

where

β =
q 2
γ

h̄c
=

e4

(4π)2h̄2c2
(129)

is the fine structure constant for the photon. Equation (128) is the classical radius equation.
The distance appearing in the classical radius equation is that between the two most widely
separated points of charge in the distribution. For a spherical distribution it is therefore the
diameter. This is why a factor of two multiplying the radius appears in our equation. This
factor does not appear in the usual definition of the classical radius equation because this is
only an order-of-magnitude estimate.

The effective charge on a photon is proportional to the square of the charge on an electron.
It turns out that the fine structure constant for the photon β is always equal to the square of
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the fine structure constant for the electron. This holds true at every point in the calculation
for α, the fine structure constant for the electron, done later. Using the relation

β = α2, (130)

we have

Λ =
α2h̄

2c rγ
. (131)

It remains to determine the radius rγ of the photon.

14. The radius of the photon

In order to eliminate the infrared divergences in QED, the photon must have a small
mass. Therefore, we treat it in what follows as a massive particle, like the electron. Among
other things, this means the photon may be brought to rest. If a particle is at rest and
located at the origin of ordinary three-dimensional space (3DS), then its 4D world line is the
time axis. However, particles are never really at rest because they are spinning. Setting the
photon’s spin angular momentum equal to Λv〈r〉, we have

[s(s+ 1)]1/2 h̄ = Λv〈r〉. (132)

A simple way of determining the radius at which the particle rotates is to place its entire
mass at a particular average radius 〈r〉. The first step in determining 〈r〉 is to determine
R(r) because

〈r〉 =
∫ rγ

0

R∗(r) rR(r) dr. (133)

The quantity R(r) will be the projection of the photon’s higher-dimensional wave function
Y00, which is constant, onto its 4D world line. Any projection is proportional to the size of
the original object so R(r) must be proportional to a constant. The second requirement on
R(r) is that it be normalized to unity. We find

R(r) =
1

√
rγ
. (134)

This radial wave function for the photon is constant and satisfies the normalization criterion∫ rγ
0 R(r)∗R(r)dr = 1. Substituting Eq. (134) into Eq. (133), we find

〈r〉 = 1

2
rγ. (135)

Setting s = 1 in Eq. (132), we obtain

Λv 1

2
rγ =

√
2 h̄. (136)

Substituting Eq. (128) into Eq. (136), we have

v =
4
√
2 c

β
. (137)
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Note that if β = α2 = (1/137)2, the velocity of spin for the photon is much greater
than the speed of light. This is the main objection to the concept of the classical radius
equation. There is a way around this problem, however. The trick is to use the bare fine
structure constant β0 = α 2

0 , which will later be determined to be unity, in the denominator
of Eq. (137) instead of the actual fine structure constant. As we will show, this larger
denominator will bring the velocity of spin for the photon to something below the speed of
light. The justification for substituting the bare fine structure constant for the actual one is
that only the bare photon is spinning. Its surrounding outer shell of virtual particles caused
by charge screening and the vertex correction does not spin along with it.

We will define the bare fine structure constant β0 for the photon to be β0 = α 2
0 while the

actual fine structure constant β is
β = 4πα 2

V , (138)

where αV is the fine structure constant for the electron after all quantum corrections have
been taken. This equation will be derived in Sec. 16. This boosts the value of the actual fine
structure constant by a factor of 4π in relation to the bare value and introduces a factor of
4π into the denominator of Eq. (137) when the actual fine structure constant is converted to
the bare one. Thus

v =

√
2 c

πα 2
0

. (139)

We now show why α0 = 1. We start with the z-component of angular momentum operator
Lz operating on the neutrino’s and electron’s wave functions ψν and ψe

Lz

(
ψν

ψe

)
=
h̄

2

(
1 0
0 −1

)(
ψν

ψe

)
(140)

This shows the electron has z-component of angular momentum −1

2
h̄ = mh̄ in the three-

dimensional embedding space of the HD sphere. This angular momentum is more commonly
known as isospin. Here m does not represent a mass but rather the quantum number for
the z-component of isospin. The electron’s charge quantum number, which is integral and
m are related by elementary quantum mechanics according to the relation [63]

m = c+ int., (141)

where c is a constant for the multiplet and int. is an integer. According to Ref. [63], c = 1

2

for spinors. Equation (141) is the Gell-Mann relation Q = I3 + 1

2
y, with the following

identifications: charge Q = int., the z-component of weak isospin I3 = m and one-half the
weak hypercharge 1

2
y = −c. Therefore, the origin of the Gell-Mann relation is explained by

3DT.
If

Q = m− 1/2, (142)

which is a restatement of the Gell-Mann relation, and m = −1/2 corresponds to an angular
momentum of mh̄, then Q = −1 must correspond to an angular momentum of Qh̄. We have

LQ = Qh̄, (143)
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where LQ is the angular momentum due to the electron’s charge. The equation defining the
magnitude of this angular momentum is

LQ = |(−→r ×−→p )|Q = rpQ sin θQ, (144)

where r is the radius of motion, pQ is the linear momentum and θQ is the angle between −→r
and −→p . The subscript Q means the quantity pertains only to the angular momentum of the
electron’s charge. Combining Eqs. (143) and (144), we have

LQ = cTmvQ sin θQ = Qh̄, (145)

where cT is the radius of the HD sphere and is the radius of motion andmvQ is the magnitude
of the linear momentum. The quantity cT is the Planck length. We have

cT =
√
h̄G/c3. (146)

Combining Eqs. (146) and (145) we have

mvQ sin θQ = QMc = p ′, (147)

where
M =

√
h̄c/G (148)

is the Planck mass. The energy for this type of motion is of the form p2/(2m). In our case
it follows from Eq. (147) and is

E =
p ′ 2

2m
=
Q2Mc2

2
. (149)

From the classical radius equation we have

E =
e 20
2cT

, (150)

where e0 is the electron’s bare charge and 2cT is the diameter of the HD sphere.
The energy of motion of the electron on the HD sphere that causes its charge is equal

to its electrostatic self-energy. Therefore, equating the two energies in Eqs. (149) and (150)
and using Eqs. (146) and (148), we have

e 20 = Q2h̄c, (151)

The definition of the bare fine structure constant α0 is

α0 =
e 20
h̄c
. (152)

Combining Eqs. (151) and (152) produces the result

α0 = Q2. (153)

The electron has Q = −1, so for it, α0 = 1 as was to be shown. A similar derivation may be
made involving the total angular momentum operator squared L2 instead of LQ. This leads
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to the result α0 = l(l + 1). This is the coupling constant for the weak interactions as they
couple to isospin.

Substituting this into Eq. (139), we have

v =

√
2

π
c. (154)

Because
√
2 is less than π, the velocity of spin is less than the speed of light. This is the

velocity of spin of a point midway out from the center of a spinning photon. The velocity
of a point on its surface is twice as great but is still less than the speed of light because
2
√
2 is less than π. As will be implied shortly, this velocity of spin applies only to an image

of the photon, not the actual photon itself. The velocity of spin of the actual photon is
considerably less.

The size of the charge distribution in 3DS is given by its projection from the 4D world
line onto a spatial axis in 3DS. Therefore rγ = cT sinψ, where ψ is the angle between the 4D
world line and the ordinary t-axis. Thus the radius for the photon is less than cT . However,
we now convert the photon’s charge density of a solid sphere in 3DS into the surface charge
density of a hollow sphere. The two are equivalent from our discussion of the classical radius
equation. The energy behaves as if the internal distribution of charge does not matter. Now,
the HD sphere forms a boundary in 3DS because the higher dimensions overlap 3DS. A
spherical surface charge density inside the HD sphere plus a boundary at the HD sphere is
equivalent to a spherical surface charge density outside the HD sphere. This follows from
the method of images in classical electrodynamics. Therefore, we have

r ′
γ =

c2T 2

rγ
, (155)

where the effective radius of the photon is r ′
γ . Substituting rγ = cT sinψ into this equation,

we find

r ′
γ =

cT

sinψ
. (156)

Henceforth we will drop the prime from r ′
γ

rγ = cT/ sinψ (157)

and when the radius of a particle is referred to, we will mean its effective radius.
From the photon’s effective velocity of spin determined above, one may calculate the

angle ψ from the following equation

tanψ =
∆x

c∆t
=
v

c
=

√
2

π
, (158)

where x is the spatial path in which the photon moves as it spins and the time axis is labeled
ct. Therefore,

rγ = 2.4361cT. (159)

Combining Eqs. (2), (159) and (131) we obtain the value for the classical mass Λ of the
photon

Λ = 2.37× 10−10 g. (160)
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15. The screened fine structure constant

We now consider the effects of charge screening due to vacuum polarization on α0. The
one-loop expression for the fine structure constant αγ after charge screening via the photon
is [61]

αγ =
α0

1 +
α0

3π
ln

Λ′2

m2

. (161)

The cutoff Λ′ is defined according to [61]

S∑

s=1

Cs lnλ
2

s = − ln
Λ′2

m2
, (162)

where the λsm are the large masses of the S spinors. The quantum mass correction Eq. (111)
suggests that the large mass of each spinor is Λ. Therefore,

λsm = Λ. (163)

Combining Eqs. (162) and (163), we have

S∑

s=1

Cs ln
Λ2

m2
= − ln

Λ′2

m2
. (164)

According to Ref. 61,
S∑

s=1

Cs = −1. (165)

Substituting this into Eq. (164), we find

Λ′ = Λ. (166)

In addition to photons producing an electron-positron pair, one might have vacuum
polarization involving the Z0. To calculate the effect of this process on αγ, we use the
equation

αγZ =
αγ

1 +
αγ

3π
ln

Λ 2
Z

m2

, (167)

which is similar to Eq. (161). Here αγZ is the bare fine structure constant α0 after screening
via the photon and Z0. The mass ΛZ is the classical mass of the Z0 due to its weak charge.
The classical mass ΛZ is determined by the classical radius equation

ΛZ =
g2

2c2rZ
, (168)

where the weak charge g of the Z0 is given by the definition of the weak interaction coupling
constant GW

g2 = 2 5/2 GW

(h̄c)3
M 2

W h̄c, (169)
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where MW is the mass of the W .
The procedure for determining the radius rZ of the Z0 is similar to that which determined

the radius of the photon. One difference is that the higher-dimensional wave function for
the Z0 is Y10, which is proportional to cos θ. The projection of this function onto the 4D
world line or z-axis should therefore be proportional to cos θ. This, in turn, is equal to z/rZ
according to the definition of spherical coordinates. The line segment along the coordinate
z rotates in 3DS to become the radial coordinate r. Therefore the coordinate z is replaced
by the radial coordinate r. The radial function for the Z0 is

R(r) =
(
3

rZ

)1/2 r

rZ
. (170)

This satisfies the criteria of being proportional to cos θ and normalized to one. The average
value for r is given by

〈r〉 =
∫ rZ

0

R∗(r) rR(r) dr = 3

4
rZ . (171)

In the velocity calculation, α0 appears instead of α 2
0 because self interactions with two

vertices are allowed for the Z0 as opposed to the case of the photon, where only photon-
photon scattering (a self interaction with four vertices) is permitted. Here the Z0’s bare
fine structure constant is denoted by α0. In addition, the value of the bare fine structure
constant α0 is given by

α0 = l(l + 1), (172)

where, from its spherical harmonic Y10, l = 1 for the Z0. The above considerations lead to
a radius for the Z0

rZ = 6.7389cT. (173)

Equations (168), (169), (173), and (2) yield for the classical mass of the Z0 due to its weak
charge

ΛZ = 6.87× 10−7 g. (174)

Substituting the actual mass of the electron form in Eqs. (161) and (167) and α0 = 1 into
Eq. (161) and using Eqs. (166), (160), (167) and (174), we obtain a value for the screened
fine structure constant

αγZ =
1

19.71
. (175)

16. The electron

We have yet to consider the effect of the quantum charge vertex correction on αγZ .
However this is unnecessary for quantum mass corrections because it requires one external
photon line, which does not appear in the quantum mass correction diagram. Thus, the
fine structure constant used in the quantum mass correction formula (111) is αγZ . To
summarize, the equations that determine the electron’s mass are

αγ =
α0

1 +
α0

3π
ln

Λ2

m2

, (176)
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αγZ =
αγ

1 +
αγ

3π
ln

Λ 2
Z

m2

, (177)

m = Λ exp

(
1

4
− 2π

3αγZ

)
, (178)

where α0 = 1 and Λ and ΛZ are given by Eqs. (160) and (174), respectively. Solving the
three Eqs. (176)–(178) for the three unknowns αγ, αγZ and m, we obtain

m = Λ5Λ −4

Z exp
(
9

4
− 6π

α0

)
. (179)

The value for m obtained from Eq. (179) is 1.16 × 10−4 MeV, which is much less than
the actual electron mass of 0.511 MeV. This is because we have calculated the mass of the
electron due to its electric charge. To this we must add the contribution due to its weak
charges.

The electron has two weak charges: that from weak isospin and one from an explicit
weak interaction term in the 6D curvature scalar R̂ of 3DT. The mass of the electron due
to its weak charges is obtained from Eq. (179), but with α0 determined by the electron’s
weak charge from its weak isospin I or its weak charge from the 6D curvature scalar R̂.
The electron’s weak charge g

R̂
from R̂ in Part I is given by Eq. (90) and is −4.75766

√
h̄c.

Therefore

α0 =
g 2

R̂

4πh̄c
= 1.8013. (180)

Substituting this into Eq. (179), we obtain for the weak mass of the electron 0.510 MeV,
which has an error of three tenths of one percent. In general, there should not be a factor
of 4π in α0. This factor should only be retained in Eq. (180) if this α0 is substituted into
Eq. (179), which includes the effects of vacuum polarizations via the photon and the Z0.
This is because Eqs. (176) and (177) are incorporated into it. As explained below, each of
these one-loop quantum corrections introduces a factor of

√
4π into the denominator of the

fine structure constant for the electron.
The electron’s remaining weak charge gI due to its weak isospin I = L = [l(l + 1)]1/2 h̄

is [l(l + 1)4πh̄c]1/2, where from Table 1, l = 1

2
for the electron. Exchanging gI for g

R̂
in

Eq. (180) we find the mass of the electron due to its weak isospin is negligible. Thus, the
prediction for the electron’s mass stands at an accurate 0.510 MeV. We have determined our
first previously unexplained parameter — the mass of the electron.

The observed value 1/137 of the fine structure constant α is determined from αγZ by the
final quantum charge correction, known as the vertex correction. The one-loop expression
for the fine structure constant αV after the vertex quantum correction is [61]

αV =
αγZ(

1 +
αγZ

3π
ln
me

µ

)2
, (181)

where αγZ is given by Eq. (175), me is the mass of the electron, and µ is the actual mass of
the photon.
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To calculate µ, we adapt the mass formula Eq. (178) for use by the photon. We have

µ = Λ exp

(
1

4
− 2π

3βγZ

)
, (182)

Next, we make use of the fact that the fine structure constant for the photon is the square
of that for an electron. We have

βγZ = α 2

γZ =
(

1

19.27

)2

. (183)

This value for βγZ contains 1/19.27 instead of 1/19.71 because we are using the electromag-
netic α0 = 1 for the electron in Eq. (176) instead of the weak α0 = 1.8013.

Substituting Eq. (183) into Eq. (182), we obtain

µ = 5.31× 10−348 g. (184)

This mass for the photon is effectively zero. It is far below the experimental limit of 4 ×
10−48 g. The mass of the photon is generally thought to be zero, although no one knows
why. There is no currently accepted explanation for this mass. Here we have a complete
and consistent explanation for the mass of the photon, right down to the fact that it must
be small but nonzero in order to eliminate infrared divergences from QED. This mass is the
second previously unexplained parameter of the SM to be explained by 3DT.

Because µ 6= 0 the quantum vertex correction in Eq. (181) is not infinite. Equation (181)
then yields

αV =
1

486
, (185)

which is multiplied by a factor of
√
4π to obtain α.

To see where the factor of
√
4π comes from, we make the following observations. Factors

of 4π arise from forces that vary as the inverse square of the distance. For example,

F =
q2

4πr2
. (186)

They have to do with the surface area, which is 4πr2, of a sphere. The further away from a
point source of charge one is, the less dense are the field lines that intersect the surface of the
sphere and the weaker is the force. Each one-loop quantum correction produces one factor
of

√
4π in the denominator of a particular fine structure constant for the electron because

each of these Feynman diagrams is surrounded by one sphere. The constant αV is the result
of three quantum corrections: vacuum polarization via the photon, vacuum polarization via
the Z0, and the vertex correction. Thus it will have three factors of

√
4π in its denominator.

We have

αV =
e2

(4π)3/2h̄c
. (187)

Each one-loop quantum correction produces a factor of
√
4π instead of 4π because we are only

considering half the diagram for photon-photon scattering. The whole diagram corresponds
to β, the fine structure constant for the photon, while half this diagram represents α, the
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fine structure constant for the electron. Half the diagram has two external photon lines, two
external electron lines, one internal electron line, two vertices and no loops.

Combining Eqs. (187) and (129), we have

β = 4πα 2

V , (188)

or √
β =

√
4π αV . (189)

Thus we have two choices for α: αV or
√
β, corresponding to whether the diagram

for α is important alone or should always be considered to represent half the photon-photon
scattering diagram. Apparently, the latter is the case because the photon is a more important
particle than the electron. It is the fundamental in a series of harmonics. With its spinor
expansions, the photon represents all spinors, of which the electron is only one. Finally, all
spinors take their Planck masses from the photon’s Λ. Therefore, we choose α =

√
β over

α = αV . This is consistent with β = α2.
Combining Eqs. (189) and (185), we have

α =
√
β =

√
4π

486
. (190)

Thus, our derived value for α is 1/137.1, which differs from the actual value of 1/137.036 by
less than one tenth of one percent. This is the third previously unexplained parameter in
the SM explained by 3DT.

17. The muon, tau and neutrinos

The masses of the muon and tau are calculated in a manner similar to that of the
electron. Their electromagnetic masses remain the same because α0 stays at unity. Their
weak masses, however, increase drastically because their weak α0’s due to isospin increase
from l(l + 1) = 1

2

(
1

2
+ 1

)
for the electron to 3

2

(
3

2
+ 1

)
for the muon and 5

2

(
5

2
+ 1

)
for the

tau. The mass depends on the weak α0 exponentially. It is this exponential dependence of
the mass upon the square of weak charge that causes the muon to be so much more massive
than the electron.

Like the electron, the mass of the muon will be given by the sum of its masses due to its
weak charges from isospin and from R̂. The weak charge from isospin yields α0 = l(l + 1),
where l = 3/2. We have α0 = 3.75. Equation (179) yields m = 117.3 MeV, which is 11%
higher than the actual muon mass of 105.7 MeV. The weak charge for the muon g

R̂
from the

6D curvature scalar is the same as that for the electron [Part I]. The mass contribution from
this weak charge for the muon is the same as that for the electron (one electron mass) and is
therefore negligible. The mass of the muon is the fourth previously unexplained parameter
of the SM to be explained by 3DT.

The mass of the muon comes from its motion on the HD sphere. At first glance this
appears to be something apart from the curvature scalar R̂, but it is R̂ that puts a moving
muon on the HD sphere. This follows from its HD angular momentum representation

∣∣∣3
2
,−1

2

〉
.

Like the muon, the mass of the tau due to its weak charge from R̂ is one electron mass
and is negligible. Therefore, its weak α0 from isospin is given by l(l + 1), where l = 5

2
. Its
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calculated mass is 2072 MeV, which is 16% higher than its actual mass of 1784 MeV. This
is the fifth previously unexplained parameter to be explained by 3DT.

Note the error in the calculation of mass increases as one goes from the electron to the
muon to the tau. This is as one would expect for a first-order, one-loop approximation to
a series in powers of fractions of α0. The higher-order terms do not drop off as fast for
increasing α0, resulting in increased error for the first-order approximation.

We will now derive the masses of the neutrinos. Solving Eq. (141) for the integer and
substituting c = 1

2
and m = 1

2
for the neutrino, we find the charge on the neutrino is

zero. This means neutrinos do not couple to the photon. Therefore, their electromagnetic
masses are zero. Neutrinos have the same weak charges gI and g

R̂
as their charged leptonic

counterparts. However, since the photon is absent, their weak α0 is screened only via the Z0.
Thus, there will be only one vacuum polarization equation. In addition, the electromagnetic
cutoff Λ will be absent from the quantum mass correction equation. It is replaced by a weak
cutoff described below.

The equations that determine the masses of neutrinos are

αZ =
α0

1 +
α0

3π
ln

Λ 2
Z

m 2
ν

, (191)

1 =
3αZ

4π

(
ln

ΛZΛ
′
Z

m 2
ν

+
1

2

)
, (192)

where Eq. (192) is Eqs. (108) and (109) after m cancels when m0 = 0. One of the Λ’s in this
equation must be Λ′

Z = ΛZm
2
ν /M

2
W . In other words, Λ′

Z is simply ΛZ with the W mass
squared replaced by the neutrino mass squared. This is necessary in order to allow for the
weakness of the weak interaction where the neutrino emits a Z0 at the first vertex of the
quantum mass correction diagram. This process is a weak one due to the large mass of the
Z0. However, all subsequent processes described by the vacuum polarization and quantum
mass correction diagrams should not be ‘tagged’ as weak because the Z0 has already been
produced — the process is not further hindered by the production of a more massive particle.
This means that all Λ’s in the vacuum polarization and mass correction equations besides
the Λ′

Z mentioned above must be ΛZ .
In the electron’s quantum mass correction equation, the classical mass of the electron was

given by the sum of its classical electromagnetic and weak masses, but the classical weak
mass Λ′

Z = ΛZm
2
e /M

2
W = 2.78 × 10−17 g was negligible compared to the electromagnetic

Λ = 2.37 × 10−10 g. Now that the photon’s effects are absent from the quantum mass
equation, Λ is replaced by Λ′

Z .
Note that the neutrino mass mν cancels in Eq. (192). The relative smallness of Λ′

Z is the
reason why neutrinos have such small masses. And the only reason we need to consider Λ′

Z is
because the neutrino has zero charge. Therefore, neutrinos have such small masses because
they have no charge, as one might expect.

The solution of Eqs. (191) and (192) is

mν = Λ
−1/8
Z

(
Λ′

Z

m 2
ν

)−9/8

exp
(
3π

2α0

− 9

16

)
. (193)
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Because the fraction involving α0 in the exponential in Eq. (193) does not have a minus sign
in front of it as it does for charged leptons, the masses of neutrinos decrease with increasing
α0. Thus, the smaller of |gI | or

∣∣∣g
R̂

∣∣∣ instead of the larger will yield the masses of the neutrinos.
The larger of these two weak charges will yield a mass that is negligible.

Each neutrino will have the same weak charges gI and g
R̂
as its charged leptonic coun-

terpart. For the electron neutrino gI = 3.07
√
h̄c (leading to α0 = 3/4) and g

R̂
= −4.758

√
h̄c

(leading to α0 = 1.8013). Substituting these separately into Eq. (193), we find that the
mass of the electron neutrino is due to gI and is 6.16 × 10−7 eV, which is well below the
experimental limit of 20 eV. The masses of the muon and tau neutrinos are determined from
g
R̂
= −4.758

√
h̄c. They are the same and are 1.57 × 10−8 eV, far lower than their exper-

imental limits of 0.2 MeV and 35 MeV, respectively. The masses of the neutrinos are the
sixth, seventh and eighth previously unexplained parameters of the SM to be determined by
3DT.

18. New fermions

According to Table 1, other leptons exist in the muon’s and tau’s multiplets besides the
known particles. These particles turn out to have properties identical to the known particles
but have different quantum numbers. Apparently, we have been detecting them but have
been mistaking them for the muon, tau, and their neutrinos. The usual muon is symbolized
by µ−. The new charged particle in the muon’s multiplet has the symbol µ+

2 . Table 1
gives the quantum numbers for the new particle as l = 3

2
and m = 3

2
. According to the

Gell-Mann relation (141), its bare charge quantum number is Q = 1. The µ+
2 has the same

electromagnetic and weak bare fine structure constants as the usual muon µ−. Therefore, it
has the same mass as the muon. Because its charge is reversed it is similar to the antimuon
µ+. However, it is not the same as the antimuon because its quantum number m = 3

2
is

different than the antimuon’s m = 1

2
. Because this particle has the same mass as the usual

muon, there is no reason why it should not have been detected already. I believe we have
been detecting it all along but have been mistaking it for the antimuon.

The particle with l = 3

2
and m = −3

2
in Table 1 has Q = −2 according to the Gell-Mann

Relation (141). Therefore, α0 = Q2 = 4. This would put its electromagnetic mass at about
the muon’s weak mass because the muon’s weak α0 = 3.75. Remember that a spinor’s mass
comes from its charge and that a particle may have more than one type of charge. The mass
contributions from the different types of charge add. Because this particle has l = 3

2
, which

is the same value for l as the muon, its weak mass would be that of the muon. Its total
mass would therefore, be about double that of the muon (266 MeV to be exact). However, a
lepton with this mass is not observed. This must be due to the fact that the electromagnetic
α0 is too large for the higher-loop series [61] in terms of α0 to converge. This electromagnetic
series for vacuum polarization becomes infinite, resulting in an infinite denominator for αγ .
The parameter αγ is therefore zero. This means the charge is completely screened by the
photon. In effect, the particle has no charge and does not couple to the photon. Therefore,
it is a neutrino. Because it is in the muon’s multiplet, it is a muon neutrino. It would have
the same mass as, but be different than, the ordinary muon neutrino, which has m = 1

2
.

The new lepton in the tau’s multiplet have l = 5

2
and m = ±5

2
,±3

2
, according to Table 1.

These m quantum numbers distinguish the new particles from the tau and its neutrino, which
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havem = ±1

2
. The bare charge quantum numbers of these new particles areQ = −3,−2, 1, 2.

By the same reasoning used above for the muon’s multiplet, the particle with Q = 1 has
properties similar to the antitau, while the others are new tau neutrinos.

Fermions in the next spinor multiplet beyond the tau’s have l = 7

2
and 7

2
≥ m ≥ −7

2
.

Because none of these particles are observed, the weak α0 must be too large for the higher-
loop series in terms of this α0 to converge. Because this series in terms of the weak α0 does
not converge, the weak charges of these l = 7

2
particles are zero, by the same argument used

above for the vanishing of the electric charge. Therefore, they do not couple to the Z0. This
means they would not affect the decay width, which is the test for their existence, of the Z0.
This is the reason why there appears to be only three families of leptons.

The particles with Q = 0 or |Q| ≥ 2 also have no electric charge and therefore, have no
electromagnetic masses because αγ = 0. These particles would acquire a small mass through
their superweak couplings to Alm

µ , l ≥ 2. These superweak masses should be smaller than
ordinary neutrino masses, which are small due to the weakness of the weak interaction.

The particle with Q = 1 has electric charge but no weak charge and is screened by the
photon only. The equations that determine the mass of this particle are

αγ =
α0

1 +
α0

3π
ln

Λ2

m2

, (194)

m = Λ exp

(
1

4
− 2π

3αγ

)
. (195)

The solution of Eqs. (194) and (195) is

m = Λ exp
(
9

20
− 6π

5α0

)
. (196)

Substituting α0 = 1 into Eq. (196), we find m = 4.81× 109 TeV.
Because their electric and weak charges are the same, spinors with l > 7

2
will have masses

similar to those with l = 7

2
. That is, particles with Q = 0 or |Q| ≥ 2 will have neutrino-like

masses and those with |Q| = 1 will have the mass 4.81× 109 TeV.

19. Elementary particle interactions

Just as a given particle decays only into certain decay products, a given ket may only
have certain other kets as its factors. In fact, the relationship is one-to-one, with the ket
for each particle determining which decays can take place. For example, one may ask why
the W+ decays into the particles it does, instead of the decay products for the W− or the
Z0. To be sure, these decays can be ruled out by the law of conservation of charge, but then
one must ask why the law of conservation of charge holds. I claim this law follows from the
rules for combining kets given by Clebsch-Gordan coefficients. These rules uphold the law
of conservation of angular momentum.

One may know which elementary particle interactions can take place by determining
whether or not the relevant Clebsch-Gordan coefficient is zero. An elementary particle
interaction can take place if the coefficient is not zero. This is the case if and only if

46



m = m1 +m2 and |l1 + l2| ≥ l ≥ |l1 − l2|. I claim the relation m = m1 +m2 is the law of
conservation of charge. In terms of the bare charge quantum number Q for vectors, we have
Q = m; in addition, for spinors Q = m− 1

2
, and for antispinors Q = m+ 1

2
.

A short cut to obtaining the spinor expansion of a vector is to write the vector’s ket
in terms of half-odd integral l kets using Clebsch-Gordan coefficients. One then writes the
particle symbols of the spinors with the quantum numbers of the spinor kets below the spinor
kets. The quantum numbers of spinors are given in Table 1. Remember that the first spinor
ket in each pair is associated with an antiparticle by convention.

All of this is made clear by a simple example: The ket |11〉 is equal to the product of kets∣∣∣1
2

1

2

〉 ∣∣∣1
2

1

2

〉
because the relevant Clebsch-Gordan coefficient is not zero. It is one. We have

|11〉 =
∣∣∣1
2

1

2

〉 ∣∣∣1
2

1

2

〉
. (197)

As in Sec. 8, we identify a spinor with a bar over it with the first half-odd integral l ket.
After identifying |11〉 above with the W+, the first

∣∣∣1
2

1

2

〉
with e+ (a positron) and the second∣∣∣1

2

1

2

〉
with ν 0

e (a neutrino), we have the decay W+ → e+ + ν 0
e . Another way of looking

at this is that the above interaction is justified by substituting a spinor expansion for one
factor of W+

µ in its mass term in the Lagrangian, thereby generating an interaction term as
described in Part I.

The W+ (ket |11〉) cannot decay into two neutrinos (kets
∣∣∣1
2
,−1

2

〉 ∣∣∣1
2

1

2

〉
) because the

Clebsch-Gordan coefficient for this process is zero. Similarly, the W+ cannot decay into two
electrons, two positrons, a positron and an electron, or an electron and a neutrino because
the Clebsch-Gordan coefficients for all these processes are zero. These violate m = m1+m2,
the law of conservation of charge.

There is one more rule for obtaining nonzero Clebsch-Gordan coefficients involving lep-
tons. As it stands, there is nothing to prevent a ket |lm〉 from being expanded in terms of
kets with different values for half-odd integral l1 and l2. For example, if l = 1, l1 = 1

2
and

l2 = 3

2
, then it would appear one could have |11〉 =

√
1

4

∣∣∣1
2

1

2

〉 ∣∣∣3
2

1

2

〉
−
√

3

4

∣∣∣1
2
,−1

2

〉 ∣∣∣3
2

3

2

〉
, with

the corresponding interactions W+ → e+ + ν 0
µ for the first pair of kets and W+ → ν 0

e + µ+
2

for the second. Both of these decays violate electron and muon number conservation. One
needs a reason why this cannot occur — it contradicts observation. The reason is as follows.
All spinors in 3DT are ultimately derived from the photon because this is the only vector
that is null. As explained in Ref. (45), this is a requirement for writing a vector in terms
of two spinors. Now one cannot expand the ket for the photon |00〉 in terms of kets with
different values for l1 and l2 because then the minimum value for l will be greater than zero,
while the photon must have l equal to zero. The minimum value for l in the above example
was |1

2
− 3

2
| = 1, which is not zero. (Remember the minimum value for l is given by |l1 − l2|

from the relation |l1 + l2| ≥ l ≥ |l1 − l2|). This means that we must have l1 = l2 in order to
achieve l = 0 and that |00〉 can only be expanded in terms of kets from one family of leptons
at a time. This means one could expand |00〉 in terms of l1 = l2 = 1

2
kets or l1 = l2 = 3

2

kets but not both in the same expansion. In effect, only one family of leptons may exist
at one time. This adds the requirement l1 = l2 to the above rules for obtaining nonzero
Clebsch-Gordan coefficients involving leptons and ensures that electron and muon number
is conserved.
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The elementary particles are described by the Lagrangian for 3DT. The Lagrangian for
3DT, in turn, is derived from 6D spacetime. It may be that conjugation of charge, parity
and time, known as CPT conjugation, is an invariance because reversal of all six dimensions
leads to an identical spacetime.

20. The W and Z

One source of mass in 3DT is the appearance of explicit mass terms in the 6D curvature
scalar R̂. For spinors, the graviton and the photon this mass is zero, while for the Z0 and
W± these masses [from Part I] are 1.9109 h̄/c2T and 1.6293 h̄/c2T , respectively. (Note that
cT is the Planck length and h̄/c2T is the Planck mass.) To these masses we should add
the mass due to the particle’s charges. One obtains this type of mass by substituting the
particle’s charge into the classical radius equation. The predicted masses of the W and Z
without these masses will turn out to be close enough to the actual values to allow us not
to bother with this calculation. Therefore, the masses of the Z0 and W± are those from R̂
given in Part I.

Now that we have the Planck masses for the W± and Z0, the question arrises, “How
do we reduce these masses to their observed values?” We noted above that a vector can
be considered to be a combination of two spinors. Thus, we can try the quantum mass
correction developed for spinors for vectors. Both the wave functions for the Z0 and the W±

are made up of those for the electron and electron neutrino. From its spinor expansion, one
can say that the Z0 is one half an electron-positron pair and one half a neutrino-antineutrino
pair. The factors of one half arise from the Clebsch-Gordan coefficients of 1/

√
2 multiplying

each of the two pairs of spinor kets. The mass of the neutrino-antineutrino pair is negligible
compared to that of the electron-positron pair. Thus, the Z0’s mass contributions are from
the electron-positron pair and are one-half of twice the electron’s mass or simply one electron
mass. The W+ is a positron-neutrino pair and the W− is an electron-antineutrino pair.
Because the neutrino masses are negligible, each W mass is based on one electron mass.

The quantum mass corrections of the Z0 and W± will be that of the electron because
the masses are based on one electron mass. Therefore,

MW = exp

(
1

4
− 2π

3αγZ

)
Λ(W±

µ ), (198)

where we have denoted the above-mentioned Planck mass of the W by Λ(W±
µ ). In addition,

αγZ = 1/19.71, which is the value that yields the mass of the electron in Eq. (178). Dividing
Eq. (198) by Eq. (178) when αγZ equals 1/19.71, we obtain

MW

me

=
Λ(W±

µ )

Λ
. (199)

Using Eq. (199) to solve for the mass of the W±, we find MW = 76.48 GeV. Similarly,

MZ

me

=
Λ(Z0

µ)

Λ
, (200)

where Λ(Z0
µ) is the classical Planck mass of the Z. This leads to a Z0 mass of 89.70 GeV.
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These masses are in fairly good agreement with experiment [64], whereMW = 80.40±0.2
GeV andMZ = 91.1867±0.0021 GeV. The errors are presumably due to lack of consideration
of the mass contributions from their charges. The SM does not explain the masses of the W
and Z. It derives them from the weak interaction coupling constant GW , which comes from
experiment. 3DT explains the masses of these two particles from scratch, allowing, instead,
one to derive GW from them. These are parameters nine and ten of the SM. These are the
final parameters of the SM to be derived for now.

It should not be surprising that we have arrived at the correct values for the masses and
charges of the elementary particles. If your classical theory is correct, then applying quantum
mechanical corrections to it should result in the correct values for physical quantities.

21. Predicted intermediate vector bosons

The vector Aµ in 3DT is expanded in terms of spherical harmonics Ylm

Aµ =
∞∑

l=0

l∑

m=−l

Alm
µ Ylm. (201)

We neglect the strong interactions in what follows. The l = 0 coefficient A00
µ in this expansion

is the photon. The l = 1 coefficients A1m
µ are the W and Z. The l = 2 and l = 3 coefficients

A2m
µ and A3m

µ are vectors for two new superweak interactions.
The procedures used to obtain the masses of the A2m

µ from the spinors of which they
are composed are the same as those described for the A1m

µ in the last section. Remember
that in order to obtain nonzero Clebsch-Gordan coefficients for leptons, l1 = l2, which means
that one cannot expand l = 2 kets in terms of l1 = 3

2
and l2 = 1

2
kets as one might expect,

but rather kets with l1 = l2 = 3

2
only. The wave function of the vector A2m

µ is composed of
those of the muon and the muon neutrino. The mass contributions of these particles add.
The neutrino contribution is negligible. An exact prediction for the mass of A2m

µ can be
made if we multiply the classical mass ratio Λ(A2m

µ )/Λ by the mass of the muon [similar to
Eq. (199)].

From Λ(A20
µ ) = 3.4032 h̄/c2T (where h̄/c2T is the Planck mass), we obtain for A20

µ a mass
of 33.04 TeV. Similarly, Λ(A2,±1

µ ) = 3.2159 h̄/c2T , which leads to a mass of 31.22 TeV for
A2,±1

µ . The classical mass Λ(A2,±2
µ ) = 0.46994 h̄/c2T yields the actual mass 4.56 TeV for the

l = 2, m = ±2 particle.
The vectors A3m

µ are composed of a muon and a muon neutrino. Their masses are
obtained by multiplying their classical mass ratios by the mass of the muon. We have
Λ(A30

µ ) = 3.9957 h̄/c2T , Λ(A3,±1
µ ) = 3.0315 h̄/c2T , Λ(A3,±2

µ ) = 2.8175 h̄/c2T and Λ(A3,±3
µ ) =

0.75385 h̄/c2T . The masses of these particles are 38.79 TeV, 29.43 TeV, 27.36 TeV and 7.32
TeV, respectively.

The charges of the A2m
µ are not, in general, given by their quantum number m. This is

because m is the vector’s bare charge quantum number, which is not necessarily its actual
charge quantum number. The vector’s actual charge quantum number is given by the sum
of the actual charges of the fermions in its spinor expansion. This is because the vector may
be thought to come about from the combination of the spinors from which it is composed.
Another way of looking at this is that a vector and its spinor expansion must be mathemat-
ically and physically identical. For example, consider the Z0. From its spinor expansion,
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we find the Z0 is composed of one-half an electron-positron pair and one-half a neutrino-
antineutrino pair. Thus, the charge of the Z0 is given by 1

2
(−1+ 1)+ 1

2
(0 + 0), which equals

zero. Had one of the numbers in one set of the parentheses been different, the Z0 would
have wound up with a different charge — and a fractional one at that. One of the numbers
will be different for the case of the spinor with bare charge quantum number −2 and actual
charge quantum number 0. This spinor is in the muon’s multiplet and is described in Sec. 18
(it has Q = −2). Therefore, instead of having a −2 here we will have a 0. This is why the
charge of Alm

µ is not, in general, given by m and why it may have a fractional charge.
The charges of the next two generations of intermediate vector bosons — the Alm

µ where
l = 2 or 3 are as follows. The charge of the superweak vector A2,±2

µ is ±1. The vector
A20

µ is neutral, while A2,±1
µ has a charge of ±3

4
. The charge of the superweak vector A3,±3

µ

is ±1. The vector A30
µ is neutral, while A3,±1

µ has a charge of ±3

5
. The charge of A3,±2

µ is
±1. Remember, one can only detect a superweak vector’s decay products so these fractional
charges can not be observed. (Each of its decay products has charge −1, 0, or +1.)

The predictions 3DT makes are clear cut. 3DT predicts no Higgs boson and no sparticles.
Instead, it predicts new intermediate vector bosons. The least massive of these is A2±2

µ with
a mass of 4.56 TeV. This is too massive for the Large Hadron Collider or the proposed
International Linear Collider to detect. Therefore, these machines will detect no Higgs
boson, no sparticles, and no new vectors.

22. Conclusion

Quantum field theory in the Standard Model requires gauge symmetry groups, spon-
taneous symmetry breaking, and renormalization. In 3DT these are not needed and are
unnecessary. The theory works much better without them. They are vestiges of an attempt
to build a unified field theory from the bottom up. The unification problem is so difficult,
however, that one must also proceed from the top down if one is to have any hope of suc-
ceeding. This attacks the problem from both ends and recognizes the importance of having
the correct initial assumptions. In place of these tenets of quantum field theory, 3DT has
non-zero sized particles, which produce cutoffs. These cutoffs eliminate infinities before they
appear and allow the calculation of masses and coupling constants.

The Standard Model is just that — a model that attempts to imitate a larger and
more comprehensive theory like 3DT. For example, the Standard Model does not explain
why there are three massive electroweak vectors while one remains massless (the photon).
3DT naturally produces one massless and three massive vectors because mass terms in the
6D curvature scalar have the form, e.g. Aµ∂ 2

5Aµ. This is zero for the photon, which is
associated with the lowest order l = m = 0 spherical harmonic that does not depend on the
HD coordinates x̂ 5 or x̂ 6. This singles out the photon for special treatment and rightly so,
as it is the fundamental in a series of harmonics. This mass term is not zero for all other
spherical harmonics, which do depend on the higher-dimensional coordinates. It produces
Planck masses for them. In the past, these Planck masses were the reason why dependence
on the higher-dimensional coordinates was forbidden, but in 3DT these Planck masses are
converted to ordinary elementary particle masses by the quantum mass correction equation
in QED. When used properly, this equation converts the Planck mass scale to the usual
elementary particle mass scale.
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The reason 3DT can calculate masses is that we no longer have point particles. With
extended particles come precisely calculated cutoffs of the order of the Planck mass. The
logarithm in the quantum mass correction equation converts these Planck masses to ordinary
elementary particle masses. In addition, we now have the complete classical electroweak
theory, which is ready to be quantized. This theory says the bare mass m0 of the electron is
zero. This greatly simplifies the quantum mass correction equation and allows this conversion
of Planck masses.

The Standard Model must assume a local SU(2) × U(1) symmetry. 3DT explains this
with the first four terms of an expansion of the vector Aµ in terms of spherical harmonics.
This takes place inside a Lagrangian density that is integrated over the spherical coordinates,
producing the required terms.

3DT is highly organized, self-consistent, systematic, efficient and compact. This is unlike
string theory, which seems to never end, and unlike the Standard Model, which must intro-
duce many of the terms in its Lagrangian ad hoc. These include the terms for Maxwell’s
equations and the Dirac equation. These equations have their roots in experiment. The
Standard Model provides no explanation for why they should exist. It only assumes them.
In contrast, 3DT naturally produces these terms as part of the 6D curvature scalar.

The Standard Model is based on QED. QED is accepted because it works, explaining
properties of the electron such as its gyromagnetic ratio. This despite the appearance of
infinities. 3DT must be accepted because it also works, explaining 10 parameters of the
Standard Model. It does this without the appearance of infinities. Not only this, but it
actually eliminates the infinities in QED!

One criticism of string theory is that it does not make predictions. String theorists claim
it does make predictions. But how can we have faith in its predictions if it does not explain
or postdict anything? It explains little about the known elementary particles. In contrast,
3DT explains or postdicts a great deal about the elementary particles. It explains what came
before the LHC, predicts what the LHC will find (no new particles), and will predict what
comes after the LHC (more intermediate vector bosons). One can have faith in its predictions
because what it predicts will come out of the LHC is merely a continuation of what came
before it. It is not enough that a theory makes predictions. It must make predictions that
come true. Otherwise the theory is wrong. String theory does not make predictions one
can have faith in because it has not explained anything in the past. In contrast, 3DT has
explained the Standard Model. Thus we can have faith in its predictions.

String theory makes the claim that it quantizes gravity. I claim that it does not even
quantize electromagnetism. QED, the standard for this, has infinities, which proves some-
thing is wrong. By contrast, 3DT properly quantizes electroweak theory. It has no infinities.
Everything is finite and calculable the way it should be. As proof that it works it produces
the masses and coupling constants of nine elementary particles. This is the example that
should be set for quantum gravity.

One does not need 10 or 11 dimensions to produce all the vectors needed for the Standard
Model. If just one vector ĝµ5 = Aµ depends on the higher dimensional coordinates, it will
contain an infinite number of component vectors Aµ = Σl,mA

lm
µ Ylm, the first few of which,

A00
µ , A

1,−1
µ , A10

µ , A
11
µ , can be used to describe the electroweak interaction. The remaining

vectors with l greater than one, are the theory’s predictions.
String theory must assume 10 or 11 dimensions, supersymmetry, strings and a large
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symmetry group. Of these, 3DT assumes only 2 extra dimensions. That is all. And adding
dimensions of time has worked before. There was a time when all the talk was about
the fourth dimension. Unlike other unified field theories, there is an enormous historical
precedent for adding dimensions of time — the theory of relativity.

The bottom line is 3DT assumes much less than either the Standard Model or string
theory and explains far more.

There is already more than enough evidence to suggest 3DT may be correct. As proof
that 3DT is correct, I offer the fact that the solutions to its field equations are the known
elementary particles. This means the theory explains why we see what we see for a vast
body of observations. These include identifying the known elementary particles with specific
harmonics with well-defined quantum numbers; the absence of fundamental scalars, none of
which has ever been seen; the absence of superpartners, which have never been detected;
where the Uncertainty Principle comes from; why there is minimal coupling in the Standard
Model; the existence of the Dirac equation; the absence of a cosmological constant; the
appearance of the symmetry group SU(2)× U(1); why the strong interactions are different
than the electroweak interactions; why the photon is massless while the W and Z have mass;
why the observed quarks and leptons exist; where four-dimensional gravitation comes from
(the 6D curvature scalar); where Maxwell’s equations come from; the existence of the W
and Z along with the terms that describe them; why there are three weak vectors and one
electromagnetic vector; interaction terms for vectors with spinors; why there appears to be
three generations of leptons; why there are no four-point Fermi interactions; why there are
no Feynman diagrams with five or six external gluon lines; quark confinement; asymptotic
freedom; chiral symmetry breaking; how to make observations at the Planck distance; why
there are two widely separated levels of mass in physics (the hierarchy problem); the origin
of the Gell-Mann equation; how to construct an elementary particle; whether the electron,
muon, tau, the neutrinos, photon, W and Z have electric charge or not; the mass of the
electron; the mass of the photon; the value 1/137 for the fine structure constant; the masses
of the muon and tau; the masses of the electron’s, muon’s and tau’s neutrinos; why only
the observed particle decays take place and not others; the masses of the W and Z; and
the masses of predicted particles allowing for a definite test of the theory. This list of 47
phenomena explained by 3DT is a preponderance of the evidence that 3DT is certainly useful
and could very well be correct. No other theory explains so much. String theory does not
explain any of these 47 important phenomena. Despite a huge effort, String theory still
seems to make no contact with reality.

The short-distance behavior of the elementary particles is described by quantum mechan-
ics. Therefore, one could say quantum mechanics is a property of the elementary particles.
We have seen how general relativity produces the elementary particles. As a result, it may
be that general relativity produces quantum mechanics.

Newton showed the force that pulls an apple from a tree is the same as that which keeps
the moon in its orbit. We have now shown that 6D gravitation also drives the elementary
particles and their interactions. The inference to be drawn is that general relativity is the
source of everything. From quark confinement to gravitation, everything would come from
general relativity.
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