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The origin of the Thomas factor 1/2 in the spin–orbit Hamiltonian can be understood by considering
the case of a classical electron moving in crossed electric and magnetic fields chosen such that the
electric Coulomb force is balanced by the magnetic Lorentz force. ©2004 American Association of

Physics Teachers.
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I. INTRODUCTION: THE PROBLEM

It is well known that the spin–orbit Hamiltonian differs b
a factor 1/2—the Thomas precession factor—from what
might expect from a naive Lorentz transformation that
sumes a uniform straight-line motion of the electron. T
naive argument runs as follows.

When an electron moves with a velocityv through space
in the presence of an electric fieldE, the electron will see, in
its own frame of reference, a Lorentz-transformed magn
field B8 given by the familiar expression

B85
~EÃv!/c2

A12~n/c!2
→

n!c

~EÃv!

c2 , ~1!

wherec is the speed of light, and the limitn!c has been
taken. It is this Lorentz-transformed magnetic field that
supposedly seen by the electron magnetic moment. This
gument suggests that in the presence of electric fields,
magnetic fieldB in the spin Hamiltonian should be replace
by B1(EÃv̂)/c2, where v̂ is the velocity operator of the
electron. This conclusion does not agree with obser
atomic spectra.

Historically, this discrepancy provided a major puzzle1

until it was pointed out by Thomas2 that this argument over
looks a second relativistic effect that is less widely know
but is of the same order of magnitude: An electric field w
a component perpendicular to the electron velocity cause
additional acceleration of the electron perpendicular to
instantaneous velocity, leading to a curved electron tra
tory. In essence, the electron moves in a rotating frame
reference, implying an additional precession of the electr
called the Thomas precession. A detailed treatment is gi
for example, by Jackson,3 where it is shown that this effec
changes the interaction of the moving electron spin with
electric field, and that the net result is that the spin–o
interaction is cut in half, as if the magnetic field seen by
electron has only one-half the value in Eq.~1!,

B85
1

2

~EÃv!

c2 . ~2!

It is this modified result that is in agreement with expe
ment.

A rigorous derivation3 of this ~classical! result requires
knowledge of some aspects of relativistic kinematics, whi
although not difficult, are unfamiliar to most students. In
course on relativistic quantum mechanics, the result~2! can
be derived directly from the Dirac equation, without refe
ence to classical relativistic kinematics. But in a nonrelat
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istic QM course, the instructor is likely compelled to use
unsatisfactory ‘‘it can be shown that’’ argument, which is,
fact, the approach taken in most textbooks.

In my own 1994 textbook,4 I tried to go beyond that ap
proach by considering the case where the electron is for
to move along a straight line, by adding a magnetic field
the rest frame such that the magnetic Lorentz force wo
exactly balance the electric force. In this case, the Thom
factor of 1/2 was indeed obtained, but the argumen
especially its extension to more general cases—lacked ri
Moreover, because it was published outside the mainstr
physics literature, it has remained largely unknown to pot
tially interested readers inside that mainstream. The purp
of the present note is to put the argument on a more rigor
basis, and to do so in a more readily accessible manner

II. CROSSED-FIELD TREATMENT

From our perspective, the central aspect of the stand
Lorentz transform ~1! is the following: The transform
Erest⇒Belectronmust be linear inE, andE can occur only in
the combinationEÃv. This combination reflects the fact tha
only the component ofE perpendicular to the velocityv can
play a role, and that the resultingB field must be perpendicu
lar to bothE andv.

In the absence of any specific arguments to the contr
we would expect that this proportionality toEÃv carriers
over to the case of a curved trajectory.~For example, a com-
ponent ofE parallel tov would not contribute to a curved
trajectory and to the accompanying rotation of the elect
frame of reference.! If one accepts this argument, it follow
that B8[Belectron should be given by an expression of th
general form

B85a
~EÃv!

c2 , ~3!

with some scalar proportionality factora, which may still
depend on the velocity, but which cannot depend on eitheE
or on any magnetic fieldB in the rest frame. If there also i
a magnetic fieldB present in the rest frame, Eq.~3! should
be generalized to

B85a
~EÃv!

c2 1bB, ~4!

whereb is another constant subject to the same constra
asa.
51jp © 2004 American Association of Physics Teachers
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To determine the constantsa andb, we consider not sim-
ply the Lorentz transformation of a pure electric fieldE, but
of a specific combination of electric and magnetic fields su
that

E52vÃB, ~5a!

where v is the velocity of the electron, andB is chosen
perpendicular tov. For this combination, the electric Cou
lomb force and the magnetic Lorentz force on the elect
cancel, and the electron will move along a straight line. B
in this case the simple Lorentz transformation for unifo
straight-line motion is rigorously applicable, without havin
to worry about a rotating frame of reference.

Without loss of generality, we may choose a Cartes
coordinate system such that the velocity is in thex direction,
the magnetic field is in thez direction; and the electric field
is in they direction,

Ey5nxBz . ~5b!

If this combination of the two fields is Lorentz-transforme
into the uniformly moving frame of the electron, the ma
netic fieldBz8 in that frame is

Bz85
Bz2Eynx /c2

A12~nx /c!2
. ~6!

Inasmuch as we are interested only in the limitn!c, we
may expand the right-hand side of Eq.~6! in powers ofnx .
The result may be written as

Bz85Bz1
Bznx

2

c2 • b12 11
3

8 S nx

c D 2c2 Eynx

c2 • b11
1

2 S nx

c D 2c
1¯ , ~7!

where the dots represent omitted terms of order higher t
nx

4. But under the condition~5b!, we haveBznx
25Eynx , and

Eq. ~7! may be simplified by combining terms to read

Bz85Bz2
Eynx

c2 • b12 1
1

8 S nx

c D 2c1¯ . ~8!

In the limit n!c, we obtain

Bz85Bz2
1

2

Eynx

c2 . ~9a!

In three-dimensional vector form,

B85B1
1

2

EÃv

c2 , ~9b!
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which is of the required form~4!, with a51/2 andb51.
Equation~9! is the magnetic field that is seen by the i

trinsic magnetic moment of the electron. It determines
potential energy of that moment in the presence of both e
tric and magnetic fields for our specific combination
crossed fields, up to terms linear inEÃv. The leadingB term
already is included in the nonrelativistic spin Hamiltonia
the remainder is the first-order correction due to the sp
orbit interaction. Note that it contains the Thomas factor 1
in agreement with Eq.~2!.

The rest is straightforward. Our argument suggests that
magnetic fieldB in the spin Hamiltonian should be replace
by an operator that is equivalent to Eq.~9b!.

Following standard textbook arguments, we obtain the
miliar spin–orbit contribution to the Hamiltonian,

ĤSO5meŝ•B̂85
me

2c2 ŝ•~EÃv̂!, ~10!

whereme is the intrinsic magnetic moment of the electro
and v̂ is now theoperator for the velocity.

III. DISCUSSION

The central assumption in our derivation was that the p
portionality ofB8 to EÃv carries over to a rotating frame o
reference. This proportionality is, of course, an exact res
But in a paper explicitly dedicated to the classroom didac
of the Thomas factor without invoking less well-known a
pects of relativistic kinematics, it is probably best to trea
as an eminently plausible assumption.

I close with a comment on our retention of theBznx
2 term

in Eq. ~7!, albeit converted into aEynx term. This term re-
places rotating-frame corrections in the case of a pure e
tric field. Neglecting it would be exactly equivalent to n
glecting the effects of a rotating frame of reference for
more general choice of fields.
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