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Abstract

It is well known that usual quantum teleportation protocols can-
not transport energy. Recently, new protocols called quantum energy
teleportation (QET) have been proposed, which transport energy by
local operations and classical communication with the ground states
of many-body quantum systems. In this paper, we compare two dif-
ferent QET protocols for transporting energy with electromagnetic
field. In the first protocol, a 1/2 spin (a qubit) is coupled with the
quantum fluctuation in the vacuum state and measured in order to
obtain one-bit information about the fluctuation for the teleporta-
tion. In the second protocol, a harmonic oscillator is coupled with
the fluctuation and measured in order to obtain continuous-variable
information about the fluctuation. In the spin protocol, the amount
of teleported energy is suppressed by an exponential damping factor
when the amount of input energy increases. This suppression factor
becomes power damping in the case of the harmonic oscillator proto-
col. Therefore, it is concluded that obtaining more information about
the quantum fluctuation leads to teleporting more energy. This re-
sult suggests a profound relationship between energy and quantum
information.

http://arxiv.org/abs/0908.2674v2


1 Introduction

In quantum field theory, the concept of negative energy physics has at-
tracted considerable attention for a long time. Quantum interference can pro-
duce various states containing regions of negative energy, although the total
energy remains nonnegative [1]. The concept of negative energy plays im-
portant roles in many fundamental problems of physics, including traversable
wormhole [2], cosmic censorship [3], and the second law of thermodynamics
[4]. In addition, its physical application to quantum optics has been discussed
[5]. Recently, negative energy physics has yielded a quantum protocol called
quantum energy teleportation (QET) in which energy can be transported
using only local operations and classical communication (LOCC) without
breaking causality and local energy conservation [6]-[8]. QET can be theo-
retically considered in various many-body quantum systems including 1+1
dimensional massless fields [6], spin chains [7] and cold trapped ions [8].
Based on developing measurement technology with sensitive energy resolu-
tion for the systems, the QET effect might be observable in future. It may
be also possible to enhance the amount of teleported energy by preparing
a large number of parallel QET channels, performing a QET protocol for
each channel and accumulating each teleported energy so as to achieve de-
sired amount of total energy. After future experimental verification of QET,
amazing possibility would be open in principle for nano-technology applica-
tion of QET. For example, it may be imagined that, without heat generation
in the intermediate subsystems of the QET channels, energy is transported
in nano-machines at a speed much faster than the evolution speed of excita-
tions of the channels. This technology, if possible, helps future development
of quantum computers in which energy distribution and quantum tasks in
the devices are completed before heat generation in the system. QET is also
expected to provide insights on unsolved problems in gravitational physics.
In fact, a QET process has already been analyzed in black hole physics, and
from the measured information of zero-point oscillation of quantum fields,
it can be regarded as controlled black hole evaporation if we consider the
protocol near the horizon of a large-mass black hole [9].

Energy transportation usually requires physical carriers of energy such
as electric currents and radiation waves. Energy is infused into the gateway
point of a transport channel connected to a distant exit point. Then, energy
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carriers of the channel excite and propagate to the exit point. At the exit
point, energy is extracted from the carriers and harnessed for many purposes.
On the other hand, in the QET protocols, energy can be extracted from the
exit point even if no excited energy carriers arrive at the exit point of the
channel. We locally measure quantum fluctuation around the gateway point
in the ground state of the channel system and announce the measurement
result to the distant exit point with zero energy density, where we can ex-
tract energy from the channel. A key feature is that this measurement result
includes information about the quantum fluctuation of the channel around
this distant point via quantum correlation of the ground state of the chan-
nel system. Therefore, we can infer details about the behavior of a distant
fluctuation from the result of the local measurement. To compensate the ex-
traction of this information, some amount of energy must be infused into the
channel system at the measurement point; this is regarded as input energy to
the gateway point of the channel. By choosing and performing a proper local
operation based on the announced information at the distant point, the local
zero-point oscillation around the distant point can be suppressed relative to
the ground-state one, yielding a negative energy density. During the opera-
tion, respecting local energy conservation, positive amount of surplus energy
is moved from the channel system to external systems. This is regarded as
output teleported energy from the exit point of the channel.

One of the important unresolved problems in QET is the theoretical clar-
ification of the properties in 1+3 dimensions. Protocols in 1+1 dimensions
have already been extensively analyzed in previous studies [6]-[8]. However,
1+3 dimensional models have not yet been analyzed. In addition, all the pro-
tocols proposed thus far adopt quantum measurements for discrete-variable
information. Therefore, it would be interesting to investigate not only a
protocol with discrete-variable information but also one with continuous-
variable information. In this study, we carry out a detailed analysis of two
QET protocols for 1+3 dimensional electromagnetic field in the Coulomb
gauge. Local measurements of quantum fluctuations in the vacuum state
of the field require energy infusion to the field. The infused energy is dif-
fused to spatial infinity at the velocity of light and the state of the field soon
becomes a local vacuum with zero energy around the measurement area. Ob-
viously, this escaped energy cannot be taken back to the measurement area
by local operations around this area if we do not know the measurement
result of the fluctuation. However, if the measurement result is available,
we can effectively take back a part of this energy to the measurement area
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by applying the QET mechanism. By carrying out a local unitary operation
dependent on the measurement result for the measurement area with zero
energy density, the fluctuation of zero-point oscillation is squeezed and a neg-
ative energy density appears around the area, accompanied by the extraction
of positive energy from the fluctuation to external systems. Needless to say,
without the measurement result, it is impossible to extract energy from the
zero-energy fluctuation. One of the two QET protocols we will consider is
a teleportation in which discrete-variable information about a fluctuation is
obtained using a measurement with a 1/2 spin (a qubit), and the other is
a teleportation in which continuous-variable information is obtained using
a measurement with a harmonic oscillator. The discrete-variable protocol
is a straightforward extension of the protocol for a 1+1 dimensional field
proposed in [6]. The measurements are generalized (POVM) ones that use
probe systems (1/2 spin and harmonic oscillator) strongly interacting with
local electric field fluctuations during a short time. We prove that for a large
energy input, the continuous-variable teleportation is more attractive than
the discrete-variable teleportation. In the discrete-variable case, the amount
of teleported energy is suppressed by an exponential damping factor when
the amount of energy infused by the measurement increases. Meanwhile, this
suppression factor becomes power damping in the continuous-variable case.
Therefore, it is concluded that obtaining more information about the quan-
tum fluctuation leads to teleporting more energy. This result suggests a new
profound relation between energy and quantum information. So far, relation-
ship between energy and information has been extensively discussed only in
the context of computation energy cost [10], [11], [12]. The QET viewpoint
may shed light on a new relationship between amount of teleported energy
and amount of quantum information about ground-state fluctuations which
would be characterized by various informational indices including mutual in-
formation and entanglement. The explicit analysis about this relationship is
beyond the scope of this paper and will be reported elsewhere.

The remainder of this paper is organized as follows. In section 2, a brief
review of the quantization of the electromagnetic field in the Coulomb gauge
is presented in order to clarify our notations, and the emergence of negative
energy density is explained. In section 3, we discuss a discrete-variable pro-
tocol. In section 4, a continuous-variable protocol is analyzed. In section 5, a
summary and discussions are presented. In this paper, we adopt the natural
unit c = ~ = 1.
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2 Quantization in Coulomb Gauge

We present a short review of quantization of the electromagnetic field in
the Coulomb gauge in order to clarify the notations used for later discussions.
The gauge is defined by

A0 = 0, divA = 0

for the gauge field Aµ =(A0,A). Then, the equation of motion of the Heisen-

berg operator of the gauge field Â(t,x) is reduced to the massless Klein-
Gordon equation given by

[

∂2t −∇2
]

Â = 0.

The solution can be expanded in terms of plain-wave modes as follows.

Â(t,x) =

∫

d3k
√

(2π)3 2|k|

∑

h=1,2

[

eh (k) â
h
ke

i(k·x−|k|t) + e∗h (k) â
h†
k e

−i(k·x−|k|t)
]

,

where â
h†
k

(

âhk
)

is a creation (annihilation) operator of the photon with
momentum k and polarization h satisfying

[

âhk, â
h′†
k′

]

= δhh′δ (k− k′) ,

and eh (k) is a polarization vector satisfying

eh (k)
∗ · eh′ (k) = δhh′,

k · eh (k) = 0.

In this study, because we take a sum of two polarization contributions to
obtain the final results, the reality condition can be imposed on eh (k) for
simplicity such that e∗h (k) = eh (k). In addition, eh (k) satisfies the com-
pleteness relation as

∑

h

eah (k) e
b
h (k) = δab −

kakb

k2
.

The energy density operator of the field is defined by
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ε̂ (x) =
1

2
:

(

Ê (x)2 +
(

∇× Â (x)
)2
)

:,

where Ê (x) is the electric field operator and :: denotes the standard normal
order with respect to âhk and â

h†
k . The Hamiltonian is given by the spatial

integration of the energy density as follows.

Ĥ =

∫

ε̂ (x) d3x.

It is a well-known fact that the Hamiltonian (total energy of the field) is a
nonnegative operator. The vacuum state |0〉 is the eigenstate with the lowest
eigenvalue zero of Ĥ as Ĥ|0〉 = 0. The expectation value of energy density
vanishes for the vacuum state as

〈0|ε̂ (x) |0〉 = 0. (1)

In the later discussion, coherent states are used often. Therefore, we
present a summary of the related properties of the coherent states. A dis-
placement operator generating a coherent state from |0〉 is given by

Û (p,q) = exp

[

i

∫

[

p(x) · Â(x)− q(x) · Ê(x)
]

d3x

]

,

where p(x) and q(x) are real vector functions satisfying the conditions of
this gauge as

∇ · p(x) = 0,

∇ · q(x) = 0.

By using the commutation relation between the gauge field and the electric
field at time t = 0 given by

[

Âa(x), Êb(y)
]

= i

(

δab −
∂a∂b

∇2

)

δ (x− y) ,

it is easily verified that Û (p,q) displaces Â(x) and Ê(x) as

Û † (p,q) Ê(x)Û (p,q) = Ê(x) + p(x), (2)

Û † (p,q) Â(x)Û (p,q) = Â(x) + q(x). (3)
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In addition, we are able to prove a product formula as

Û (p1,q1) Û (p2,q2)

= exp

[

i

2

∫

(p1·q2−q1·p2) d
3x

]

Û (p1 + p2,q1 + q2) .

This implies that the set of Û (p,q) forms a unitary ray representation of
the displacement group of the field. Coherent states generated by Û (p,q)
are defined by

| (p,q)〉 = Û (p,q) |0〉. (4)

By using the Fourier transformation of p(x) and q(x) defined by

P (k) =

∫

p(x)e−ik·xd3x,

Q (k) =

∫

q(x)e−ik·xd3x,

the coherent states are explicitly written in terms of the creation operator
â
h†
k as follows.

| (p,q)〉

= exp

[

−1

2

∫

d3k

(2π)3 2|k|
|P (k)− i|k|Q (k)|2

]

× exp



i

∫

d3k
√

(2π)3 2|k|

∑

h

eh (k) · (P (k)− i|k|Q (k)) ah†k



 |0〉.

From the above expression, it is easy to prove that | (p,q)〉 is an eigenstate
of the annihilation operator âhk such that

âhk| (p,q)〉 =
i

√

(2π)3 2|k|
eh (k) · (P (k)− i|k|Q (k)) | (p,q)〉. (5)

The inner product of two coherent states is explicitly calculated as

〈(p1,q1) | (p2,q2)〉
= e

i
2

∫
(p1·q2−q1·p2)d

3x

× e
− 1

2

∫
d3k

(2π)32|k|
|P1(k)−P2(k)−i|k|(Q1(k)−Q2(k))|

2

. (6)
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Next, we examine the emergence of a region with negative energy density
in this standard theory. As a simple example [4], let us consider a super-
position state |Ψ〉 of the vacuum state |0〉 and a two-photon state |2〉 such
that

|Ψ〉 = cos θ|0〉+ eiδ sin θ|2〉,
where θ and δ are real parameters with θ ∈ [0, π] and δ ∈ [0, 2π]. Generally,
an off-diagonal element of the energy density 〈0|ε̂ (x) |2〉 does not vanish
for a fixed point x. This is because ε̂ (x) includes a non-vanishing term
proportional to âhkâ

h′

k′ . This fact indicates the emergence of negativity of the
energy density as follows. The expectation value of the energy density for
the state |Ψ〉 is calculated as

〈Ψ|ε̂ (x) |Ψ〉
= 2 cos θ sin θ (cos δRe〈0|ε̂ (x) |2〉 − sin δ Im〈0|ε̂ (x) |2〉)
+ sin2 θ〈2|ε̂ (x) |2〉.

In this result, let us set the parameters θ and δ so as to satisfy

cos θ =
〈2|ε̂ (x) |2〉

√

〈2|ε̂ (x) |2〉2 + 4 |〈0|ε̂ (x) |2〉|2
,

sin θ =
2 |〈0|ε̂ (x) |2〉|

√

〈2|ε̂ (x) |2〉2 + 4 |〈0|ε̂ (x) |2〉|2
,

tan δ = −Im〈0|ε̂ (x) |2〉
Re〈0|ε̂ (x) |2〉 .

Then, 〈Ψ|ε̂ (x) |Ψ〉 is evaluated as a negative value as follows.

〈Ψ|ε̂ (x) |Ψ〉 = −1

2

[

√

〈2|ε̂ (x) |2〉2 + 4 |〈0|ε̂ (x) |2〉|2 − 〈2|ε̂ (x) |2〉
]

< 0.

Therefore, the emergence of negative-energy regions is not a peculiar phe-
nomenon in quantum field theory. Quantum interference in the superposi-
tion of photon number eigenstates yields negative values. It should be re-
emphasized that despite the existence of regions with negative energy density,
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the expectation values of Ĥ remain nonnegative. This implies that there ex-
ist regions with a sufficient amount of positive energy so as to make the total
energy nonnegative. As described in sections 3 and 4, this negative energy
plays a crucial role in the QET protocols.

3 Discrete-Variable Teleportation

Our protocol for QET with a 1/2 spin probe is a straightforward extension
of that in [6] and comprises the following three steps.

(1) At time t = 0, the spin probe is strongly coupled with the vacuum
fluctuation of the electric field within a finite compact region Vm during a
very short time. In this process, some information about the fluctuation is
imprinted into the probe. Positive energy is inevitably infused into the field
during the measurement process, as seen later. The amount of energy is
denoted by Em. When this energy is infused, positive-energy wave packets
of the field are generated and these propagate to spatial infinity with the
velocity of light.

(2) After switching off the interaction, projective measurement of the z-
component of the spin is carried out. If the up or down state is observed,
we assign s = + or −, respectively, to the measurement result. This implies
that we obtains one-bit information about the field fluctuation via the probe
measurement.

(3) At time t = T , it is assumed that the measurement has finished and
the wave packets have already escaped from the region. Hence, the energy
density in the region Vm is exactly zero. Then, a local displacement operation
is carried out depending on s within Vm. Even though we have zero energy
in Vm, positive energy is extracted from the field fluctuation during the local
operation, generating negative-energy wave packets of the field. The amount
of negative energy of the wave packets is denoted by Eo(= − |Eo|). Therefore,
the amount of energy extracted energy from the field is given by + |Eo|.

In step (1), the measurement interaction between the electric field and
the spin probe is given by
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Ĥm(t) = g(t)σ̂zĜ, (7)

where σ̂z is the z-component of the Pauli matrices of the spin probe; g(t), a
time-dependent real coupling constant; and Ĝ, a Hermitian operator defined
by

Ĝ =
π

4
−
∫

am(x) · Ê(x)d3x. (8)

Here, am(x) is a real vector function with a support equal to Vm satisfying
∇ · am(x) = 0. In addition, by taking a short-time limit for switching the
interaction, we set

g(t) = δ(t− 0), (9)

The initial state of the spin probe is assumed to be the up state |+x〉 of the
x-component of the spin given by

|+x〉 =
1√
2

[

1
1

]

.

In step (2), the measurement operators M̂± [13] are defined by

M̂± = 〈±x|Texp

[

−i
∫ tm

0

Ĥm(t)dt

]

|+x〉, (10)

where |−x〉 is the down state of the x-component of the spin given by

|−x〉 =
−i√
2

[

1
−1

]

.

By using Eq. (9), M̂± are computed as

M̂+ = cos Ĝ, (11)

M̂− = sin Ĝ. (12)

Using Eq. (4), the post-measurement states of the field obtaining s = ± are
calculated as
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|ψ+〉 =
1

√
p+
M̂+|0〉 =

1

2
√
p+

[

ei
π
4 | (0, am)〉+ e−iπ

4 | (0,−am)〉
]

,

|ψ−〉 =
1

√
p−
M̂−|0〉 =

1

2i
√
p−

[

ei
π
4 | (0, am) 〉 − e−iπ

4 | (0,− am)〉
]

,

where p± is the measurement probability of |±x〉 for the spin probe and it is
evaluated as

p± = 〈0|M̂ †
±M̂±|0〉 =

1

2
.

After the measurement, the average state of the field is given by

ρ̂M̂ =
∑

s=±

ps|ψs〉〈ψs|.

The amount of energy Em of the field after the measurement is not zero but
is instead a positive value given by

Em =

∫

Tr [ρ̂M̂ ε̂(x)] d
3x =

1

2

∫

(∇× am(x))
2
d3x. (13)

This evaluation of Eq. (13) is achieved by using Eq. (5). Because the initial
state of the field is the vacuum state and it has zero energy, the positive
value in Eq. (13) implies that the manipulation of the measurement requires
positive work from outside. In general, any local operation on the vacuum
state infuses nonzero energy into the field if the post-operation state is not the
vacuum state, because the Hamiltonian is a nonnegative operator. In Figure
1, the measurement process of QET (step (1)) is depicted in the xy-plane
slice. The measurement area Vm is represented by a circle in the plane.

Next, let us discuss time evolution of the field after the measurement.
The average state evolves as

ρ̂m(t) =
∑

s=±

psÛ(t)|ψs〉〈ψs|Û(t)†

by the time-evolution operator Û(t) = exp
[

−itĤ
]

. The Heisenberg opera-

tors Â(t,x) and Ê(t,x) are given by the Schrődinger operators Â(x)
(

= Â(0,x)
)
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and Ê(x)
(

= Ê(0,x)
)

as follows.

Â(t,x) =

∫

∆(2)(t,x− y)Â(0,y)d3y

+

∫

∆(1)(t,x− y)Ê(0,y)d3y, (14)

Ê(t,x) =

∫

∂t∆
(2)(t,x− y)Â(0,y)d3y

+

∫

∆(2)(t,x− y)Ê(0,y)d3y, (15)

where ∆(1) and ∆(2) are Lorentz-invariant functions defined by

∆(1)(t,x− y) =
1

2π
ǫ(t)δ

(

t2 − |x− y|2
)

,

∆(2)(t,x− y) = ∂t∆
(1)(t,x− y). (16)

Both the functions ∆(1) and ∆(2) vanish in the off-light-cone region with
t2 − |x− y|2 6= 0 and satisfy the massless Klein-Gordon equation:

[

∂2t −∇2
]

∆(n)(t,x− y) = 0.

Substituting Eq. (14) and Eq. (15) into ε̂(t,x) yields the time evolution of
the average value of the energy density as

〈ε̂(t,x)〉 = Tr [ρ̂m(t)ε̂(x)] =
1

2

[

Π(t,x)2 + b(t,x)2
]

, (17)

where Π(t,x) and b(t,x) are given by

b(t,x)=

∫

∆(2)(t,x− y)∇× am(0,y)d
3y, (18)

Π(t,x)=

∫

∂t∆
(2)(t,x− y)am(0,y)d

3y. (19)

Taking account of the explicit form of ∆(2)(t,x − y) in Eq. (16), the above
result teaches us that the wave packets excited by the measurement soon
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escape from the measurement area to spatial infinity with the velocity of
light. This ensures that the energy density in Vm returns to zero. At time
t = T , the state ρ̂m(T ) is assumed to be a local vacuum state with zero
energy density:

Tr [ρ̂m(T )ε̂(x)] = 0,

for x∈Vm.
In step (3), let us consider a local displacement operation within Vm

depending on s defined by

Ûs = exp

[

isθ

∫

fo(x) · Â(x)d3x

]

(20)

where θ is a real constant fixed below, and fo(x) is a real vector function with
the support Vm that satisfies

∇ · fo(x) = 0

so as to preserve gauge invariance of Ûs. In this process, positive energy is
released on average from the field to the apparatus executing Ûs by taking a
proper value of θ. Let us introduce the localized energy operator around Vm
as

Ĥo =

∫

w(x)ε̂ (x) d3x,

where w(x) is a real window function of Vm that satisfies w(x) = 1 for x∈Vm
and decays rapidly outside Vm. The average state after the displacement
operation is given by

ρ̂ =
∑

s=±

ÛsÛ(T )M̂s|0〉〈0|M̂ †
s Û

†(T )Û †
s .

For this state, the average energy of the field around Vm is defined by

Eo = Tr
[

Ĥoρ̂
]

=
∑

s=±

〈0|M̂ †
s Û

†(T )Û †
s ĤoÛsÛ(T )M̂s|0〉. (21)

Here, the operator Û †(T )Û †
s ĤoÛsÛ(T ) is rewritten using Eq. (2) and Eq. (3)

as
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Û †(T )Û †
s ĤoÛsÛ(T )

=

∫

w(x)ε̂ (T,x) d3x

+ sθ

∫

fo(x) · Ê(T ,x)d3x+
1

2
θ2
∫

fo(x)
2
d3x,

where ε̂ (T,x) is the Heisenberg operator given by Û †(T )ε̂ (x) Û(T ), and we
have used w(x)fo(x) = fo(x). Substituting the above relation into Eq. (21)
yields the following relation.

Eo =
∑

s=±

〈0|M̂ †
s

[
∫

w(x)ε̂ (T,x) d3x

]

M̂s|0〉

+ θ
∑

s=±

s〈0|M̂ †
s

[
∫

fo(x) · Ê(T ,x)d3x
]

M̂s|0〉

+
1

2
θ2
∫

fo(x)
2
d3x〈0|

(

∑

s=±

M̂ †
sM̂s

)

|0〉. (22)

In order to further simplify the form of Eo, the following equation is used.

[
∫

fo(x) · Ê(T ,x)d3x,
∫

am(y) · Ê(0,y)d3y
]

= i

∫ ∫

fo(x) · am(y)∂T∆
(2)(T,x− y)d3xd3y (23)

This is proven by Eq. (15). Taking account of the supports of fo(x) and
am(y), it is verified that the integration of the right-hand side in Eq. (23)
is zero because ∂T∆

(2)(T,x− y) vanishes when T 2 − |x− y|2 6= 0. Thus, we
obtain the relation

[
∫

fo(x) · Ê(T ,x)d3x,
∫

am(y) · Ê(0,y)d3y
]

= 0. (24)

In a similar manner, we can show the following relation using Eq. (14) and
Eq. (15).

[
∫

w(x)ε̂ (T,x) d3x,

∫

am(y) · Ê(0,y)d3y
]

= 0. (25)
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From these relations, we can show the commutation relations given by

[
∫

w(x)ε̂ (T,x) d3x, M̂ †
s

]

= 0,

[
∫

fo(x) · Ê(T ,x)d3x, M̂ †
s

]

= 0

by recalling that M̂ †
s is a function of

∫

am(y) · Ê(0,y)d3y, as seen in Eq. (8),

Eq. (11), and Eq. (12). Therefore, we can move the positions of M̂ †
s in the

first and second terms of the right-hand side of Eq. (22) to the right, and
rewrite Eo as

Eo = 〈0|
∫

w(x)ε̂ (T,x) d3x

(

∑

s=±

M̂ †
sM̂s

)

|0〉

+ θ〈0|
(
∫

fo(x) · Ê(T ,x)d3x
)

(

∑

s=±

sM̂ †
sM̂s

)

|0〉

+
1

2
θ2
∫

fo(x)
2
d3x〈0|

(

∑

s=±

M̂ †
sM̂s

)

|0〉. (26)

By using two relations of the measurement operators given by
∑

s=±

M̂ †
sM̂s = cos2 Ĝ + sin2 Ĝ = 1,

∑

s=±

sM̂ †
sM̂s = cos2 Ĝ− sin2 Ĝ = cos

(

2Ĝ
)

,

the following expression of Eo is obtained.

Eo = 〈0|
∫

w(x)ε̂ (T,x) d3x|0〉+ θη +
1

2
θ2ξ, (27)

where η and ξ are real constants defined by

η = 〈0|
(
∫

fo(x) · Ê(T ,x)d3x
)

cos
(

2Ĝ
)

|0〉, (28)

ξ =

∫

fo(x)
2
d3x. (29)
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The first term of the right-hand side of Eq. (27) vanishes because we can
transform it into

〈0|
∫

w(x)ε̂ (T,x) d3x|0〉

= 〈0|Û †(T )

∫

w(x)ε̂ (0,x) d3xU(T )|0〉

=

∫

w(x)〈0|ε̂ (x) |0〉d3x = 0.

Here, we have used Û(T )|0〉 = |0〉 and Eq. (1). The expression of η in Eq.
(28) can be further simplified by noting that

cos
(

2Ĝ
)

|0〉 = i

2
[| (0,2am)〉 − | (0,− 2am)〉] . (30)

By using Eq. (5) and Eq. (30), the following relation is derived.

〈0|Ê(T ,x) cos
(

2Ĝ
)

|0〉

= −〈0| (0,2am)〉
∫

∂2T∆(T,x− y)am(y)d
3y, (31)

where ∆ (t,x) is a Lorentz invariant function defined by

∆ (t,x) =

∫

d3k

(2π)3 |k|
cos (k · x− |k|t) .

Contrary to ∆(1) (t,x) and ∆(2) (t,x), the function ∆ (t,x) does not vanish
in the off-light-cone region:

∆ (t,x) |t2−x2 6=0 = − 1

2π2

1

t2 − x2
.

The factor 〈0| (0,2am)〉 is real and calculated from Eq. (6) as

〈0| (0, 2am)〉 = exp

[

−
∫

d3k|k|
(2π)3

|ãm (k)|2
]

,

where ãm (k) =
∫

am(x)e
−ik·xd3x. Substituting Eq. (31) into Eq. (28) gives

the final expression of η as

η = 〈0| (0,2am)〉
∫ ∫

∂2T∆(T,x− y)fo(x) · am(y)d
3xd3y. (32)
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Minimization of Eo with respect to θ is achieved by taking the parameter θ
as

θ = −η
ξ
. (33)

Substituting the value of θ into Eq. (27) yields the following expression of
Eo.

Eo = −η
2

2ξ
. (34)

Substituting Eq. (29) and Eq. (32) into Eq. (34), we obtain our main result
in this section:

Eo = −Dq

[∫ ∫

∂2T∆(T,x− y)fo(x) · am(y)d
3xd3y

]2

2
∫

fo(x)
2
d3x

, (35)

where Dq is an exponential damping factor with respect to am such that

Dq = |〈0| (0,2am)〉|2 = exp

[

−2

∫

d3k|k|
(2π)3

|ãm (k)|2
]

. (36)

Because ξ > 0, as seen in Eq. (29), it is of importance that Eo is negative in
Eq. (34):

Eo = − |Eo| < 0.

Respecting local energy conservation, this result implies that positive en-
ergy +|Eo| moves from the field to external systems during the displacement
operation Ûs because the energy of the field around Vm is zero before the
operation. Nonnegativity of the total energy of the field ensures that |Eo| is
smaller than Em, as discussed in reference [6]. The wave packets with nega-
tive energy begin to chase after the positive-energy wave packets generated
by the first measurement. Figure 2 shows the energy extraction process (step
(2)). The outside doughnut-shaped region represents the propagating wave
packet generated by the measurement in step (1). The displacement opera-
tion Ûs is performed in the measurement area Vm denoted by the circle in the
figure. In Figure 3, the average energy density is plotted immediately before
the displacement operation at t = T − 0. We have zero energy around the
area where Ûs is performed. In Figure 4, the average energy density after the
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operation is plotted. Negative energy density appears around Vm. In conclu-
sion, a part of the escaped energy is effectively retrieved to the measurement
area by this QET protocol.

In this discrete-variable case with the spin probe, the amount of extracted
energy |Eo| in Eq. (35) is suppressed by the exponential damping factorDq in
Eq. (36) when the magnitude of am and the infused energy Em increase. This
suppression becomes power damping for a continuous-variable teleportation
with a probe harmonic oscillator, as seen in the next section.

4 Continuous-Variable Teleportation

In this section, we analyze a QET protocol with a continuous variable.
The essential part of the protocol is the same as that discussed in section 3
except the probe system and the operation dependent on the measurement
result. As the probe to measure the quantum fluctuation of electric field, let
us consider a harmonic oscillator. The free Hamiltonian is given by

Ĥho =
1

2
p̂2 + 2q̂2, (37)

where q̂ is the position operator and p̂, the momentum operator. This os-
cillator couples with the electric field by the measurement interaction such
that

Ĥ ′
m(t) = g(t)p̂Ĝ,

where g(t) is the time-dependent factor in Eq. (9) and Ĝ, the Hermitian
operator in Eq. (8). The initial state of the oscillator is the ground state
|g〉 of Hho. Introducing an eigenstate |q〉 of q̂ with eigenvalue q, the ground
state is described by

〈q|g〉 =
(

2

π

)1/4

exp
[

−q2
]

.

After the measurement interaction is switched off, we measure the position
q̂. The measurement operator for measurement result q is computed as

M̂q = 〈q| exp
[

−ip̂Ĝ
]

|g〉.
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More explicitly, M̂q is written as

M̂q =

(

2

π

)1/4

exp

[

−
(

q − Ĝ
)2
]

. (38)

The operator M̂q satisfies the following relations.

∫ ∞

−∞

M̂ †
q M̂qdq = 1, (39)

∫ ∞

−∞

qM̂ †
q M̂qdq = Ĝ, (40)

∫ ∞

−∞

q2M̂ †
q M̂qdq = Ĝ2 +

1

4
. (41)

The state after the measurement is given by

ρ̂′m =

∫

M̂q|0〉〈0|M̂ †
qdq.

In this measurement, energy is infused into the field as given by the protocol
described in section 3. The expectation value of the infused energy density
is evaluated as

〈ε̂(t,x)〉 = Tr [ρ̂′mε̂(t,x)] =

∫

〈0|M̂ †
q ε̂(t,x)M̂q|0〉dq, (42)

where ε̂(t,x) = Û †(t)ε̂ (x) Û(t). The value 〈ε̂(t,x)〉 can be calculated by
using the following integral formula.

exp
(

−q2
)

=
1√
4π

∫

e−
p2

4
−ipqdp. (43)

From Eq. (43), the following relation is derived.

M̂q|0〉 =
(

2

π

)1/4

exp

[

−
(

q − Ĝ
)2
]

|0〉

=

(

2

π

)1/4
1√
4π

∫

dpe−
p2

4
−ipq exp

[

ipĜ
]

|0〉.

From Eq. (4), M̂q|0〉 is rewritten as
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M̂q|0〉 =
(

2

π

)1/4
1√
4π

∫

dpe−
p2

4
−ip(q−π

4 )| (0, pam)〉. (44)

Substituting Eq. (44) into Eq. (42) yields the following manipulation:

〈ε̂(t,x)〉

=
1√
2π

∫ ∫

e−
p̄2

4
− p2

4 〈(0, p̄am) |ε̂(t,x)| (0, pam)〉
(
∫

ei(p̄−p)(q−π
4 ) dq

2π

)

dp̄dp

=
1√
2π

∫

dpe−
p2

2 〈(0, pam) |ε̂(t,x)| (0, pam)〉

=
1√
2π

∫

p2e−
p2

2 dp〈(0, am) |ε̂(t,x)| (0, am)〉

= 〈(0, am) |ε̂(t,x)| (0, am)〉, (45)

where we have used 〈(0, pam) |ε̂(t,x)| (0, pam)〉 = p2〈(0, am) |ε̂(t,x)| (0, am)〉.
From Eq. (45), we can show that the input energy

∫∞

−∞
〈ε̂(0,x)〉 d3x in the

measurement process is the same as that of the discrete-variable case de-
scribed by Eq. (13) of section 3. Besides, in the same manner as the deriva-
tion of Eq. (17), it is possible from Eq. (45) to show the equation

〈ε̂(t,x)〉 = 1

2

[

Π(t,x)2 + b(t,x)2
]

,

where b(t,x) and Π(t,x) are given by Eq. (18) and Eq. (19), respectively.
After the wave packets generated by the measurement escape from the

measurement area, we execute at t = T , when the field has zero energy inside
Vm, a local unitary operation dependent of the measurement result q given
by

Ûq = exp

[

iqθ′
∫

fo(x) · Â(x)d3x

]

, (46)

which is analogous to Eq. (20). The parameter θ′ is real and fixed later.
Then, the energy around the measurement area is evaluated as

E ′
o =

∫

dq〈0|M̂ †
q Û

†(T )Û †
q ĤoÛqÛ(T )M̂q|0〉.

By using Eq. (39)-Eq. (41) and
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Û †(T )Û †
q ĤoÛqÛ(T )

=

∫

w(x)ε̂ (T,x) d3x

+ θ′q

∫

fo(x) · Ê(T ,x)d3x+
1

2
θ′2q2

∫

fo(x)
2
d3x,

the average energy E ′
o is rewritten, in a manner similar to that in section 3,

as

E ′
o = θ′η′ +

ξ

2
θ′2〈0|

(

Ĝ2 +
1

4

)

|0〉,

where ξ is given by Eq. (29) and η′ is a real constant that is evaluated as

η′ = 〈0|
(
∫

fo(x) · Ê(T ,x)d3x
)

Ĝ|0〉

= −〈0|
(
∫

fo(x) · Ê(T ,x)d3x
)(

∫

am(y) · Ê(y)d3y
)

|0〉

=
1

2

∫ ∫

∂2T∆(T,x− y)fo(x) · am(y)d
3xd3y. (47)

By fixing the parameter θ′ as

θ′ = − η′

ξ〈0|
(

Ĝ2 + 1
4

)

|0〉
, (48)

the minimization of E ′
o with respect to θ′ is attained as

E ′
o = − η′2

2ξ〈0|
(

Ĝ2 + 1
4

)

|0〉
.

By substituting Eq. (29) and Eq. (47) into the above equation, we obtain
the final expression of E ′

o as

E ′
o = −Dho

[∫ ∫

∂2T∆(T,x− y)f o(x) · am(y)d
3xd3y

]2

2
∫

fo(x)
2
d3x

, (49)

where Dho is given by

Dho =
[

〈0|
(

4Ĝ2 + 1
)

|0〉
]−1

=

[

1 +
π2

4
+ 2

∫

|k| |ãm (k)|2 d3k

(2π)3

]−1

. (50)
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It is noticed that the form of E ′
o in Eq. (49) is the same as that of Eo in

Eq. (35), except for the form of damping factor Dq. Unlike the exponential
damping of Dq, the suppression factor Dho is a power damping factor with
respect to |ãm (k)|. Because of this weak damping, the extracted energy
|E ′

o| by this protocol does not vanish even for a large amplitude limit with
|ãm (k)| → ∞ as

|E ′
o| ∼

∣

∣

∣

∫

|k1| cos (|k1|T )nm (k1)
∗ · f̃o (k1)

d3k1
(2π)3

∣

∣

∣

2

4

(

∫

∣

∣

∣̃
fo (k2)

∣

∣

∣

2
d3k2
(2π)3

) ,

where f̃o (k) =
∫

fo(x)e
−ik·xd3x and nm (k) is a rescaled amplitude given by

nm (k) =
ãm (k)

√

∫

|k′| |ãm (k′)|2 d3k′

(2π)3

.

As a conclusion, we can say that obtaining more information of the fluctu-
ation leads to teleporting more energy. It is an important question what
measurements and operations attain the maximum transporation rate of en-
ergy in the QET mechanism, however, remains unsolved yet.

5 Summary and Discussion

We have analyzed in detail two protocols of QET for the electromagnetic
field and shown that a part of the lost energy in the measurement can be
retrieved by use of the measurement result. The amount of energy infused by
the measurement is the same in both the cases and it is given by Eq. (13).
For the discrete-variable case, the measurement with the operator M̂s given
by Eq. (11) and Eq. (12) is performed. The amount of retrieval energy |Eo|
is given by Eq. (35) for the displacement operator in Eq. (20) with θ fixed
in Eq. (33). For the continuous-variable case, the measurement with the
operator M̂s given by Eq. (38) is performed. The amount of energy retrieved
|E ′

o| is given by Eq. (49) for the displacement operator in Eq. (46) with θ
fixed in Eq. (48). For large amplitude |ãm (k)| and large energy input Em,
the continuous-variable teleportation is found to be more preferable than
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the discrete-variable teleportation. In the discrete-variable case, the amount
of extracted energy is suppressed by the exponential damping factor Dq in
Eq. (36) when the energy infused by the measurement increases. For the
continuous-variable case, the suppression factor becomes the power damping
factor Dho in Eq. (50). Therefore, it is concluded that obtaining more
information about the quantum fluctuation leads to teleporting more energy.

In future QET experiments, the separation between Vm and the region
of the escaping wave packet with positive energy should not be so large to
extract an observable amount of energy. To see this, let us take a large-
separation limit as T ≫ |x− y| for x,y ∈ Vm. Then, the amount of tele-
ported energy decays as

|Eo| ∝
1

T 12
,

in both the protocols. This rapid decay becomes one of the serious obsta-
cles to observing the extraction of energy by QET. Therefore, for the best
implementation of the QET in 1+3 dimensions, T should be of the same
order as the measurement area size. From this viewpoint, QET protocols are
more attractive for physical systems described effectively by 1+1 dimensional
massless field models that have slower-decay properties (Eo ∝ T−4) of the
transported energy for a large separation T , as discussed in references [6]-[7].
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Figure Caption

Figure 1: The first schematic diagram of QET in the xy-plane slice. The
local measurement is performed with the infusion of positive energy Em to
the field and the measurement result s is obtained. The measurement area
Vm is represented by a circle in the plane. A positive-energy wave packet is
generated in the field system and it escapes to spatial infinity at the velocity
of light.

Figure 2: The second schematic diagram of QET in the xy-plane slice.
The outside doughnut-shaped region represents the propagating wave packet
generated by the measurement. By using the measurement result s, the dis-
placement operation Ûs is carried out in the measurement area Vm denoted by
the circle. After the operation, a wave packet with negative energy − |Eo| is
generated, accompanying the extraction of positive energy + |Eo| to external
systems.

Figure 3: The average energy density is schematically plotted immedi-
ately before the displacement operation at t = T − 0. The positive-energy
wave packet generated by the measurement has already escaped from the
measurement area where Ûs is performed.

Figure 4: The average energy density is schematically plotted after the
operation. The wave packet with negative energy − |Eo| is generated by the
extraction of positive energy + |Eo| to external systems.
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