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1. Metamaterials – what are they? 

Conventional materials owe their properties to the individual atoms and molecules from which they are composed. 
The macroscopic electromagnetic fields are averages over the fluctuating local fields, averages that are very well 
defined as there are typically billions of molecules contained in one cubic wavelength of matter. Metamaterials 
extend this concept replacing the molecules with man made structures that might have dimensions of nanometers for 
visible light or in the case of GHz radiation may be as large as a few millimeters, but still much less than the 
wavelength. In this way properties are engineered through structure rather than through chemical composition. 
Fig. 1 illustrates this concept. 

                   
Fig. 1. Left: in conventional materials ,ε μ  derive from the constituent atoms; in metamaterials ,eff effε μ  derive from the sub-units which may 
contain many atoms. Right: an early example of a metamaterial with a resonant magnetic response. Split rings are etched onto a copper circuit 
board. Dimensions of a few millimeters give a resonant frequency of around 10GHz. 

An early example of a metamaterial designed to give  a magnetic response is shown to the left of fig. 1 [1]. Other 
structures giving novel electrical responses have also been reported. [2]. 

Metamaterials are particularly valuable for use in controlling the near field. Structured on a scale much less than 
the wavelength the near field can peer into the microstructure of a material. Ultimately the most detailed near fields 
will detect the individual units from which a material is made and at this point a description in terms of ,eff effε μ  
must fail. If we wish to use our metamaterials in a near field context, for example to build a superlens and achieve 
sub wavelength resolution, the structural units must be designed to be smaller than the length scales of the fields. 

Another class of artificial material deriving its properties from structure is the photonic crystal [3]. In contrast to 
metamaterials, photonic crystals deploy structures having roughly the same size as the wavelength since their 
properties derive from diffraction of radiation. In general photonic crystals have a complex response to 
electromagnetic radiation that is too rich to be described by a simple ,eff effε μ . For some photonic crystals a simple 

description in terms of ,eff effε μ  is possible but only on length scales down to the lattice spacing. Therefore, 
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valuable as photonic crystals may be in some applications, they are not useful in near field experiments which probe 
sub-wavelength details of the structure. 

The additional design flexibility given by the structural dimension of metamaterials enables properties to be 
realized that have never before been observed. These properties can easily be made anisotropic and made to vary as 
a function of position. New possibilities are opened by these materials and hence the great interest that they have 
aroused. 

The sort of structure deployed varies according to purpose. Perhaps the most common structures so far have been 
resonant elements. Resonances have the characteristic that their response reverses as the frequency tunes through the 
resonance and hence have been used to produce negative magnetic responses as is the case for the structure shown in 
Fig. 1, or negative electrical response if conducting wires are used. Negative magnetic and negative electric 
responses taken together fulfill the long sought after Veselago prescription for a negative refractive index [4] and 
have opened a whole new field of research to experiment that is proving fruitful of new theoretical concepts and has 
the potential for valuable applications. 

                            
Fig. 2. Magnetism at near optical frequencies. Left: Elements of a magnetic metamaterial manufactured using ebeam lithography by the Wegener 
group [5] to work in the range 100-300THz. Right: a design from the Shalaev group [6] combining a magnetic and electrical resonance in the 
same structure through the symmetric and antisymmetric resonances of a pair of gold bars. 

Progress in metamaterials has been rapid. One theme has been to extend the frequency range from the 
microwave region where the first tests were made up towards optical frequencies. The relatively crude etching of 
split rings on copper circuit boards has been replaced with sophisticated lithographic techniques reducing 
dimensions to nanometers rather than millimeters. Thus metamaterials magnetically active first at THz frequencies 
have been reported and more recently in the near infrared [5] deploying miniaturized refinements of the original split 
ring. See fig. 2. Another instance of high frequency structures is shown on the right of fig. 2. This shows a design by 
the Shalaev group based on a unit of two parallel gold bars. The bars support two resonances: a symmetric 
electrically active mode and an antisymmetric magnetically active one. Tuning the parameters so that the resonances 
coincide in frequency results in a metamaterial exhibiting negative refraction. 

                             
Fig. 3. Left: Element of a chiral metamaterial designed to work at a wavelength of around 10m with extreme chirality [7]. Right: realization of 
this structure by Mike Wiltshire 
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Some groups have designed metamaterials to work in the MHz region of the spectrum with magnetic resonance 
imaging as the target application. Resonances at such low frequencies require high capacitance and inductance 
realized in the ‘Swiss roll’ structure shown in fig. 3. The particular structure shown is designed to be chiral and 
comprises an insulated gold tape wound at an angle around a cylinder to form a helix. In contrast to most other 
chiral systems this particular design exhibits an extreme chiral response: the plane of polarization can be rotated by 
90°  within one wavelength of propagation. By way of comparison even highly concentrated sugar solutions require 
propagation over 310  wavelengths to achieve the same rotation.  

Not all metamaterials contain resonant elements. Generally speaking, if negative values of ε  or μ  are required, 
then it is essential to have a resonant element in the metamaterial. Fig. 4 shows a non resonant design for anisotropic 
diamagnetism at the ultimate low frequency: DC. It is a challenge to make anisotropic materials that are diamagnetic 
at zero frequency such as may be required for cloaking of magnetic fields as we shall discuss later in this paper. 
However superconductors allow the necessary persistent currents to flow and these can be designed to act against 
the applied field and hence yield diamagnetism.  

  
Fig. 4. A metamaterial designed to give anisotropic magnetism at DC [8]. A magnetic field acting in the z- direction has to squeeze between the 
superconducting plates giving rise to diamagnetism. Fields acting in the x- and y- directions are unaffected by the thin plates.  

Table 1. Effective medium parameters for superconducting plates  
shown in fig. 4. Lattice constant 10mma =  ( a a a× × cubic lattice) 

( )mmb  x yμ = μ  x yε = ε  zμ  

8.0 1.00 1.84 0.74 
9.5 1.00 3.45 0.47 
9.8 1.00 5.47 0.32 

 
Despite the great amount of creative activity surrounding metamaterials much remains to be done. This is 

especially true at the optical end of the spectrum. Here the most promising structures comprise metal/dielectric 
layers, particularly those involving silver: the metal supplies a negative permittivity to complement the positive 
permittivity of the dielectric. By adjusting the ratio of metal to dielectric and tuning the frequency a wide variety of 
anisotropic properties can be obtained. however the layers are generally required to be extremely flat. Asperities on 
the metal as small as a few nanometers attract a large density of surface plasmon states which act as a sink for 
radiation and therefore constitute a loss process.  

Loss is a serious issue when metamaterials are used in sub-wavelength applications. These generally work 
through resonant features of the spectrum and are therefore vulnerable to loss. Even silver, although the best 
performing noble metal in this respect, is far from ideal. The restrahlen bands of ionic materials such as silicon 
carbide perform far better in this respect, but their application is confined to the far infra red. Silicon carbide does 
however have the advantage that  it can be deposited using conventional semiconductor growth technology and 
therefore the interfaces are of a much higher quality than those of metals. Little has been done to search for other 
negative permittivity materials with low losses. In particular it might be profitable to explore experimentally the 
alloy system of CsAu which is an ionic insulator but comprises two metals each with long lived plasmon excitations.  

At GHz frequencies losses are much less of an issue and it is mainly the dielectric component of the structure 
that is lossy. The longer length scales mean that much more complex structures become feasible with current 
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technology, though an issue that will need to be addressed is the development of cheap and efficient manufacturing 
processes capable of handling 3D structures. Currently structures are manufactured in 2D panels and assembled into 
3D structures by cottage industry techniques (i.e. graduate students). This will need to change before mass 
application of metamaterial technology comes on stream. 

At low frequencies, MHz down to DC, much less work has been done possibly because the structures required 
are more complex even than the GHz structures and hence more time consuming to manufacture: compare fig. 1 to 
fig. 3. Yet there is much potential in this range. Conventional ferromagnets are heavy and prone to loss and 
hysteresis but metamaterials usually consist mainly of air and are therefore light. The absence of any intrinsic 
magnetism in the components removes hysteresis and much of the loss.  

2. Negative refraction 

It was undoubtedly the concept of negative refraction that brought metamaterials to prominence. Seriously studied 
for the first time by Veselago [4] negative refraction is achieved when at the same frequency, 

  ( ) ( )0, 0ε ω < μ ω <   (1) 

Using Maxwell’s equations to calculate the refractive index gives,  

  n = ± εμ   (2) 

and conventional materials take the positive sign. Veselago showed that, if condition (1) is met, the negative sign for 
n  is the one that satisfies causality. The many fascinating properties explored in the Veselago paper attracted much 
interest at the time but the subject resisted all experimental attempts due to the complete absence of any naturally 
occurring negatively refracting materials. In time interest died away and the paper was largely forgotten until the 
first PECS conference at Laguna beach in 1999 where I reported [1] our first attempts at designing electric and 
magnetic metamaterials. David Smith and Shelly Schultz were enthusiastic about the new materials and went on to 
manufacture the first negatively refracting substance every made by combining a negative permittivity and a 
negative permeability metamaterial in the same structure [9, 10]. Their work fired a huge amount of interest, not all 
of it positive, but the validity of their conclusions has now been confirmed many times over. Their paper opened the 
way for experimental exploration of Veselago’s theoretical concepts. 

It is worth asking why scientists and engineers are so intrigued by negative refraction. After all positive 
refraction is well understood so why should a sign flip add special interest? A clue is found in the refraction process 
itself. Consider fig. 5. The requirements that energy flow normal to the surface and wave vector parallel to the 
surface are incompatible in the presence of negative refraction unless the energy flow is opposite to the wave vector. 

                      
Fig. 5. Left: in a double negative material as described by Veselago, light makes a negative angle with the normal. Note that the parallel 
component of the wave vector is always preserved in transmission, but that energy flow is opposite to the wave vector. Right: by implication the 
wave velocity and the Poynting vector have opposite signs. 

The mathematical implications of this statement are that the refractive index must disperse strongly with 
frequency. Taking the definitions of the wave and group velocities, 

  ( )0 0,w gv c n v d dk c n dn d= = ω = +ω ω   (3) 
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Requiring that wv  and gv  have opposite signs we deduce, 

  dn d nω ω >   (4) 

where we have assumed n  to be negative. Let us choose a frequency 2ω  at which ( )2 0n ω <  then by 
integrating (4),  

  ( ) ( )2 1 2 1 2 1ln ln ,n n > − ω ω ω > ω   (5) 

and hence, 

  1 2 2 1n n> ω ω   (6) 

Therefore as 1ω  heads down in frequency 1n  becomes more and more negative. At some point there is a 
divergence, 1n → −∞ . In practice we run into limitations on the validity of the metamaterial concept: if 1n  becomes 
so large that the wavelength is comparable to the size of the metamaterial elements, then the refractive index is no 
longer a valid concept and there is a cut off. If the metamaterial is a period structure the cut off will occur at the 
Brillouin zone boundary in k −  space and we can easily count the resonances: there will be twice as many as there 
are cells in the structure.  We have counted one resonance for each transverse polarization state. There will also be 
magnetic and electric longitudinal states which we shall not discuss here.  

This divergence of the refractive index at some frequency is an essential feature of negative refraction. It also 
implies that negative refracting materials have a very high density of states. The essential components of a 
negatively refracting metamaterial are the local resonances comprising the units from which the material is 
assembled. We require two resonances per cell and typically one of these will be magnetic in character and the other 
electrical.  

Perhaps the most exciting aspect of negative fraction is the ability to interact strongly with the near field, a 
quality brought about by the internal resonances discussed above. The most remarkable discovery was that negative 
refraction enables a prescription to be given for a perfect lens, capable of reproducing an image in every detail 
unlimited by wavelength provided only that the prescription is met exactly. Veselago had already predicting 
focusing of rays of light as shown in fig. 6. However much later [11] it was realized that this Veselago lens also 
focuses the near field under the conditions, 

  1, 1ε → − μ → − , and hence 1n → −   (7) 

In so far as these two conditions are met, the image is perfect in every detail, and there are no spurious reflections at 
the surface of the lens.  

 

  
Fig. 6. A negative refractive index medium bends light to a negative angle relative to the surface normal. Light formerly diverging from a point 
source in the object plane is set in reverse and converges back to a point. Released from the medium the light reaches a focus for a second time in 
the image plane.  

This is a remarkable result because, in order to ‘focus’ the near field, amplification has to take place to 
compensate for the natural decay and furthermore the amplification has to be exactly tuned to each Fourier 
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component of the field. Surfaces of negatively refracting materials are heavily decorated with resonant states under 
the conditions specified by (7) these states are almost degenerate at nearly the same frequency and amplification 
takes place by stimulation of these resonances. It is a relatively slow process of course and very specific to the 
frequency at which (7) is obeyed.  

Sub wavelength focusing was first realized by the Eleftheriades group at GHz frequencies [12]  where the 
necessary metamaterials are available. However an optical version of the lens is much more difficult. Although 
metals such as silver have an intrinsic permittivity that is negative, magnetic responses at optical frequencies are rare 
and as yet we do not have a fully 3D negatively refracting optical material at least not one that is capable of sub 
wavelength operation. 

An approximation to the perfect lens can be had if all the dimensions are much less that the wavelength. Under 
these conditions the electric and magnetic components of the field are almost independent and we are free to 
concentrate on the electrical part ignoring magnetic effects. A purely electrical field is indifferent to μ  and therefore 
it should be possible to construct a ‘poor man’s lens’ of silver by tuning the frequency so that 1ε ≈ − . Losses in the 
silver prevent exact realization of this condition but nevertheless a version of this poor man’s lens was built by the 
Xiang group in Berkeley [13], and by the Blakie group in Canterbury New Zealand [14, 15]. They demonstrated sub 
wavelength imaging on a scale of a few tens of nanometers. More recently silver has been replaced by silicon 
carbide where the low loss restrahlen bands give a much better approximation to 1ε ≈ −  and hence better resolution 
as a fraction of the wavelength. A resolution of 20λ  was achieved in the silicon carbide experiment shown in 
fig. 7 [16]. 

         
Fig. 7. A: a silicon carbide superlens is sandwiched between two layers of dielectric. Light incident on a scanning probe tip scatters and is 
focused on the gold layer below where it reflects from details of the structure inscribed in the gold. The lens refocuses this scattered light on the 
tip where it scatters a third time before reaching a detector. B: SEM image of the gold layer; C: images at a frequency where 1ε ≈ −  showing a 
resolution of up to 20λ . E: the lens is detuned to a different frequency violating the conditions for perfect lensing and no images are seen.  

3. Transformation Optics 

Metamaterials give enormous choice of material parameters for electromagnetic applications. So much so that we 
might ask if there is a new way to design electromagnetic systems exploiting this new flexibility. In an ideal world 
magnetic and electrical field lines can be placed anywhere that the laws of physics allow and a suitable metamaterial 
found to accommodate the desired configuration of fields. It was to answer the question of what parameters to 
choose for the metamaterial that we developed transformation optics [17, 18, 19, 20]. The idea is quite 
straightforward: start with a field pattern that obeys Maxwell’s equations for a system that is topologically similar to 
the desired configuration but confined either to free space or a simple configuration of permittivity and permeability, 
then distort the system until the fields are in the desired configuration. If we imagine that the original system was 
embedded in an elastic matrix in which Cartesian coordinate lines were drawn, then after distortion the deformed 
coordinates could be described by a coordinate transformation. Next rewrite Maxwell’s equations using the new 
coordinate system. Some time ago it was shown that Maxwell’s equation are of the same form in any coordinate 
system but the precise values of permittivity and permeability will change. These new values of permittivity and 
permeability are the ones we must give to our metamaterial if we want the fields to take up the distorted 
configuration. 

Although the prescription is simple enough it is very powerful in what can be achieved. For example: the 
Veselago lens shown in fig. 6 suffers from the limitation that the image is exactly the same size as the object. Our 
new design methodology easily remedies this limitation: imagine a coordinate system that is stretched in the region 
of the image thus stretching the image. Transformation optics then prescribes the metamaterials with which this can 
be achieved [18]. Or consider the lens itself. Focusing can be thought of in general terms as a distortion of space in 
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which the coordinate system is folded back on itself so that we see the same set of trajectories three times as the 
three layers of folded space overlap. Applying this description and calculating the metamaterial properties gives rise 
to the configuration shown in fig. 6. Less esoteric applications might employ metamaterials to collect and 
concentrate light onto a solar cell.  

To give a flavor of how the scheme operates imagine the simplest possible distortion of space: a section of the 
x −  axis is compressed as shown in fig. 8. We probe the compressed region with two rays in order to find the values 
of ( )ε r  and ( )μ r  that would give rise to the ray trajectory shown. We recognize that:  

• ( ) ( ),ε r μ r are tensors because we have singled out the x-axis for compression, 

• in the uncompressed regions there is no change so ( ) ( ) 1= =ε r μ r  in these regions, 

• ( )ε r  and ( )μ r  appear on the same footing because of the symmetry between electric and magnetic fields. 

It follows from the last assertion that ( ) ( )=ε r μ r . 
 

  

 
Fig. 8. Top: a simple coordinate transformation than compresses a section of the x −  axis. As a result rays follow a distorted trajectory shown on 
the top right but emerge from the compressed region traveling in exactly the same direction with the same phase as before. Bottom: requiring that 
a ray pass through the compressed region with the same phase change as through uncompressed space enables us to predict the metamaterial 
properties that would realize this trajectory for a ray.  

Next consider a ray propagating parallel to the x − axis: in order to arrive at the far side of the compressed region 
with the same phase as in the uncompressed system we require 0'k md k d=  where 0k  is the free space wave 
vector, 'k  is the wave vector in the compressed region, m  is the compression factor, and d  is the original thickness 
of the layer. Since 0' y yk k= ε μ , where yε  and yμ  are the components of the respective tensors perpendicular to 

the x − axis, then we deduce that, 

  1
y y m−ε = μ =   (8) 

On the other hand rays propagating perpendicular to the x − axis travel through uncompressed space, and therefore 
their wave vector, ''k , must take the free space value if the correct phase evolution is to be followed. In this case,  

  0 0 0'' y x x yk k k k= ε μ = ε μ =   (9) 

and therefore using (8) we have,  
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  x x mε = μ =   (10) 

Also: because ( ) ( )=ε r μ r , the compressed layer is impedance matched and does not reflect.  
The above gives an intuitive version of our scheme. A more formal derivation was presented by Ward and 

Pendry [18] and an updated version by Schurig et al [19] using modern notation [20]. We follow the latter version 
here. If the distorted system is described by a coordinate transform ( )'' j jx x  we define, 

  
'

'
j

j
j j

x
x

∂
Λ =

∂
  (11) 

Then in the new coordinate system we must use modified values of the permittivity and permeability to ensure that 
Maxwell’s equations are satisfied, 

  
( )

( )

1 '' ' '

1 '' ' '

' det

' det

ji j i ij
i j

ji j i ij
i j

−

−

ε = Λ Λ Λ ε⎡ ⎤⎣ ⎦

μ = Λ Λ Λ μ⎡ ⎤⎣ ⎦

  (12) 

As a challenge for transformation optics we set the problem of constructing a cloak of invisibility. Two problems 
confront us: first we must eliminate scattered radiation and hence no radiation must reach the hidden object; second 
the hidden object must cast no shadow. The latter is the more difficult of the two to achieve. Several solutions have 
been proposed in the literature [21, 22, 23, 24], our solution [21] is to construct a cloak that guides radiation around 
the hidden space but allowing to resume its original course on the far side. An observer would see the same radiation 
as if neither the cloak nor the hidden object were present. One advantage of our scheme is that any object can be 
placed inside the cloak and still remain hidden.  

Our starting point is free space and we confine our cloak to a sphere of radius 2R . Next we select an infinitely 
small sphere at the centre of the big sphere. Infinitely small spheres are always invisible whatever they are made of. 
Next we expand the infinitesimal sphere into a finite sphere radius 1 2R R< . As we expand the infinitesimal sphere 
we imagine that all the field lines and coordinate lines are compressed into the annulus between 1R  and 2R . 
Outside the larger sphere nothing is disturbed. There are several coordinate transformations that achieve this result. 
We pick a simple one here given in spherical polar coordinates: 

  2 1
1

2
' , ' , 'R Rr r R

R
−

= + θ = θ φ = φ   (13) 

Equation (12) then gives,  

  

( ) 2
1' ' 2

1 2
2 1

' ' ' ' 2

2 1

'
' ' , '

'

' ' ' '

r r r RR R r R
R R r

R
R R

θ θ φ φ

−⎡ ⎤
ε = μ = > >⎢ ⎥− ⎣ ⎦

ε = μ = ε = μ =
−

  (14) 
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Fig. 9. Left: a schematic of the coordinate transformation presented in equation (13). Right: trajectories of rays through the cloak showing how 
they avoid the cloaked region and return to their original path after traversing the cloak. 

Deploying these values of permittivity and permeability enables radiation to be guided around the hidden space 
as illustrated in fig. 9. The effectiveness of the cloak has been demonstrated first by computer simulations and more 
recently by an experimental realization [25]. 

There are  three topologically distinct routes to a cloak. In the scheme presented above we started from an 
infinitesimal sphere and expanded it into a finite sphere within which we can hide objects. If we consider the inverse 
transformation, ( )''j jx x , then viewed from the outside the cloaked region appears to contain empty space with a 

infinitesimal sphere at the centre containing the crushed contents of the cloak. Inverting the transformation results in 
very large values of permittivity and permeability for the crushed objects. However they still remain invisible: even 
a perfectly conducting sphere will vanish in the limit of infinitesimal radius.  

Next consider the case where instead of spheres we work with cylinders. The principle is the same: a cloak 
contained between an outer and inner cylinder. From outside the cloak we shall see a region of empty space and at 
its centre an cylinder of infinitesimal radius. In general we can expect the crushing process to give this cylinder or 
wire a very large conductivity. It might be thought that an thin conducting wire would still be visible but in fact this 
is not the case: if the wire is extremely thin it will have large inductance preventing any current from being induced 
in the wire. So the cylindrical cloak is still theoretically perfect. 

Lastly consider the case where instead of crushing the hidden volume to an infinitesimal sphere, or to a wire of 
infinitesimal radius, we crush to an infinitesimally thin plate. In general this will appear to have very high 
conductivity and of course now we cannot get away with claiming a perfect cloak because a conducting sheet is 
definitely visible! However the transformations concerned have the virtue of being non- singular unlike equation 
(14) and therefore may have some value for cloaking in situations where we can hide the infinitesimally thin plate 
on an infinitely conducting ground plane. 

Transformation optics can also be used to give another interpretation the Veselago lens shown in fig. 6. The lens 
exists in a coordinate system , ,x y z  but viewed from outside it would appear as though the region between the 
object plane and the image plane vanishes. This can be expressed as a coordinate transformation, 

  ( )
1

1 1 1

1

' , ' ',
' , ,
' 2 , ,
' 2 ,

x x y y
z z z z
z z z z z z d
z z d z d z

= =
= <

= − < < +

= − + <

  (15) 

where the lens is assumed lies in the range 1 1z z z d< < +  where the , ,x y z  space maps on to a triple valued ', ', 'x y z  
space. Applying the transformation formulae (11) and (12)  gives, 

  
1

1 1

1

1, ,
1, ,
1,

z z
z z z d
z d z

ε = μ = + <
ε = μ = − < < +
ε = μ = + + <

  (16) 

Now we can give a geometrical interpretation to the lens: it comprises a section of ‘negative’ space that 
annihilates an equivalent thickness of vacuum.  
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Fig. 10. Left: in the , ,x y z  coordinate system space is single valued and a ray progresses continuously through the region of negative refraction. 
Right: an equally legitimate view point is that the refractive index is everywhere positive but space is triple valued, doubling back on itself so that 
each point within the range of the lens is crossed thrice.  

There is a close analogy between the transformed ,ε μ  and the metric of a space and it may be that this can in the 
future be exploited to realize, at least in an optical sense, some esoteric geometries. 

4. Conclusions 

Metamaterials and the new fields of research they have spawned are relatively recent arrivals on the scene: not even 
ten years old. And yet such is the activity that this review is a rather breathless one only touching on the many facets 
of the subject [26, 27]. Those of us working on metamaterials are excited by the intellectual stimulation of this new 
perspective on an old subject. We are constantly surprised by the sometimes controversial conclusions we are forced 
to and stimulated by the realization that exoteric theory can have experimental realization. The latter will, I am sure, 
lead the way to applications. Indeed there are already many patents held on metamaterials, a sign that I am not alone 
in this expectation. Who knows what directions this lively field will take in the next decade. 
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