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The ability to generate particles from the quantum vacuum is one of the most pro-
found consequences of Heisenberg’s uncertainty principle. Although the significance of
vacuum fluctuations can be seen throughout physics, the experimental realization of
vacuum amplification effects has until now been limited to a few cases. Superconduct-
ing circuit devices, driven by the goal to achieve a viable quantum computer, have been
used in the experimental demonstration of the dynamical Casimir effect, and may soon
be able to realize the elusive verification of analogue Hawking radiation. This article
describes several mechanisms for generating photons from the quantum vacuum and em-
phasizes their connection to the well-known parametric amplifier from quantum optics.
Discussed in detail is the possible realization of each mechanism, or its analogue, in
superconducting circuit systems. The ability to selectively engineer these circuit devices
highlights the relationship between the various amplification mechanisms.
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I. INTRODUCTION

One of the profound consequences of quantum mechan-
ics is that something can come from nothing. Enforced
by the uncertainty principle, the vacuum state of quan-
tum mechanics is teeming with activity. Quantum fluc-
tuations inherent in the vacuum give rise to a host of
particles that seemingly move in and out of existence in
the blink of an eye. These fluctuations, however fleeting,
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are the origin of some of the most important physical
processes in the universe. From the Lamb shift (Lamb
and Retherford, 1947) and Casimir force (Casimir, 1948;
Lamoreaux, 2007), all the way up to the origin of the
large scale structure (Springel et al., 2006) and the cos-
mological constant (Weinberg, 1989) of our universe, the
effects of the quantum vacuum permeate all of physics.

Although the significance of vacuum fluctuations has
been appreciated since the early days of quantum me-
chanics [see, e.g., (Milonni, 1993)], the quantum proper-
ties of the vacuum state constitute an area of quantum
field theory that remains relatively unexplored experi-
mentally. So far, static quantum vacuum effects such
as the Casimir force (Lamoreaux, 1997) and Lamb shift
(Lamb and Retherford, 1947) have been verified experi-
mentally, along with the recent demonstration of the dy-
namical Casimir effect (Lähteenmäki et al., 2011; Moore,
1970; Wilson et al., 2011). In contrast, other dynami-
cal amplification mechanisms such as the Schwinger pro-
cess (Schwinger, 1951), Unruh effect (Unruh, 1976), and
Hawking radiation (Hawking, 1974, 1975), have yet to
been observed1. The difficulties in observation can be
traced to the extreme conditions under which these dy-
namical phenomena become appreciable. For example,
the dynamical Casimir effect requires rapidly modulat-
ing the boundary conditions of the electromagnetic field,
with peak velocities close to the speed of light. Likewise,
Hawking radiation not only requires a black hole, but
also demands one with a sufficiently small mass so as to
make the emitted radiation observable above the ambient
cosmic microwave background. With difficulties such as
these in mind, researchers have looked to analogue sys-
tems that are able to generate the desired amplification
effects, and at the same time surmount the difficulties
inherent in observations of the actual processes.

One such class of available systems are superconduct-
ing circuit devices. The quantum mechanics of super-
conducting circuits has received considerable attention
during recent years. This interest has largely been due
to research on quantum computation and information
processing (Nielsen and Chuang, 2000), for which super-
conducting circuits (Clarke and Wilhelm, 2008; Makhlin
et al., 2001; Schoelkopf and Girvin, 2008; Wendin and
Shumeiko, 2006; You and Nori, 2005, 2011) are consid-
ered promising fundamental building blocks. Experimen-
tal progress on superconducting resonator-qubit systems
(DiCarlo et al., 2010) have also inspired theoretical and
experimental investigations of quantum optics in the mi-
crowave regime (Chiorescu et al., 2004; Hofheinz et al.,
2009; Houck et al., 2007; Schuster et al., 2007; Wallraff
et al., 2004). These recent advances in the engineer-

1 As discussed in Sec. IV.D, recent experimental evidence for an
analogue of Hawking radiation (Belgiorno et al., 2010) does not
go far enough to definitively confirm the existence of this effect.

ing and control of quantum fields in superconducting
circuits have also opened up the possibility to explore
quantum vacuum effects with these devices. Indeed, the
demonstration of both the Lamb shift in a superconduct-
ing artificial atom (Fragner et al., 2008), and the dy-
namical Casimir effect in a superconducting waveguide
(Lähteenmäki et al., 2011; Wilson et al., 2011), have al-
ready been achieved.

We have two goals in mind for this Colloquium:
the first is to introduce to condensed-matter physi-
cists the following quantum vacuum amplification mech-
anisms: the Unruh effect (Unruh, 1981), Hawking radia-
tion (Hawking, 1974), and the dynamical Casimir effect
(Fulling and Davies, 1976; Moore, 1970). We shall in
particular highlight their relationship to the well-known
parametric amplifier from quantum optics. Paramet-
ric amplification has been applied extensively in quan-
tum optics to, for example, the generation of nonclas-
sical states (Breitenbach et al., 1997; Slusher et al.,
1985), tests of wave-particle duality (Hong et al., 1987),
quantum-erasers (Zou et al., 1991), and quantum tele-
portation (Bouwmeester et al., 1997; Furusawa et al.,
1998; Kim et al., 2001). Here we will focus on the phys-
ical rather than mathematical aspects of these amplifi-
cation mechanisms, as others have covered the latter in
great detail (Birrell and Davies, 1982; Crispino et al.,
2008; Dodonov, 2002; Fabbri and Navarro-Salas, 2005).
Our second goal is to introduce to researchers in the
high-energy and general relativity communities, possible
analogue experimental realizations of these effects in mi-
crowave superconducting circuit devices, where the simi-
larities and differences in the various amplification effects
manifest themselves in the design of their circuit coun-
terparts. We emphasize, in particular, the potential ad-
vantages arising from their inherently low-noise quantum
coherent nature.

The outline of this Colloquium is as follows: In Sec. II
we give a brief overview of quantum amplification ba-
sics, introducing the formalism to be used in later sec-
tions. Sec. III describes the methods by which photons
may be generated from amplified vacuum fluctuations,
and highlights the connections between the various ef-
fects. Sec. IV details the superconducting circuit imple-
mentations, as well as reviews progress towards the de-
tection of single-microwave photons, necessary to verify
photon production from the vacuum. Finally, in Sec. V
we summarize and briefly discuss possible future appli-
cations of superconducting circuit models for engineering
quantum ground states and realizing quantum gravity in-
spired analogues.

II. PRELUDE TO QUANTUM AMPLIFICATION

A physical system with time-dependent parameters of-
ten has resonant responses at certain modulation fre-
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FIG. 1 (Color online) Parametric amplification of pendulum
motion by a child standing on a swing. The amplification is
driven by changing the center of mass (star), and thus effec-
tive length, of the pendulum at twice the frequency of the
unperturbed swing.

quencies. This parametric resonance is very general, oc-
curring in a wide variety of both classical and quantum
mechanical systems. The representative example of clas-
sical parametric resonance is a child standing on a swing,
who periodically modulates her center of mass (CM) by
bending at the knees2. For a fixed CM, the equation of
motion (for small amplitudes) is that of a simple pendu-
lum with the solution

θ(t) = θ(0) cos(ωst) +
L(0)

mωsl
sin(ωst), (1)

where L(0) is the initial angular momentum and θ(t)
the angular displacement, while m and l are the pen-
dulum mass and length, respectively. With the CM
governing the effective length of the swing, this motion
modulates the swing frequency ωs =

√
g/l as ωs(t) =

ωs(0)+ε sin (ωcmt), where ωs(0) is the unperturbed swing
frequency, ωcm is the CM modulation frequency, and ε is
the resulting small frequency change in the pendulum
motion. If the child modulates the CM at twice the os-
cillation frequency, ωcm = 2ωs, as shown in Fig. 1, then
the solution to the equation of motion is

θ(t) = θ(0)eεt/2 cos(ωst) +
L(0)

mωsl
e−εt/2 sin(ωst). (2)

The initial amplitude is therefore exponentially amplified
while the out-of-phase component of motion is exponen-
tially suppressed.

For parametric amplification to occur in a classical sys-
tem it must initially be displaced from the equilibrium
state. This is easily seen by setting θ(0) = L(0) = 0 in
Eq. (2). Although many sources of fluctuations can exist,
in principle nothing in classical mechanics prevents simul-
taneously setting the position and momentum of the os-
cillator to zero. This is in sharp contrast to the quantum

2 Another commonly used example is that of a child swinging their
legs while sitting on a swing. Careful inspection of the motion
however reveals that the child drives the swing at the same fre-
quency as the swing itself. This situation is therefore better char-
acterized as a driven oscillator rather than a parametric process
(Case, 1990).

mechanical description of an oscillator where the non-
vanishing canonical commutation relation [x, p] = ih̄ pre-
vents the absence of motion. This implies that even the
ground state of the quantized oscillator contains quantum
fluctuations and thus may be parametrically amplified.
The amplification of quantum fluctuations by parametri-
cally modulating the frequency of an harmonic oscillator
is closely related to the process of particle production
in quantum fields and therefore serves as an instructive
example. We will therefore begin with a short review in-
troducing the basic mathematics and terminology used in
later sections by considering the amplification of a quan-
tized oscillator through a time-varying frequency.

We follow the analysis in (Jacobson, 2003) and begin
with the harmonic oscillator described by the Hamilto-
nian H = p2/(2m) + mω2x2/2. With the position and
momentum operators obeying the canonical commuta-
tion relation [x, p] = m [x, ẋ] = ih̄, in the Heisenberg
picture we have ẍ + ω2x = 0. Decompose the position
operator x(t) in terms of the non-hermitian raising (a†)
and lowering (a) operators and mode function f(t) as
x(t) = f(t)a+ f̄(t)a†, where the over-bar represents com-
plex conjugation, and the mode function satisfies the os-
cillator classical equation of motion f̈(t) + ω2f(t) = 0.
Substituting into the commutation relation [x, p] the
above decomposition gives

m

ih̄
[x, ẋ] =

m

ih̄

(
f(t) ˙̄f(t)− f̄(t)ḟ(t)

) [
a, a†

]
= 1. (3)

Demanding the commutation relation
[
a, a†

]
= 1 for all

times, we have 〈f, f〉 = 1 and 〈f, f̄〉 = 0, i.e. the mode
functions f(t) and f̄(t) are orthonormal in terms of the
inner-product3

〈f, g〉 ≡ im

h̄

[
f̄(t)ġ(t)− g(t) ˙̄f(t)

]
. (4)

The ladder operators may then be defined in terms of
this inner-product as a = 〈f, x〉 and a† = −〈f̄ , x〉.

Specifying the ground state of the system is equivalent
to fixing the form of the mode function f(t). For the sim-
ple harmonic oscillator, the ground state can be defined
with respect to the ladder operators as the state for which
a|0〉 = 0. Demanding this ground state be an eigenstate
of the Hamiltonian H|0〉 = E|0〉 gives the mode function
equation of motion via

H|0〉=
(
mẋ2

2
+
mω2x2

2

)
|0〉 (5)

=
m

2

{[
ḟ(t)a+

¯̇
f(t)a†

]2
+ ω2

[
f(t)a+ f̄(t)a†

]2} |0〉

3 In quantum field theory, the generalization of Eq. (4) to
spacetimes where the dimensionality is larger than the zero-
dimensional harmonic oscillator considered here is called the
Klein-Gordon inner-product.
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=
m√

2

[
ḟ(t)2 + ω2f(t)2

]
|2〉+

m

2

[∣∣∣ḟ(t)
∣∣∣
2

+ ω2 |f(t)|2
]
|0〉.

Since the term proportional to |2〉 must vanish, it fol-

lows that ḟ(t) = ±iωf(t) with normalization |f(t)|2 =
h̄/(2mω) and inner-product 〈f, f〉 = ∓1. Positiv-
ity of the inner-product selects the solution f(t) =
xzp exp(−iωt) where xzp =

√
h̄/2mω is the zero-point

uncertainty in the oscillator’s position. This is desig-
nated the “positive frequency” solution4, whereas f̄(t) =
xzp exp(+iωt) is the conjugate, “negative frequency” so-
lution. Using Eq. (5), it is straightforward to show
that these mode functions lead to the canonical oscillator
Hamiltonian H = h̄ω

(
a†a+ 1/2

)
. The position operator

may then be written in the form

x(t) = xzp

(
e−iωta+ e+iωta†

)
, (6)

where we see that the positive (negative) frequency solu-
tion is associated with the annihilation (creation) opera-
tor.

Now, suppose that the frequency of the harmonic os-
cillator is allowed to vary in time:

ẍ+ ω(t)2x = 0, (7)

such that the initial “input” frequency is defined as
ω(t → −∞) = ωin, and the final “output” frequency is
ω(t→∞) = ωout. Here we assume that ωout differs from
the input frequency ωin. These frequencies define two
sets of ladder operators ain, aout, corresponding ground
states |0〉in, |0〉out, and mode functions fin(t), fout(t),
where from the above simple harmonic oscillator anal-
ysis, fin(t)|t→−∞ ∼ exp (−iωint) and fout(t)|t→+∞ ∼
exp (−iωoutt), with

x(t) = fin(t)ain + f̄in(t)a†in = fout(t)aout + f̄out(t)a
†
out.

(8)
As a second-order differential equation, Eq. (7) requires
two linearly independent solutions to characterize the dy-
namics. Given that fin is a solution to the oscillator
equation and 〈fin, f̄in〉 = 0, we may write the output
state modes as a linear combination of the input state
solutions, fout = αfin + βf̄in. Substituting into Eq. (4),
the coefficients are connected through the symplectic re-
lation

|α|2 − |β|2 = 1. (9)

With fout(t) expressed using input modes, the output
state lowering operator aout = 〈fout, x〉 is then given as

aout = αain − β̄a†in. (10)

4 A complex function f(t) = 1√
2π

∫∞
−∞ dω g(ω)e−iωt is said to

be “positive frequency” if it’s Fourier transform g(ω) vanishes
for all ω ≤ 0. In this case, f(t) is composed solely of Fourier
components of the form e−iωt where ω > 0.
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FIG. 2 (Color online) Relationships between quantum ampli-
fication mechanisms. Counterclockwise from the parametric
amplifier: For a single mode of the Minkowski vacuum, the
non-degenerate parametric amplifier (NDPA) and Unruh ef-
fect (UE) share the same form of Bogoliubov transformations
resulting in both exhibiting a two-mode squeezed state. The
UE is in turn connected to Hawking radiation (HR) through
the equivalence principle relating inertial and gravitational
acceleration. The exponential red-shifting (Doppler shift) of
the field modes near the black hole horizon results in Bo-
goliubov transformations that are identical to those for the
dynamical Casimir effect (DCE), provided the mirror’s tra-
jectory is given by Eq. (66). Here, one obtains an identical
Doppler shift, leading to a thermal spectrum for the emit-
ted radiation. Finally, the DCE and a degenerate parametric
amplifier (DPA) can be related by considering the case of a
single-mode cavity with a sinusoidally time-dependent bound-
ary condition.

Assuming the oscillator is initially in the ground state
|0〉in, the particle number expectation value at the output

is Nout = 〈0|a†outaout|0〉in = |β|2. Other than adiabatic
changes from ωin to ωout, β is non-vanishing, and there
is a finite probability of the oscillator being found in an
excited state at the output; the average excitation num-
ber Nout is determined by the coefficient of the negative
frequency (a†in) coefficient in Eq. (10).

Equation (10) is an example of a larger class of trans-
formation called Bogoliubov transformations, where the
ladder operators in the output state may be written as a
linear combination of both initial state creation and an-
nihilation operators with coefficients satisfying the con-
straint given in Eq. (9). All quantum amplification pro-
cesses can be cast as Bogoliubov transformations (Leon-
hardt, 2010). They therefore represent a useful general-
ized framework within which one may compare the vari-
ous amplification methods.
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pump
idler
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FIG. 3 (Color online) The principle of a parametric amplifier:
a pump photon is down-converted by a nonlinear medium into
a signal and an idler photon, whose frequencies add up to that
of the pump photon.

III. VACUUM AMPLIFICATION

In this section we review the main mechanisms by
which vacuum fluctuations are amplified into photons:
the parametric amplifier (PA), Unruh effect (UE), Hawk-
ing radiation (HR), and the dynamical Casimir effect
(DCE). Although these effects were first discovered in
seemingly unrelated contexts, the universal description of
quantum amplification provided by Bogoliubov transfor-
mations suggests these mechanisms are in fact closely re-
lated. Before exploring these effects in detail, we wish to
draw the reader’s attention to Fig. (2), which highlights
in summary form the key conditions under which the var-
ious amplification mechanisms may be related. Fig. (2)
serves to motivate the subsequent sections, where the
depicted relationships are made explicit, and thus linked
back to the parametric amplifier, our main objective.

A. Parametric amplification

All quantum amplifiers are inherently nonlinear sys-
tems (Clerk et al., 2010). One of the simplest nonlinear
interactions, indicated in Fig. 3, involves a pump photon
of frequency ωp being converted into two photons denoted
the signal (ωs) and idler (ωi), obeying the frequency re-
lation ωp = ωs+ωi. This process is known as parametric
down conversion and occurs in a dielectric medium with
a χ(2) nonlinearity, the first nonlinear susceptibility in a
medium without inversion symmetry (Boyd, 2008).

When a cavity is driven by a classical pump such as a
laser or microwave generator that is not significantly at-
tenuated by the loss of photons via the down-conversion
process, this nonlinear interaction can be described by an
effective Hamiltonian which, in the rotating frame, takes
the form

H = ih̄η(b†sb
†
i − bsbi), (11)

where η is the pump amplitude dependent coupling
strength, and the subscripts denote signal (s) and idler
(i) modes respectively. In the special case that the signal
and idler modes coincide bs = bi = b, Eq. (11) describes a
degenerate parametric amplifier (DPA) where the pump
drives the cavity mode at twice it’s resonance frequency.
The Heisenberg equations of motion that follow from the

Hamiltonian Eq. (11) lead to the time-evolution of the
cavity mode operator

b(t) = b(0) cosh (2ηt) + b(0)† sinh (2ηt) , (12)

which is characteristic of a squeezing transformation
(Walls and Milburn, 2008). Comparison with Eq. (10)
indicates that Eq. (12) is in fact a Bogoliubov transfor-
mation with α = cosh (2ηt) and β = sinh (2ηt). These
coefficients are easily seen to satisfy the symplectic rela-
tion Eq. (9). Assuming the mode is initially in the ground
state, the number of excitations at later times is calcu-
lated from the coefficient of the negative frequency com-
ponent (b†) to be N =

〈
b†(t)b(t)

〉
= |β|2 = sinh2(2ηt).

The fact that N grows as a function of time, even when
starting from the vacuum state, is a purely quantum me-
chanical manifestation of parametric amplification of vac-
uum fluctuations. The effects of the squeezing transfor-
mation can be seen by defining quadrature amplitudes
X1 = b + b† and X2 = (b − b†)/i related to the mode’s
position and momentum operators respectively. By anal-
ogy with the classical parametric amplifier in Eq. (2),
the DPA is a phase-sensitive amplifier, amplifying one
quadrature of motion X1(t) = e2ηtX1(0), while attenu-
ating the other quadrature X2(t) = e−2ηtX2(0).

The more general case of independent signal and
idler modes represents a phase-sensitive amplification
process know as the non-degenerate parametric ampli-
fier (NDPA). The time-evolution of the signal and idler
modes under the influence of the Hamiltonian (11) is de-
scribed by a pair of Bogoliubov transformations

bs(t) = bs(0) cosh (ηt) + b†i (0) sinh (ηt)

bi(t) = bi(0) cosh (ηt) + b†s(0) sinh (ηt) , (13)

where again, the number of quanta in each of the modes
is easily calculated from the coefficients of the creation
operator components, Ns = Ni = sinh2(ηt), assuming
both modes are initially in their ground states.

In the Schrödinger picture, the wave function for the
signal and idler modes is

|Ψ(t)〉 =
1

cosh ηt

∞∑

n=0

(tanh ηt)
n |n〉s ⊗ |n〉i , (14)

where |n〉s ⊗ |n〉i corresponds to n photons in each of
the signal and idler modes. Given the form of the trans-
formation in Eq. (13), the resulting state of the system
(14) is a two-mode squeezed state, where ηt plays the
role of squeezing parameter. In contrast to the DPA,
the squeezing of the NDPA does not occur in a single
mode, but rather in the composite system formed by the
combined signal and idler modes (Walls and Milburn,
2008). The two-mode squeezed state (14) is an exam-
ple of an Einstein-Podolsky-Rosen (EPR) state (Einstein
et al., 1935) where the correlations between the signal
and idler modes is stronger than that allowed by classi-
cal theory (Reid and Drummond, 1988).
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In cases where, either by choice or design, only one
of the two modes is accessible, measurements on the re-
maining mode do not contain enough information to re-
construct Eq. (14). Given the close relationship between
information and entropy, this loss of information is en-
coded in the entropic properties of the measured single-
mode state. As a bipartite system, the entropy of the
measured mode may be calculated via the von Neumann
entropy S of the reduced density matrix obtained by trac-
ing over the unobserved mode, also referred to as the en-
tanglement entropy (Nielsen and Chuang, 2000). With
the signal (s) mode as the observed mode, tracing over
the unobserved idler (i) mode, we obtain for the entan-
glement entropy S = −Trρs ln ρs:

S = − ln
[
1− e−h̄ωs/kBT (t)

]
− h̄ωs
kBT (t)

[
1− eh̄ωs/kBT (t)

]−1

,

(15)
which is just the thermal entropy (neglecting the overall
Boltzmann factor) of a quantum harmonic oscillator with
temperature T (t) related to the squeezing parameter via

tanh2 ηt = exp

[
− h̄ωs
kBT (t)

]
. (16)

Therefore, the non-vanishing entropy or equivalently in-
formation lost, by tracing over one of the two modes in
a particle pair squeezed state (14) signals that the re-
maining mode is in a mixed, thermal state (Barnett and
Knight, 1985; Yurke and Potasek, 1987).

To understand the origin of the thermal state (15) we
note that, as unbounded harmonic oscillator mode sys-
tems, both the signal and idler states contain an infinite
ladder of energy levels. In order to obtain a finite value
for the entropy, the average energy, or equivalently num-
ber of particles, in each of the modes must also be speci-
fied (Barnett and Phoenix, 1989, 1991). Although we do
not know the quantum state of the idler mode after trac-
ing over it in Eq. (14), the correlations between photon
number in the signal and idler modes, enforced by energy
conservation, gives us implicit knowledge about the aver-
age energy of the idler state. Knowing only the energy of
the idler mode, maximizing the entropy, or equivalently
minimizing the information, of the idler state with re-
spect to this constraint yields the thermal state entropy
of Eq. (15). The bipartite structure of Eq. (14) demands
that this same value of the entropy hold for the measured
signal mode as well.

B. The Unruh effect

Conceptually, perhaps the simplest way to generate
particles from the vacuum is for an observer to acceler-
ate. Unlike an inertial observer in Minkowski space, an
observer undergoing constant acceleration is out of causal
contact with a portion of the entire space-time due to

the presence of a horizon. As a result, the initially pure
Minkowski quantum vacuum state will appear to the ob-
server to be in a mixed thermal state (Crispino et al.,
2008; Unruh, 1976).

Before exploring this Unruh effect (UE) (Unruh, 1976),
we need to define what is meant by “an observer”. As
the name suggests, an observer should be a witness to
the dynamics under consideration. As our focus here is
on the generation of particles from the quantum vacuum,
the observer is ideally represented by a particle-detector.
Although a variety of model systems may be used for
the particle-detector, for our purposes the observer will
be represented as a two-level system, or qubit, detector
with ground |0〉 and first-excited |1〉 energy levels sepa-
rated by an energy h̄ω01. In addition, we will assume
a point-like detector that is linearly-coupled to the op-
erators representing the quantized field or cavity mode
of interest (Birrell and Davies, 1982). We will further
suppose that the detector is weakly coupled to the field
modes so as to allow the transition probabilities between
the qubit ground and excited states to be calculated per-
turbatively (Clerk et al., 2010). Our choice of two-level
detector will be further motivated in Sec. IV, where we
discuss the use of a superconducting phase-qubit as a
single-shot microwave photon counter (Chen et al., 2011).

Having established the definition of an observer, let
us now consider the worldline of an observer undergoing
a constant proper acceleration a. In Minkowski coordi-
nates (ct, x), the paths of observers with constant accel-
eration are hyperbolas in space-time as seen in Fig. 4.
For a > 0, these paths trace out a section of Minkowski
space known as the Right Rindler wedge (RRW) defined
by the relation |ct| < x, and may be described using
the Rindler coordinates, (cτ, ξ), describing the observer’s
path through Minkowski spacetime as viewed by the ob-
server herself, and defined through the relations

ct = ξ sinh
(aτ
c

)
; x = ξ cosh

(aτ
c

)
, (17)

where τ is the observer’s proper time and ξ = c2/a is
the distance from the vertex (i.e. the closest point to the
origin) of the observer’s motion to the origin. In switch-
ing to Rindler coordinates, the observer moves only in the
direction of increasing proper time τ , while the spatial co-
ordinate ξ remains constant, thus greatly simplifying the
resulting equations of motion. Rewriting the Minkowski
metric ds2 = −c2dt2 + dx2 in Rindler coordinates gives
the Rindler metric

ds2 = − (αξ)
2
dτ2 + dξ2, (18)

where α = a/c is a parameter characterizing the proper
acceleration. Relative to the RRW, we may also define
mathematically a second Left Rindler wedge (LRW) with
x < |ct| by reflecting the RRW across the ct-axis (t→ −t)
and then across the x-axis (x→ −x) (Birrell and Davies,
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FIG. 4 (Color online) Paths of accelerated observers in
Rindler coordinates (cτ, ξ) with proper time τ and constant
acceleration a = c2/ξ as viewed in Minkowski space-time with
coordinates (ct, x). Lines (dashed) of constant proper time
τ are also indicated. Observers in the right Rindler wedge
(RRW) are out of causal contact with the left Rindler wedge
(LRW) due to the presence of a horizon at ct = ±x. Arrows
give the direction of increasing proper time in each Rindler
wedge.

1982). This change in sign for the time-coordinate in
the LRW causes the proper-time τ to run backwards in
Minkowski time t as shown in Fig. 4. The two Rindler
wedges are causally disconnected from each other as a re-
sult of a horizon located on the lightcone ct = ±x. Tra-
jectories of observers are asymptotically bound by this
lightcone for τ → −∞ and τ → ∞ where the observer’s
velocity approaches the speed of light. These limits repre-
sent the past and future horizons, respectively. Likewise,
the path of an observer undergoing infinite acceleration
a→∞ (ξ → 0) lies on the horizon of the RRW, as may
be checked from Eq. (17).

In order to describe the Minkowski vacuum as seen
by the accelerating observer, we will proceed in a man-
ner similar to the time-dependent oscillator example in
Sec. II. First, we find the mode functions and their associ-
ated vacuum states for a scalar quantum field in both the
Minkowski and Rindler spacetimes. We then calculate
the Bogoliubov transformations linking the Minkowski
and Rindler creation and annihilation operators. With
the Bogoliubov transformations in hand, the quantum
state seen by a RRW observer is readily obtained.

Analogously to the position operator for the harmonic
oscillator in Eq. (6), a scalar field in Minkowski space-
time may be expanded as a infinite sum of positive and

negative frequency components,

φ =
∑

j

uM
ωja

M
ωj + ūM

ωja
M,†
ωj , (19)

where the positive-frequency, orthonormal mode field
functions are solutions to the 2D Minkowski wave equa-
tion

[
1

c2
∂2

∂t2
− ∂2

∂x2

]
φ = 0, (20)

and given by the plane-waves

uM
ωj =

1√
4πωj

eikjx−iωjt, (21)

with ωj = c|kj | and −∞ ≤ j ≤ ∞, where the super-
script M signifies belonging to the Minkowski spacetime.
The Minkowski vacuum state |0〉M =

∏
j |0ωj 〉M is de-

fined with respect to the positive frequency modes as the
state that is annihilated by all lowering operators aM

ωj ,

i.e. aM
ωj |0〉

M = 0 for all j.
Of course, the accelerated observer may also define a

vacuum state for the quantum field in the Rindler space-
time using the associated Rindler coordinates. Here,
the orthonormal mode functions may be found by solv-
ing the 2D wave equation Eq. (20) expressed in Rindler
coordinates via Eq. (17). As a static spacetime, the
Rindler metric (18) admits a natural vacuum state |0〉R =∏
j |0ωj 〉R in the RRW with respect to the positive fre-

quency Rindler modes uR
ωj ∝ exp (−iωjτ). Note that the

notion of positivity for the Rindler modes is with respect
to the observer’s proper time τ . The Rindler coordinates
(cτ, ξ) in the LRW are completely independent of those
in the RRW, giving rise to independent vacuum states
for the LRW and RRW spacetimes. Again, the LRW
vacuum state |0〉L =

∏
j |0ωj 〉L is defined with respect

to positive-frequency Rindler modes uL
ωj . However, as a

consequence of the reflection t→ −t used in defining the
LRW, the notion of positive and negative frequencies is
switched in the LRW. The result is a vacuum state in the
LRW that is defined with respect to positive frequency
modes uL

ωj ∝ exp (iωjτ).

The Rindler modes uR
ωj ,u

L
ωj and Minkowski modes uM

ωj
are not independent. Rather, they represent different
expansions of the scalar field φ and therefore are related
by a change of basis. As seen in Fig. 4, the RRW (or
LRW) covers only 1/4 of the entire Minkowski space-
time and as a result the Rindler modes in this region are
not enough to reconstruct the entire Minkowski space-
time modes (Birrell and Davies, 1982; Unruh, 1976). We
can however take a linear combination of modes from
both Rindler wedges and, through analytic continuation
(Boulware, 1975), cover the entire spacetime. In taking
linear combinations of modes from the LRW and RRW,
we have effectively mixed positive and negative frequency
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components. Given our discussion on Bogoliubov trans-
formations in Sec. II, when expressed in this combined
Rindler basis, one should expect the Minkowski vacuum
viewed by the accelerating observer to contain particles.
As we shall see, this is indeed the case.

The general expansion of the Minkowski modes in
Rindler modes reads,

uM
ωj =

∑

i

αR
iju

R
ωi + β̄R

ij ū
R
ωi + αL

iju
L
ωi + β̄L

ij ū
L
ωi (22)

where αR,L
ij and βR,L

ij are Bogoliubov transformation ma-
trices with coefficients given by the Klein-Gordon inner-
product between Minkowski and Rindler modes

αR,L
ij =

〈
uR,L
ωi , u

M
ωj

〉
; βR,L

ij = −
〈
uR,L
ωi , ū

M
ωj

〉
. (23)

The connection between ladder operators and mode func-
tions allows us to use Eq. (22) to establish the Bogoliubov
transformation between Minkowski and Rindler ladder
operators as

aM
ωj =

∑

i

αR
ija

R
ωi + β̄R

ija
†,R
ωi + αL

ija
L
ωi + β̄L

ija
†,L
ωi . (24)

Although we can explicitly evaluate Eq. (23) to ob-
tain the Bogoliubov transformation matrices in (24), the
result does not elucidate the underlying physics of the
amplification process as a single Minkowski mode ωj will
transform into a continuum of Rindler modes. Instead,
we note that the Minkowski vacuum state |0〉M is defined
with respect to the positive frequency modes, uM

ωj , and
any other set of basis mode functions constructed from a
linear combination of these Minkowski modes will leave
the vacuum state |0〉M unchanged (Birrell and Davies,
1982). We therefore construct the Unruh basis (Unruh,

1976) set of mode functions
{
v

(1),M
ωj , v

(2),M
ωj

}
, from linear

combinations of positive frequency Minkowski modes

v(1),M
ωj =

∑

i

ε
(1)
ij u

M
ωi ; v(2),M

ωj =
∑

i

ε
(2)
ij u

M
ωi (25)

such that, when expanded in the Rindler modes{
uR
ωj , u

L
ωj

}
, diagonalizes the Bogoliubov transforma-

tion matrices αij in Eq. (24). For the annihilation

operators b
(1),M
ωj , b

(2),M
ωj associated with mode functions

v
(1),M
ωj , v

(2),M
ωj , this procedure yields the Bogoliubov trans-

formations for the Rindler operators (Birrell and Davies,
1982; Unruh, 1976)

b(1),M
ωj = aR

ωj cosh (r) + a†,Lωj sinh (r)

b(2),M
ωj = aL

ωj cosh (r) + a†,Rωj sinh (r) , (26)

with the effective squeezing parameter r defined by
tanh r = exp (−πωj/α). In the Unruh basis we have
a monochromatic Bogoliubov transformation relating a

single Minkowski mode ωj to the same mode in both the
left and right Rindler wedges. More importantly, the
Bogoliubov transformations (26) are of the same form as
the transformations for the NDPA in Eq. (13). Thus we
establish the connection between the NDPA and the UE
summarized in Fig. (2).

For a single mode of the Minkowski vacuum |0ωj 〉M,
the Bogoliubov transformations in Eq. (26) lead to the
two-mode squeezed state for the Rindler modes

|0ωj 〉M =
1

cosh r

∞∑

n=0

(tanh r)
n |nωj 〉L ⊗ |nωj 〉R. (27)

From the viewpoint of the observer in the RRW, the pres-
ence of the horizon prevents access to the modes in the
LRW and they must be traced over in Eq. (27). By anal-
ogy with the NDPA in Sec. III.A, the observed mode in
the RRW are in a thermal state with temperature related
to the squeezing parameter r as follows:

tanh2 (r) = e−2πω/α = exp

(
− h̄ω

kBTU

)
, (28)

where the Unruh temperature is

TU =
h̄α

2πkB
, (29)

in terms of the proper acceleration parameter α = a/c.
Here, the energy required to generate particles from the
vacuum comes from the work needed to maintain the ob-
servers constant acceleration. Like the parametric am-
plifier, Sec. III.A, we have implicitly assumed the energy
of the accelerating observer is unaffected by the creation
of particles. The transfer of energy to the field modes is
quite natural given that our detector is linearly-coupled
to the operators representing the quantized scalar field.
As discussed earlier, these field modes are not local to the
observer, but rather form a basis set covering the entire
spacetime. As a result, the full spacetime of a Rindler
observer is in a thermal state characterized by the Unruh
temperature Eq. (29).

An equivalent way to understand the origin of the Un-
ruh temperature TU is to consider the effect of the horizon
in the accelerating reference frame on a monochromatic
plane wave with frequency Ω moving in the x-direction
of Minkowski space, φ(x, t) = exp [−iΩ (t− x/c)]. From
the viewpoint of the accelerating observer, this wave may
be expressed via Eq. (17) as

φ(τ) = exp

{
−iΩξ
c

[sinh (ατ)− cosh (ατ)]

}

= exp

[
i
Ω

α

(
e−ατ

)]
, (30)

where we have used ξ = c2/a. We see that the wave
is no longer monochromatic, but is rather exponentially
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red-shifted (Doppler shifted) with an e-folding time de-
termined by the observer’s acceleration α. Upon Fourier
transforming Eq. (30), f(ω) = 1√

2π

∫∞
−∞ dτ φ(τ)e+iωτ ,

the effect of this red-shift can be seen in the resulting
power spectrum, P (ω) = |f (ω)|2, which does not vanish
at negative frequencies:

P (−ω) = |f(−ω)|2 =
2π

ωα

1

e
2πω
α − 1

; ω > 0. (31)

Comparing with a Planck distribution, we again recover
the Unruh temperature Eq. (29) (Padmanabhan, 2005).

For the two-level observer/detector, the ratio of the
power spectrum P (ω) evaluated at negative and posi-
tive qubit transition frequencies, ∓ω01 respectively, can
be related to the Fermi golden rule transition rates Γ
between ground and excited-state energy levels (Clerk
et al., 2010):

P (−ω01)

P (ω01)
=

Γ|0〉→|1〉

Γ|1〉→|0〉
= exp

[
−h̄ω01

kBTU

]
, (32)

which is identical to the detailed balance relation for tran-
sition rates in a thermal environment. In this way, the
negative frequency terms represent the absorption of en-
ergy by the observer from the environment, whereas pos-
itive frequencies indicate emission. The excitation of the
two-level detector can only occur if there are particles
in the field mode to which it is coupled. The negative-
frequency components signal the presence of particles
as seen by the observer, and the departure from the
Minkowski vacuum state. From the viewpoint of the ac-
celerated observer, Eq. (32) indicates that there is no
difference between the transformed Minkowski vacuum
state and a thermal environment at the Unruh tempera-
ture. We must therefore consider the Unruh temperature
as corresponding to the actual physical temperature of
the environment as seen by the observer.

Although the UE shares many features with the NDPA
in Sec. III.A, there are several important differences. For
a constant acceleration, the squeezing parameter r, and
therefore Unruh temperature TU, is time independent.
Likewise, Eq. (27) shows that TU is the same for any
choice of mode frequency ωj . This is in contrast to the
parametric amplifier where the effective temperature is
time dependent [Eq. (16)] due to particle build up and
with rates that depend on the mode coupling strength,
pump amplitude and frequency (Leonhardt, 2010). Fur-
thermore, in contrast to the NDPA where in principle
both modes of the two-mode squeezed state (14) can be
measured, the existence of a horizon for the accelerat-
ing observer allows only those modes in the RRW to be
measured. The resulting thermal environment is of fun-
damental importance to quantum information and en-
tanglement in relativistic systems (Alsing and Milburn,
2003; Fuentes-Schuller and Mann, 2005; Hartle, 1995;
Peres and Terno, 2004).

C. Hawking radiation

One of the most astonishing predictions of general rel-
ativity is that of a black hole, a region of spacetime where
gravity is so strong that not even light can escape its pull.
When viewed by an observer at rest far from the black
hole, a non-rotating, uncharged black hole with mass M
can be described by the Schwarzschild metric

ds2 = −
(

1− rs
r

)
c2dt2 +

(
1− rs

r

)−1

dr2 + r2dΩ2 (33)

where the radial r coordinate is defined such that the
area of a sphere is given by A = 4πr2 and the t coordi-
nate gives the time as measured by a static observer at
r =∞. Schwarzschild radius rs = 2GM/c2 is defined as
the radius at which the timelike metric term proportional
to dt2 vanishes. This denotes the boundary of the black
hole called the event horizon, and also serves to define the
black hole’s surface area ABH. A more physical descrip-
tion of the horizon is given in Fig. 5 where we consider
the gravitational collapse of a spherical object and the
effect of the resulting horizon on the causal structure of
spacetime and the propagation of photons.

Given the relation between mass and energy, E = Mc2,
the mass-dependence of the Schwarzschild radius rs may
be used to write the energy-conservation relation for the
black hole

dE = c2dM =
κc2

8πG
dABH, (34)

where

κ =
c4

4GM
, (35)

is the surface gravity of the black hole: the force/mass
exerted at infinity needed to keep a small test mass sta-
tionary at the horizon. For a black hole, the inability of
light to escape beyond the event horizon out to spatial
infinity, suggests that the horizon may be viewed as a uni-
directional surface. Objects can fall into a black hole and
increase its mass, but a reduction in mass is impossible
as nothing can escape. This idea was used by (Hawk-
ing, 1972) to prove that any physical process necessarily
increases the surface area of a black hole dABH ≥ 0.
Shortly after, it was noted by (Bekenstein, 1973) that
this increase in area bore a striking resemblance to the
second law of thermodynamics: the total entropy of an
isolated system does not decrease. This suggests that
Eq. (34) may be recast in the form of the first law of
thermodynamics dE = TdS where T is the temperature
of the system in thermodynamic equilibrium. Later, the
description of black hole mechanics was extended to in-
clude all four thermodynamic laws (Bardeen et al., 1973):
black holes are intrinsically thermodynamical objects.

Using dimensional analysis, the relationship between
area and entropy may be written in terms of the rele-
vant fundamental constants as dABH = (λGh̄/kBc

3)dSBH
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FIG. 5 (Color online) Formation of a horizon (black) by the
gravitational collapse of a spherical object. Before the hori-
zon forms, light rays (red) leaving the surface of the object
(blue) are free to propagate out to spatial infinity. In contrast,
once the mass of the body is within the Schwarzschild radius
rs = 2GM/c2, light rays are trapped behind the horizon and
eventually encounter the singularity (dashed line). The hori-
zon demarcates the last light ray able to escape from the
surface to infinity and the first trapped ray inside the radius
rs. Equivalently, the horizon can be characterized by looking
at the causal structure of spacetime indicated by light-cones
(green) that give the direction of propagation for light rays at
a given point. As one approaches the horizon, the light-cone
begins to tilt toward the black hole singularity. On the hori-
zon, the light-cone aligns along the ct-direction such that a
light ray emitted from the horizon is stationary in space. As
the time-component of the metric vanishes on the horizon, a
light ray on the horizon also appears frozen in time. Inside
the horizon, even time itself is points toward the singularity,
so that nothing can escape.

where λ is an undetermined dimensionless constant. We
may therefore express Eq. (34) as the thermodynamic
relation

dE = THdSBH =
h̄κ

8πkBc
λdSBH, (36)

which suggests that a black hole not only absorbs energy,
but also emits radiation with a temperature proportional
to the surface gravity Eq. (35). This result is further mo-

tivated by the fact that the surface gravity is constant
over the horizon of a stationary black hole, a property
that is reminiscent of the uniform temperature of a ther-
mal body in equilibrium; this constitutes the zeroth law
of black hole mechanics (Bardeen et al., 1973). Although
these considerations argued for the existence of a black
hole temperature, the inability of anything to escape be-
yond the horizon suggested that the effective tempera-
ture of a black hole is actually zero: TH has no meaning
as a physical temperature. This conventional viewpoint
was overturned by Hawking using quantum field theory
in curved spacetime (QFTCS) to show that a black hole
emits black body radiation with a Hawking temperature

TH =
h̄γ

2πkB
, (37)

characterized by the surface gravity parameter γ = κ/c
(Hawking, 1974, 1975). In this way, Hawking was not
only able to give a physical interpretation to the black
hole temperature TH, but was also able to solidify the
link between the black hole area dABH and entropy dSBH,
with the proportionality constant fixed to be λ = 4.

When viewed as a particle production process, Hawk-
ing radiation (HR) has a simple interpretation. As shown
in Fig. 6, vacuum fluctuations produce pairs of virtual
particles that quickly annihilate each other when far from
the horizon. In contrast, near the horizon one particle in
the pair may be trapped inside the horizon, unable to re-
combine with its partner. The particle outside the hori-
zon is then free to propagate out to an observer at spatial
infinity. The energy necessary for the outflow of parti-
cles comes from the gravitational field produced by the
black hole’s mass M which, due to energy conservation,
must decrease over time as radiation is emitted. With the
surface gravity (35) being inversely proportional to the
black hole mass and proportional to the Hawking tem-
perature, the latter increases as the black hole radiates
away energy. Unabated, the black hole experiences an
unbounded increase in its temperature, and ultimately
complete evaporation.

Although a black hole’s mass M decreases as HR is
emitted, in typical derivations of the Hawking effect that
use QFTCS (Boulware, 1976; Hartle and Hawking, 1976;
Hawking, 1975), the black hole mass, and therefore the
spacetime metric (33), is considered to be fixed through-
out the calculation. This is for two reasons: (i) The
power output from the Hawking process is exceedingly
low for black holes with masses above the Planck mass
mP =

√
h̄c/G ∼ 2 × 10−8 kg. In this situation, the

net loss of energy due to HR is a negligibly small por-
tion of the total black hole energy, and can safely be
ignored. For example, a relatively small black hole may
be close to the mass of the sun ∼ 1038 kg, and is therefore
well above this Planck scale. (ii) Allowing for black hole
evaporation introduces explicit time-dependence in the
spacetime metric. However, the connection between the
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FIG. 6 (Color online) Cartoon of a black hole with vacuum
fluctuations. Far from the horizon, vacuum fluctuations result
in virtual particles that quickly annihilate each other. At the
horizon however, one particle in a virtual pair may be trapped
inside the horizon, allowing its partner to escape to arbitrary
large distances—the Hawking effect.

zeroth and first-law of thermodynamics to those of black
hole mechanics relies on the assumption of a stationary
spacetime and a well defined surface gravity; conditions
which are violated during evaporation (Wald, 2001).

In essence, the fixed mass condition assumes a classi-
cal source of energy with fixed amplitude that cannot be
depleted through the emission process. Although this as-
sumption appears to be unique to black holes, we have in
fact made use of similar approximations for both the PA
and UE considered in Secs. (III.A) and (III.B), respec-
tively. For the PA, our use of a classical fixed amplitude
pump mode plays an analogous role to the fixed black
hole mass. Likewise, in the UE we implicitly assumed
that the source of the observer’s acceleration had an un-
limited supply of energy so as to maintain the proper
acceleration a indefinitely. We can in fact make use of
this fixed mass condition, via the surface gravity (35), to
relate the emission of HR to the UE through Einstein’s
equivalence principle relating inertial and gravitational
accelerations (Einstein, 1907), as we now demonstrate
below.

With HR generated close to the black hole horizon [see
Fig. 6], the relationship to the UE is elucidated by tak-
ing the near-horizon approximation to the Schwarzschild
metric Eq. (33). To explore the near-horizon region of
the black hole, we replace the Schwarzschild radial coor-
dinate r with a length

x =

∫ r

rs

√
grr(r′)dr

′ =

∫ r

rs

(
1− rs

r′

)−1/2

dr′, (38)

characterizing the proper distance close to the horizon.
Near the horizon, x ≈ 2

√
rs(r − rs), and the near-

horizon form of the Schwarzschild metric (33) expressed
in terms of this proper distance becomes (Fabbri and
Navarro-Salas, 2005)

ds2 = − (γx)
2
dt2 + dx2, (39)

where we have ignored the coordinates transverse to the
radial direction, as close to 100% of the HR is emitted

in the lowest, l = 1, angular momentum state (Page,
1976); the black hole emits as close to radially as possible
(Bekenstein, 2002). This is due to conformal symmetry
in the near-horizon region (Carlip, 2007), and allows for
the complete description of HR using only a single spatial
dimension. The power emitted by HR in the radial direc-
tion may then be calculated assuming the unidirectional
emission of power Ė1D from a one-dimensional blackbody
(Nation et al., 2010):

Ė1D =
πk2

B

12h̄
T 2

H. (40)

The near-horizon approximation to the Schwarzschild
metric (39) is of the same form as the Rindler space-
time (18) of an accelerating observer, where the effec-
tive acceleration is provided by the surface gravity of the
black hole κ (35). The replacement α → γ in Eq. (18),
which gives the metric (39), is a manifestation of Ein-
stein’s equivalence principle, and allows us to carry over
the results obtained for the UE to the present case of HR.
In particular, we can replace the acceleration parameter
α with γ in the Unruh temperature (29), which then
agrees with Eq. (37) for the temperature of a black hole.
Finally, as in the UE (27) and parametric amplification
(14), the photon pairs generated via the Hawking process
in this near-horizon region are entangled as a two-mode
squeezed state.

It should be noted however that the Hawking radia-
tion temperature (37) applies to an observer at rest far
from the black hole. This is indicated by the use of the
Schwarzschild time t in (39) rather than the proper time
τ of an Unruh observer from Eq. (18). The surface grav-
ity κ is defined with respect to the observer at infinity
as

κ = V a|r=rs , (41)

where

a(r) =
GM

r2
√

1− rs
r

(42)

is the radial acceleration needed to keep an observer sta-
tionary at the radius r, and V (r) =

√
1− rs/r is the

red-shift factor accounting for the energy lost by an es-
caping photon due to the gravitational potential of the
black hole. It is easy to check that Eq. (41) agrees with
our earlier definition (35). We may calculate the Hawk-
ing temperature at an arbitrary radius r away from the
horizon taking into account the red-shift as

T (r) =
h̄(κ/c)

2πkBV (r)
(43)

which, as one approaches the horizon, gives T →
h̄(a/c)/(2πkB) with a given by Eq. (42). This result is
exactly the same as that obtained for the Unruh temper-
ature (29) in Sec. III.B. By removing the effects of the
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gravitational red-shift, HR is seen to be nothing other
than the UE for an accelerating observer near the hori-
zon. Keep in mind that the acceleration Eq. (42), like
the corresponding Unruh acceleration a, diverges as one
approaches the horizon. Thus we establish the connec-
tion between the Unruh and Hawking effects through the
equivalence principle, as summarized in Fig. (2).

Even though HR has been derived in a variety of
ways (Boulware, 1976; Hartle and Hawking, 1976; Hawk-
ing, 1975; Parentani, 1999; Parikh and Wilczek, 2000),
there remain several unanswered questions. One con-
cerns the trans-Planckian problem (Jacobson, 1991; Un-
ruh and Schützhold, 2005), where the usual derivation of
the thermal HR requires that the photon’s linear disper-
sion relation holds up to arbitrarily high energies; classi-
cal notions of spacetime are expected to break down near
the Planck energy, EP =

√
h̄c5/G ∼ 1019 GeV. Another

problem concerns the consequences of complete evapo-
ration of a black hole via the emission of thermal HR;
information stored in the black hole is destroyed, signal-
ing a breakdown in the unitary evolution in quantum
mechanics. This is known as the information loss para-
dox (Mathur, 2009). A third problem is the difficulty
in measuring and verifying the negligibly low radiation
temperatures predicted for astronomical black holes, i.e.
TH ∼ 10−9 K for a solar mass black hole. These dif-
ficulties have called into question some of the approxi-
mations made in QFTCS calculations of HR, as well as
any hope of experimental confirmation. However, light
may be shed on some of these problems by considering
analogue condensed matter systems.

In preparation for discussing these HR analogues in
Sec. IV.D below, we note that, from a calculational stand-
point, the Schwarzschild metric (33) is not ideal since it
is singular at the horizon. It is therefore beneficial to
choose coordinates that remain well-behaved in the hori-
zon region. A particularly good choice are the Painlevé-
Gullstrand coordinates (Painlevé, 1921)

ds2 = −
[
c2 − u (r)

2
]
dτ2 + 2u (r) drdτ + dr2 + r2dΩ2,

(44)
where the Schwarzschild time t is replaced by the proper
time τ of a free-falling observer, while the spatial coor-
dinate remains the same as for the Schwarzschild metric.
For an unlucky observer starting from rest at spatial in-
finity and free-falling into a black hole, the horizon occurs
where the observer’s proper time velocity u(r) is equal to
the vacuum speed of light c.

D. The dynamical Casimir effect

The dynamical Casimir effect (DCE) concerns the gen-
eration of photons from the quantum vacuum due to a
time-dependent boundary condition, imposed by e.g. a
moving mirror. In contrast to the previously discussed

m
irr

or

position

time

vacuum
uctuations

photon pair

FIG. 7 (Color online) An oscillating mirror in free space gen-
erates photons due to its interaction with vacuum fluctua-
tions. This effect is known as the dynamical Casimir effect.
The photons are generated in pairs with frequencies that add
up to the frequency of the mirror’s oscillation. The photon
pair production can be interpreted as up-conversion of virtual
photons of the quantum vacuum fluctuations, or, equivalently,
as down-conversion of pump phonons from the oscillatory mo-
tion of the mirror.

UE in Sec. III.B, where it was shown that the notion of
particle is observer dependent, and where the Minkowski
vacuum appears as thermal radiation to an accelerated
observer, here we will see that an accelerated mirror can
result in radiation that is detectable by an inertial ob-
server, e.g., an observer at rest in Minkowski space far
from the moving mirror. See Fig. 7 for a schematic illus-
tration of this process.

Consider a massless scalar field φ(x, t) in two-
dimensional spacetime satisfying the Klein-Gordon wave
equation

∂2φ

∂t2
− ∂2φ

∂x2
= 0, (45)

and subject to the boundary condition imposed by a mir-
ror with the trajectory z(t),

φ(z(t), t) = 0. (46)

Following (Moore, 1970) and (Fulling and Davies, 1976),
we perform a conformal (i.e. light-cone preserving) coor-
dinate transformation defined by

t− x = f(w − s), (47)

t+ x = g(w + s). (48)

The wave equation and the metric are invariant under
conformal coordinate transformations and retain their
usual form in the (w, s) coordinates:

∂2φ

∂w2
− ∂2φ

∂s2
= 0, (49)

dx2 − dt2 = f ′(w − s)g′(w + s)
(
ds2 − dw2

)
. (50)
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If we impose the condition that x = z(t) is mapped to
s = 0 [see Fig. 8(a)], we get the static boundary condition
in the transformed coordinates

φ(0, w) = 0, (51)

and the following constraint on the functions f and g

1

2
[g(w)− f(w)] = z

{
1

2
[g(w) + f(w)]

}
. (52)

In the (w, s) coordinate system, the problem is static
and can be readily solved. The standard mode functions
are

φω(w, s) = (πω)−
1
2 sinωse−iωw, (53)

which, in the original (t, x) coordinates, take the form

φω(x, t) = i(4πω)−
1
2 [e−iωg

−1(t+x) − e−iωf
−1(t−x)].(54)

The problem of finding the appropriate mode functions
is therefore reduced to finding the functions g and f and
their inverses, given a particular mirror trajectory z(t).
For a trajectory z(t), solutions that satisfy Eq. (52) usu-
ally exist, but analytical expressions for f(w) and g(w)
can be difficult to obtain.

The same approach can be used for two mirrors that
form a cavity in two-dimensional spacetime (Moore,
1970). Assuming that one mirror is fixed at x = 0 and
that the second mirror follow a trajectory x = z(t), the
boundary conditions are

φ(0, t) = φ(z(t), t) = 0. (55)

Applying the conformal transformation in Eqs. (47-48),
that maps the mirror coordinates as x = 0↔ s = 0 and
x = z(t) ↔ s = 1 [see Fig. 8(b)], results in the static
boundary condition

φ(s = 0, w) = φ(s = 1, w) = 0. (56)

Setting f(u) = g(u) and denoting f−1(u) = R(u) yields
the constraint

R(t+ z(t))−R(t− z(t)) = 2. (57)

This functional equation was first derived by Moore
(Moore, 1970), and is often called the Moore equation.
Given the solution R(u) to Eq. (57), we can write the
normal modes in the original (x, t) coordinate as

φn(x, t) = (4πn)−
1
2 [e−iπnR(t+x) − e−iπnR(t−x)]. (58)

Again, the difficulty of the problem has been reduced to
solving the functional equation Eq. (57).

The mode functions φn(x, t) are orthonormal with re-
spect to the Klein-Gordon inner product, and can be used
in the usual canonical quantization of the field

φ(x, t) =
∑

n

anφn(x, t) + a†nφ̄n(x, t), (59)

FIG. 8 (Color online) Mirror trajectories in the original coor-
dinates and the transformed coordinates for a single mirror (a)
and a cavity with variable length (b). The coordinate trans-
formations simplify the boundary-value problem, but finding
the correct transformation functions (f , g, and R, respec-
tively) can itself be a difficult problem.

where the creation and annihilation operators an and a†m
satisfies the usual commutation relation [an, a

†
m] = δnm.

The state of the field can be characterized by e.g. the
energy-momentum tensor, Tαβ(x, t), (Fulling and Davies,
1976; Law, 1994) or by the photon statistics obtained
by expanding the field in the Fock state basis (Dodonov
et al., 1990). The advantage of the energy-momentum
tensor, and in particular the energy-density component
T00(x, t), is that it is a local quantity that describes the
radiation at the point (x, t), regardless of the behavior
of the boundary conditions at that point in time, but
on the other hand it requires a regularization procedure
to yield finite results. In contrast, the Fock-state rep-
resentation is a decomposition in global modes that de-
pends on the boundary condition. The photon statis-
tics usually gives an intuitive picture of the field state,
but with time-dependent boundary conditions there is no
well-defined Fock-state basis with a time-translationally
invariant vacuum state (Fulling and Davies, 1976; Moore,
1970). However, it is possible to formulate a meaningful
photon definition by considering a scattering-type prob-
lem for bounded motion, with stationary mirrors in the
regions t < 0 and t > T , see Fig. 8. The Fock-state basis
for the stationary-mirror field can be used for the in and
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out regions, corresponding to t < 0 and t > T , respec-
tively. We can formally write the field in the stationary
regions as

φin(x, t) =
∑

n

(
anψ

(0)
n (x, t) + h.c.

)
, (60)

φout(x, t) =
∑

n

(
bnψ

(0)
n (x, t) + h.c.

)
, (61)

where ψ
(0)
n (x, t) = i(πn)−

1
2 sinωnxe

−iωnt is the mode
functions for the stationary mirror problem with reso-
nance frequencies ωn = πn/z0 and mirror separation z0.
The operators an and bn are related through the Bogoli-
ubov transformation

bm =
∑

n

(
anαnm + a†nβ̄nm

)
. (62)

The coefficients αnm and βnm are given by projecting the
mode functions for the nonstationary region 0 ≤ t ≤ T
at time t = T on the stationary mirror mode functions,
using the Klein-Gordon inner product,

αnm =
〈
ψ(0)
m (x, T ), φn(x, T )

〉
, (63)

βnm =
〈
ψ(0)
m (x, T ), φ̄n(x, T )

〉∗
, (64)

where we have taken φn(x, 0) = ψ
(0)
n (x, 0). For the in

and out regions the photon statistics is well-defined. If,
for example, the field is in the vacuum state at t < 0,
then the final photon number in the nth mode at t > T
is

Nout
m =

〈
b†mbm

〉
in

=
∑

n

|βnm|2. (65)

The condition for which βnm = 0 can be found by
equating the energy flux 〈T01(x, t)〉 to zero. (Fulling and
Davies, 1976) showed that the mirror trajectories that
result in a field without radiation are those with uniform
acceleration (including, of course, zero acceleration). In
contrast, mirror trajectories with non-uniform accelera-
tion result in radiation 〈T01(x, t)〉 6= 0, which in the out
region t > T corresponds to βnm 6= 0 for some n and m.
This effect is often called the dynamical Casimir effect.

Explicit expressions for the Bogoliubov coefficients
Eqs. (63-64) and photon number Nout

m have been eval-
uated for a number of different mirror trajectories with
nonuniform acceleration. A mirror trajectory of consid-
erable theoretical interest is the exponentially receding
mirror with a velocity that asymptotically approaches
the speed of light,

z(t) = −t−A exp (−2κt) +B, t > 0 (66)

where A,B, κ > 0 are constants and z(t) = 0, t ≤ 0.
This particular mirror trajectory results in exponential
Doppler shift and radiation with a thermal black-body
spectrum, with an effective temperature that is related

to how fast the mirror velocity approach the speed of
light Teff = κ/2π (Davies, 1978). Furthermore, an ef-
fective horizon occurs, after which a light ray from an
observer toward the mirror will never reach and reflect
off the mirror, but will instead travel to infinity along
with the mirror. Due to the appearance of this effec-
tive horizon, the mathematical analysis of the radiation
produced by the receding mirror is identical to the deriva-
tion of Hawking radiation from black holes, see Sec. III.C.
Thus we establish the connection between the dynamical
Casimir effect and Hawking radiation, as summarized in
Fig. (2).

From the point of view of experimentally detecting the
radiation from a non-uniformly accelerated mirror, the
most practical class of trajectories are periodic motions,
and in particular sinusoidal motion. For example, a single
mirror in free space that performs sinusoidal oscillations
produces a constant average number of photons Nout per
oscillation period (Lambrecht et al., 1996; Neto Maia and
Machado, 1996): Nout ∝ (εω)2, where ε is the amplitude
of oscillations and ω is the frequency of the sinusoidal
mirror trajectory.

An exact solution to Eq. (57) for a cavity with a near-
sinusoidal mirror trajectory was found in (Law, 1994),
where it was shown that the energy density in a cav-
ity with resonantly modulated length acquires a nontriv-
ial structure in the form of wave packets traveling back
and forth in the cavity (see also (Cole and Schieve, 1995;
Dalvit and Mazzitelli, 1998)). The build-up of photons
in a cavity with sinusoidally modulated length was stud-
ied in e.g. (Dodonov and Klimov, 1996; Dodonov et al.,
1990, 1993; Ji et al., 1997; Schützhold et al., 1998). It
was shown that under resonant conditions, i.e., when the
mirror oscillates with a frequency that matches twice the
frequency of a cavity mode, the photon production can
be resonantly enhanced. The cavity photon number was
found to grow as (εωnt)

2 in the short-time limit, and that
the photon production rate is proportional to εωn in the
long-time limit. Here ε is the amplitude of oscillations
and ωn is the frequency of the resonantly driven mode.

The rate of photon build-up in the cavity depends not
only on the motion of the cavity mirrors, but also on the
mode structure of the cavity. The modes of the ideal
cavity considered in e.g. (Dodonov et al., 1990, 1993)
are equidistant in frequency, and as a result significant
intra-mode interaction occur. If, in contrast, the cavity
has only a single mode, or if intra-mode interaction is
negligible due to non-equidistant frequency spacing, the
cavity can be described as a single harmonic oscillator
with time-dependent frequency (Dodonov, 1995; Méplan
and Gignoux, 1996). The Bogoliubov transformations
Eqs. (63-64) for resonant driving then coincide exactly
with those for a degenerate parametric amplifier (see
Sec. III.A), and the photon number in the cavity is there-
fore Nout = sinh2(ηt), where the squeezing parameter in
this case is ηt = εω0t. Thus we establish the connection
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between the dynamical Casimir effect and a degenerate
parametric amplifier, as indicated in Fig. (2). This cor-
respondence between the dynamical Casimir effect in a
single-mode cavity and parametric amplification has also
been discussed in (Schützhold and Unruh, 2005); (Dezael
and Lambrecht, 2010); (Johansson et al., 2010).

It is evident from the discussion above that for the
dynamical Casimir effect to be non-negligible the modu-
lation must also be combined with a relatively large am-
plitude ε and high frequency ω. In fact, the maximum
speed of the boundary in a sinusoidal motion vmax = εω,
must approach the speed of light for significant photon
production to occur (Lambrecht et al., 1996). The DCE
is therefore difficult to observe in experiments using mas-
sive mirrors (Braggio et al., 2005), since such objects can-
not be accelerated to relativistic velocities in practice,
and therefore produce photons only at very small rates.
The situation is improved in a cavity setup, but an im-
portant aspect that affects the photon build-up rate in
a cavity is dissipation (Dodonov, 1998). Although effect
of dissipation is clearly to suppress the build-up of pho-
tons, a dissipative single-mode cavity with quality factor
Q is still expected to be above the threshold for paramet-
ric amplification if εωQ > 1 (Walls and Milburn, 2008).
A large number of photons should accumulate in such
cavities, which therefore are considered promising candi-
dates for experimental demonstration of the DCE (Kim
et al., 2006). Nevertheless, experimental verification of
the DCE in the optical regime, with real massive mirrors,
has not yet been demonstrated in either cavity or single-
mirror setups. As previuosly discussed, this is mainly
due to experimental difficulties in modulating the posi-
tion of the mirrors sufficiently strongly, and the presence
of decoherence, dissipation and thermal noise.

To overcome these difficulties, several systems have
been proposed recently (Braggio et al., 2005; Johansson
et al., 2009, 2010; Naylor et al., 2009; Segev et al., 2007)
that use alternative means of enforcing and modulating
the boundary conditions, using effective massless mirrors.
Experimental investigations of such proposals have been
ongoing for the last few years (Agnesi et al., 2009; Wilson
et al., 2010), and have culminated in the experimental
observation of the DCE (Lähteenmäki et al., 2011; Wil-
son et al., 2011) using a superconducting waveguide. We
discuss the DCE with superconducting circuits in more
detail in Sec. IV.E.

IV. IMPLEMENTATIONS IN SUPERCONDUCTING
CIRCUITS

In this section we will highlight recent work, both ex-
perimental and theoretical, on implementing the ampli-
fication methods discussed in the previous section. The
possibility to generate vacuum amplification effects in su-
perconducting circuit devices is largely due to their use

in quantum information and computation (Buluta et al.,
2011; You and Nori, 2005, 2011). There, the transfer
of information must be sufficiently free from dissipation
and noise so as to maintain quantum coherence, while
at the same time the information should be transferred
via single quanta (Clarke and Wilhelm, 2008). Similar
requirements are also necessary for vacuum amplifica-
tion experiments, which ideally should be free from spu-
rious photon sources, and be sufficiently coherent such
that the quantum entanglement between generated par-
ticle pairs is maintained long enough to be measured.
In superconducting circuit systems, one way to achieve
these combined goals is to make use of the circuit quan-
tum electrodynamics (Circuit QED) architecture (Blais
et al., 2004), where qubits are coupled via one or more
effectively one-dimensional transmission line resonators
(Chiorescu et al., 2004; Mariantoni et al., 2011; Wallraff
et al., 2004). Transmission lines with quality factors ex-
ceeding ∼ 106 have been demonstrated, corresponding
to a photon that travels 10 km before being dissipated
(Schoelkopf and Girvin, 2008). These advances have al-
lowed for multiple qubit (DiCarlo et al., 2010; Majer
et al., 2007; Sillianpää et al., 2007; Wei et al., 2006) and
photon (Wang et al., 2011) entanglement using transmis-
sion lines that span distances of several millimeters, and
are therefore visible to the naked eye. In addition, the
generation of single-photons on demand (Houck et al.,
2007), and the possibility of strong nonlinearities at the
single-photon level (Hoffman et al., 2011), open up addi-
tional possibilities for the control of photons inside these
devices. Although typical experiments involve cavity res-
onators, recently there has been growing interest in the
use of open transmission lines (Astafiev et al., 2010a,b;
Zhou et al., 2008), which allow for broadband frequency
signals such as those generated by the Unruh, Hawking,
and dynamical Casimir effects. In the sections that fol-
low, we will describe ways to use this open 1D circuit
QED architecture to generate and detect photons from
the quantum vacuum.

A. Single-shot microwave photon detection

In order to confirm the existence of the vacuum am-
plification mechanisms discussed in Sec. III, one must
verify that the measured photons are indeed generated
from vacuum fluctuations and not some spurious ambient
emission process. One possible technique is to exploit the
correlated nature of the photon emission process through
the use of coincidence detection measurements of the par-
ticle pairs. Implicit in this verification method is the use
of single-shot photon detectors. With single-shot photon
measurements, one in principle has access to all orders of
the statistical correlations between emitted photons, or
equivalently the density matrix, and therefore has entire
knowledge of the quantum state (Leonhardt, 2010). In



16

the optical frequency range, such detectors are readily
available and allow for, among other things, all optical
quantum computation (Kok et al., 2007), Bell inequality
measurements (Weihs et al., 1998), quantum homodyne
tomography (Smithey et al., 1993), quantum communi-
cation (Bouwmeester et al., 1997), and encryption proto-
cols (Jennewein et al., 2000). In superconducting circuits,
analogous single-photon detectors have been difficult to
realize in practice due to the several orders of magnitude
smaller energies of microwave photons as compared with
visible photons.

In the absence of photon number detectors in the
microwave regime, superconducting circuit devices have
made use of linear quantum amplifiers (Clerk et al., 2010)
such as the high electron mobility transistor (HEMT)
in measuring the quantized electromagnetic fields inside
resonant cavities and transmission lines. Placed between
the circuit QED system, and the secondary classical volt-
age or current amplification stage, these amplifiers can
provide several orders of magnitude of gain for the in-
put signal but necessarily add at least half a quantum
of zero-point noise fluctuations at the input due to the
Heisenberg uncertainty principle (Caves, 1982). Typi-
cally, the added noise is actually much higher than this
minimum value, on the order of 10−20 photons at 5 GHz
(Menzel et al., 2010). In using a single-photon detector,
this added noise is circumvented, since an intermediate
amplification stage is not required.

Recently it has been shown that a pair of linear am-
plifiers is capable of resolving all of the moments for the
quantum state of a microwave photon provided that one
repeats the experiment many times to sufficiently average
out the added noise (Menzel et al., 2010; da Silva et al.,
2010). This approach has been applied to the study of
blackbody radiation from a load resistor and in the inves-
tigation of quantum noise of a beam-splitter (Mariantoni
et al., 2010). Furthermore, the anti-bunching of mi-
crowave photons in a superconducting cavity has been
observed by measuring the second-order coherence func-
tion (Bozyigit et al., 2010), and complete state recon-
struction of propagating microwave photons was per-
formed via homodyne tomography (Eichler et al., 2011b).
In order to obtain sufficient averaging, on the order of
109 − 1010 repeated measurements are required.

Unambiguous verification of the vacuum amplification
mechanisms discussed in Sec. III requires on-chip single-
shot photon detectors in order to measure the correla-
tions between individual photon pairs. Achieving this
goal in the microwave regime has been one of the long-
standing challenges in superconducting quantum circuits.
The first experimentally realized device capable of single-
photon detection in the microwave regime was based on a
double quantum dot (Aguado and Kouwenhoven, 2000)
and was used in the investigation of shot-noise from a
quantum point contact (Gustavsson et al., 2007). More
recently, the use of phase-qubits (Clarke and Wilhelm,

2008) for single-photon detection has been proposed
(Helmer et al., 2009; Peropadre et al., 2011; Romero
et al., 2009), driven in part by the success of similar
devices in measuring and controlling the quantum state
of both superconducting microwave (Ansmann et al.,
2009; Hofheinz et al., 2009, 2008; Liu et al., 2004; Wang
et al., 2009) and mechanical (O’Connell et al., 2010) res-
onators. This work has culminated in a microwave Han-
bury Brown and Twiss type experiment (Hanbury Brown
and Twiss, 1956) using a pair of phase-qubit detectors,
and the observation of photon bunching from a ther-
mal source (Chen et al., 2011). Here, the absorption
of a single photon by the phase qubit causes a transi-
tion to the excited state which readily tunnels out of
the potential well and into the continuum, generating a
voltage signal via the Josephson phase-voltage relation
(Likharev, 1986). Detection efficiencies exceeding 80%
were achieved, although in principle a perfect detector is
possible (Peropadre et al., 2011). An ideal single phase-
qubit detector acts as a binary, or “bucket”, detector
that responds to the input signal by always absorbing a
single photon, regardless of the original number of pho-
tons present. Number resolving detection can be approx-
imated using only binary detectors by detector cascading,
or “multiplexing” (Leonhardt, 2010), where a single in-
coming mode is equally distributed over a large number
of output modes followed by qubit detectors. If the num-
ber of qubit detectors is large compared to the number of
photons present in the signal, each detector receives only
a single photon on average, allowing high fidelity mea-
surements of the photon number to be performed (Kok
et al., 2007).

B. SQUID based microwave parametric amplifiers

Parametric amplification in the microwave regime has
been investigated for some time (Barone and Paternó,
1982), with early works (Wahlsten et al., 1977; Yurke
et al., 1989, 1988) demonstrating degenerate parametric
amplification using superconducting circuits and the non-
linear properties (i.e. current-phase relations) of Joseph-
son junctions. The squeezing of vacuum fluctuations has
also been observed (Movshovich et al., 1990). More re-
cently, there has been a renewed interest in these devices
for amplification and frequency conversion brought on by
progress in solid-state quantum metrology and informa-
tion processing in the microwave regime.

Of the many examples of circuit based parametric am-
plifiers (Tholen et al., 2007; Vijay et al., 2009), the fo-
cus here will be on systems comprising coplanar waveg-
uide resonators incorporating dc superconducting quan-
tum interference devices (dc-SQUIDs). A dc-SQUID
consists of two identical Josephson junctions embedded
in a superconducting loop, each with critical current Ic
and capacitance CJ (assumed identical for simplicity).
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FIG. 9 (Color online) Schemes for superconducting circuit implementations of vacuum amplification processes: (a) The SQUID
based parametric amplifier from (Castellanos-Beltran et al., 2008). (b) The parametric amplifier can be approximated as a
lumped LC-circuit with a current dependent inductance. The small normal current resistance is also depicted. (c) Spectrum
of a parametric amplifier. For the non-degenerate case, one has separate peaks for the signal and idler modes satisfying
ωs + ωi = ωp. In contrast, the degenerate amplifier satisfies ωs = ωi. (d) Illustration of a dc-SQUID array transmission
line with accompanying bias line (pink) and flux-pulse (black) used in generating an analogue event horizon and Hawking
radiation. (e) Lumped circuit model valid for frequencies below the plasma frequency and negligible SQUID self inductance.
(f) One-dimensional black body spectrum of emitted Hawking radiation. The characteristic (Hawking) temperature of the
distribution is determined by the gradient of the SQUID array speed of light in a frame co-moving with the flux pulse. (g)
Circuit diagram of a SQUID terminated coplanar waveguide used in generating the dynamical Casimir effect. Modulation of
the SQUID’s Josephson energy is performed by the time-varying external flux Φext(t). (h) Equivalent lumped element circuit
model for the semi-infinite coplanar waveguide and dc-SQUID. (i) Spectrum of photons emitted by the DCE assuming the
SQUID is driven by a sinusoidally varying flux.

For a negligible loop self-inductance L � Φ0/2πIc, and
large plasma frequency ωsp =

√
2πIsc/(2CJΦ0), where

Φ0 = h/2e is the flux quantum, the SQUID behaves as a
passive external flux Φext and current dependent induc-
tor

L(I,Φext) =
Φ0

2πIsc

arcsin (I/Isc )

(I/Isc )
. (67)

Here, Isc = 2Ic cos (πΦext/Φ0) is the SQUIDs flux tun-
able critical current. When used in a lumped-element
LC-oscillator such as Fig. 9b, the flux and current depen-
dence of this effective inductor allows two independent
ways of varying the resonance frequency of the circuit.
Just like the child on the swing in Fig. 1, this modula-
tion of the oscillation frequency gives rise to parametric
amplification.

Systems exploiting the nonlinear response of the
SQUID inductance for large input currents have been
considered by (Abdo et al., 2009) and (Castellanos-
Beltran et al., 2008; Castellanos-Beltran and Lehnert,
2007), where the centerline conductor of the resonator

contained either a single or an array of embedded
SQUIDs. These devices also make use of the inductor’s
flux degree-of-freedom by using a dc-bias current to intro-
duce a controllable oscillator resonant frequency tunable
over several GHz. In (Abdo et al., 2009; Castellanos-
Beltran and Lehnert, 2007) amplification and quadrature
squeezing of an input signal was observed when operated
as a degenerate amplifier and driven by a large amplitude
pump mode. Additionally, amplification and squeezing
of quantum fluctuations were observed by (Castellanos-
Beltran et al., 2008) where the use of a coplanar cavity
allowed for 10 dB5 of squeezing. A diagram of this ex-
perimental setup is given in Fig. (9a) along with the cor-
responding single-mode lumped element circuit diagram

5 A decibel (dB) is a measure of the logarithmic ratio of two pow-
ers: LdB = 10 log10 (P1/P2). In the present case of squeezing,
the powers P1 and P2 are given by the variances (∆X1)2 and
(∆X2)2 of the quadrature operators X1 and X2, respectively, as
defined in Sec. III.A.
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in Fig. (9b).

The systems realized by (Wilson et al., 2010; Ya-
mamoto et al., 2008) differ from the previous examples
in their use of a SQUID operated in a linear regime with
respect to both the current and the applied magnetic
flux. In these systems the SQUID terminates a coplanar
waveguide resonator, and imposes a boundary condition
that is tunable through the applied magnetic flux. In
addition to a dc flux bias that is used to tune the reso-
nance frequency, a weak ac flux modulation is applied
to produce sinusoidally time-dependent resonance fre-
quency. Under resonant conditions, this frequency mod-
ulation can result in parametric amplification, and the
resonator is then described, in a rotating frame, by an
effective nonlinear Hamiltonian equivalent to that of a
DPA. Modulating the flux applied through the SQUID
at twice the resonance frequency was observed to amplify
a small input signal and lead to quadrature squeezing
(Yamamoto et al., 2008), and to induce parametric oscil-
lations in the absence of an input signal (Wilson et al.,
2010).

In addition to the longstanding work on DPA’s, re-
cently non-degenerate amplification based on a Joseph-
son parametric converter (JPC) has been considered
(Bergeal et al., 2010a,b,c). The setup described in
(Bergeal et al., 2010c) consisting of two superconduct-
ing resonators coupled to a ring of four Josephson junc-
tions, allows for the complete separation of the signal
and idler modes, both spatially and temporally. The fre-
quency response of such a system assuming ωp = ωs +ωi
is given in Fig. (9c). Phase-preserving amplification with
a noise level three times that of the quantum limit was
demonstrated in (Bergeal et al., 2010b). Moreover, cor-
relations between signal and idler modes of a two-mode
squeezed state (14) generated from the quantum vacuum
were seen in (Bergeal et al., 2010a). These correlations
have also been observed for itinerant photons generated
by a non-degenerate parametric amplifier formed from a
broadband transmission line resonator terminated by a
SQUID (Eichler et al., 2011a). Unlike the JPC however,
the use of a single resonator does not allow for spatial
separation of the modes without the use of an additional
beam-splitter.

C. Unruh effect in driven nonlinear circuit devices

Of the four effects considered, the Unruh effect (UE)
is perhaps the most difficult to reproduce in an on-chip
circuit device, since it requires the observer (two-level de-
tector) to undergo constant acceleration; a circuit model
capable of reproducing the UE has yet to be proposed.
However, an interesting related mechanism occurs in
nonlinear circuit devices driven into the bistable regime
(Dykman, 2007; Marthaler and Dykman, 2006; Serban
and Wilhelm, 2007). Here, the emission of energy into

a thermal reservoir, viewed in a coordinate system ro-
tating at the driving frequency (i.e. the rotating frame),
leads to transitions to both higher and lower quasienergy
levels (Dykman, 2007). These transition rates obey a
Boltzmann distribution with an effective temperature de-
termined by the quasienergy. Surprisingly, this effective
temperature is nonzero, even when the temperature of
the thermal reservoir vanishes (Marthaler and Dykman,
2006). This same effect was found for a two-level detector
in the rotating frame (Serban and Wilhelm, 2007), where
a zero temperature thermal bath is seen to have both pos-
itive and negative frequency Fourier components, lead-
ing to transition rates between energy levels that are de-
scribed in terms of a non-vanishing effective temperature.
These predictions have been verified experimentally us-
ing a Josephson Bifurcation amplifier(Vijay et al., 2009).
These results are similar to that of an accelerating ob-
server in the UE, Eq. (32), who views the Minkowski
vacuum state as a thermal state at the Unruh temper-
ature (29). Although it is tempting to consider this an
analogue to the UE, the excitation of a detector in the
rotating frame does not correspond to an actual thermal
environment comprised of physical particles (Letaw and
Pfautsch, 1980).

In the UE, both the amplified vacuum state (27) and
the expectation value for the number operator, derived
from the Bogoliubov transformations in Eq. (26), corre-
spond to a thermal state at the Unruh temperature (29).
However, while an observer in the rotating frame will
register excitations from the vacuum as a result of neg-
ative frequency vacuum modes transforming to positive-
frequency components in the rotating frame6 (Letaw
and Pfautsch, 1980), the expectation value for the cor-
responding number operator vanishes (Crispino et al.,
2008). There is no mixing of positive and negative fre-
quency components (Birrell and Davies, 1982), and no
natural definition of a particle for a rotating observer
(Letaw and Pfautsch, 1980). Of course, one may still
define an effective temperature for a single-mode using
Eq. (32), as done in (Serban and Wilhelm, 2007), how-
ever in contrast to the UE, this effective temperature is
frequency dependent and does not correspond to a phys-
ical thermal environment. In Sec. III.B we saw that the
energy needed to generate particles in the UE comes from
the work done by the accelerating force. Therefore, in a
rotating frame where the work vanishes, there is no par-
ticle production. Furthermore, unlike both the UE and
HR, the spacetime of an observer in circular motion does
not contain a horizon (Letaw and Pfautsch, 1980), the es-
sential ingredient for generating a thermal environment
of tangible particles from the quantum vacuum.

6 For a discussion of this effect in nonlinear circuit devices see
(Serban and Wilhelm, 2007).
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D. Analogue Hawking radiation in a dc-SQUID array

Observing HR in a condensed matter system was first
suggested by (Unruh, 1981) who discovered an analogy
between sound waves in a fluid and a scalar field in
curved spacetime. The possibility of generating HR in a
condensed matter system exists because Einstein’s equa-
tions are not essential to the formal derivation of HR7

(Visser, 2003). Instead, HR relies on two general re-
quirements: (i) An effective spacetime metric containing
a horizon. (ii) A quantized electromagnetic field with
the correct Bogoliubov transformations for the conver-
sion of vacuum fluctuations into photons. Since Unruh’s
original proposal, analogues satisfying these conditions
have been found in liquid Helium (Jacobson and Volovik,
1998), Bose-Einstein condensates (Garay et al., 2000),
electromagnetic transmission lines (Schützhold and Un-
ruh, 2005), fiber-optic setups (Philbin et al., 2008), su-
perconducting circuits (Nation et al., 2009), and ion rings
(Horstmann et al., 2010).

Although a variety of systems can in principle gener-
ate HR, the requirements for the unequivocal verification
of the effect are common to all setups. First, the tem-
perature of the emitted radiation should be higher than
that of the ambient background environment so as to be
detectable. Second, one must measure the correlations
across the horizon between emitted photon pairs. This
latter requirement is essential, since it is the only way
to verify that a photon is emitted through the Hawk-
ing effect rather than from some other ambient emission
process. Recently, (Belgiorno et al., 2010) claimed to
observe analogue HR in a fiber-optical setup similar to
that of (Philbin et al., 2008). Although tantalizing, this
experiment did not measure correlations between photon
pairs and therefore cannot confirm the source of the emit-
ted photons. Other objections to this claim of analogue
HR have also been raised (Schützhold and Unruh, 2011).
Another recent experiment has also succeeded in gener-
ating stimulated Hawking emission using surface waves
on water (Weinfurtner et al., 2011). Although the spon-
taneous generation of particles from the Hawking effect
cannot be observed in this setup, using the connection
between stimulated and spontaneous emission, this work
has demonstrated the thermal nature of the emission
process, independent of the underlying short-wavelength
physics, and the irrelevance of the full Einstein equations
in the description of HR.

7 This absence of Einstein’s equations is a consequence of using
quantum field theory in curved space which ignores back-reaction
effects on the spacetime metric. This is closely related to the
classical fixed amplitude pump approximation used in the para-
metric amplifier of Sec. III.A. Although unable to reproduce the
Einstein equations, analogue systems can still obtain related re-
sults when energy loss is taken into consideration (Anglin et al.,
1995; Nation and Blencowe, 2010).

While not a superconducting device, the first circuit
model for analogue HR was considered by (Schützhold
and Unruh, 2005), where the horizon necessary for
the conversion of vacuum fluctuations into photons
was produced by modulating the capacitance of a one-
dimensional (1D) microwave waveguide by means of an
externally applied laser beam. The considered waveg-
uide was modeled as a lumped-element transmission line,
where the capacitance was formed by parallel conducting
plates separated by a dielectric insulting material that
couples to the laser’s electric field. Sweeping the laser
light along the waveguide at a fixed velocity, the result-
ing change in capacitance in turn changes the speed of
light inside the waveguide and generates a horizon. Using
experimentally feasible parameters, the Hawking temper-
ature in this system was shown to be ∼ 10 − 100 mK.
These temperatures are quite promising, as they are in
the range of the ambient environmental temperatures set
by dilution refrigerators [ see e.g. (Hofheinz et al., 2009)].

Even with these relatively large Hawking tempera-
tures, the setup considered in (Schützhold and Un-
ruh, 2005) has yet to be realized in experiment. The
main drawback lies in the laser-based illumination, which
would generate a large number of excess environmental
photons. Moreover, unless the waveguide is itself super-
conducting, heating due to dissipative processes will be
a problem. Finally, the photons in the waveguide are in
the microwave regime and we therefore require a single-
shot microwave detection scheme to verify the photon
pair correlations.

We have already seen how superconducting devices
may be used for microwave photon detection. We will
now turn to a superconducting circuit device for the gen-
eration of analogue HR that overcomes the effects of un-
wanted dissipation and is based on currently available
manufacturing techniques (Nation et al., 2009). To gen-
erate analogue HR in a superconducting circuit we con-
sider the coplanar transmission line in Fig. (9d), where
the centerline conductor is formed from an array of dc-
SQUIDs. Additionally, a current bias line capable of
applying an external flux to the SQUIDs is assumed to
run the length of the array. This setup is closely re-
lated to the DPA’s in (Castellanos-Beltran et al., 2008;
Castellanos-Beltran and Lehnert, 2007), where we have
replaced the resonator with an open transmission line
in order to excite a continuum of modes. The SQUIDs
are approximated as lumped inductors (67), forming an
LC-oscillator together with the geometric capacitance
between the centerline conductor and transmission line
ground planes (Blais et al., 2004), see Fig. (9e). There-
fore, this setup is essentially an array of coupled oscil-
lators each with a nonlinear flux-dependent frequency.
As a discrete system, our waveguide has a natural short
distance, high-frequency, cutoff due to the SQUID sep-
aration ∆x. The SQUID inertial terms, ignored in the
lumped inductor approximation (67), give an additional
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high-frequency scale set by the plasma frequency ωp. The
lowest of these two frequencies determines the onset of a
nonlinear photon dispersion relation, and plays the role
of the high-energy scale physics in our model (Unruh and
Schützhold, 2005). Unlike a black hole, our circuit model
is well characterized at all energy scales.

In order to generate the horizon, an external flux Φext

is applied to the SQUID array in the form of a step-like
flux pulse with fixed velocity u. When the flux pulse
Φext(x−ut) moves along the array, the inductance of the
SQUIDs increases, resulting in a decreased speed of light
in the vicinity of the pulse,

cs(x− ut) =
∆x√

L [Φext(x− ut)]C0

. (68)

Here, L [Φext(x− ut)] and C0 are the dc-SQUID induc-
tance and capacitance to ground, respectively. In analogy
with Eq. (44), the horizon is generated where the pulse
velocity u is equal to the SQUID array speed of light
cs. However, recall that this definition of the horizon is
valid only with respect to a moving observer. We there-
fore perform a coordinate transformation into a refer-
ence frame moving with the bias pulse. In this comoving
frame, the wave equation for the electromagnetic field in-
side the SQUID array can be cast in terms of an effective
spacetime metric with the form

ds2
eff = −

[
cs (x)

2 − u2
]
dτ2 + 2udxdτ + dx2, (69)

which is similar in form to the black hole metric (44),
apart from the interchange of spatial dependence between
the SQUID array speed of light and flux pulse velocity.
In Fig. (10) we plot the effect of a hyperbolic tangent
flux-bias pulse of amplitude Φext = 0.2Φ0 on the SQUID
array speed of light cs in the comoving frame8. The pulse
velocity must satisfy u < cs(Φext = 0) to form an horizon.

Like both HR and the UE, the analogue HR tempera-
ture is determined by the characteristic frequency of the
horizon. In condensed matter analogues, this frequency
is given as the rate of change in the speed of light evalu-
ated at the horizon

TH =
h̄

2πkb

∣∣∣∣
∂cs(x)

∂x

∣∣∣∣
c2s=u

2

, (70)

resulting in a one-dimensional blackbody spectrum,
Fig. (9f). In addition, the output power in this de-
vice is identical to that emitted from a black hole,
Eq. (40). To estimate the Hawking temperature, we will
assume parameter values similar to those of the DPA in
(Castellanos-Beltran and Lehnert, 2007). In addition,

8 This choice of bias-pulse is motivated in (Nation et al., 2009).
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FIG. 10 (Color online) Effect of a steplike flux bias pulse
on the SQUID array speed of light cs(x) as seen in a frame
moving with the pulse. Here, velocities have been normalized
with respect to the unbiased speed of light cs [Φext(x) = 0)].
The pulse velocity was chosen to be u = 0.95cs(0). In the
co-moving frame, the horizon occurs where cs(x) = u. Like a
black hole, the horizon is a unidirectional surface, and the red
arrow at the bottom indicates the only permissible direction
for a photon to transverse the horizon.

the validity of the SQUID inductor approximation de-
mands that the change in the speed of light be less than
the plasma frequency ωsp. Assuming a maximum fre-
quency an order of magnitude smaller than the plasma
frequency results in a Hawking temperature ∼ 120 mK.
This temperature can be a factor of 10 larger than the
ambient temperature set by a dilution refrigerator and
should be visible above the background thermal spec-
trum.

Unlike a real black hole, both photons in the two-mode
squeezed state may be detected in this device, allow-
ing for verification of the HR. In the laboratory frame,
a detector at the far end of the SQUID array will see
two incoming photons. One photon in front of the hori-
zon, and one behind, with the former having a slightly
higher propagation velocity (see Fig. 10). Single-shot de-
tection of these microwave photons can be accomplished
using one or more tunable-phase qubit detectors (Chen
et al., 2011) coupled to the SQUID array. By repeat-
edly sending flux pulses down the bias line, the predicted
one-dimensional black body spectrum may be probed by
tuning the qubit resonant frequency. Additionally, in-
formation on the cross horizon correlations between the
emitted photon pairs can be established though coinci-
dence detection. In this way, one can unambiguously
establish HR as the source of the emitted photons.

E. Dynamical Casimir effect in superconducting circuits

Superconducting coplanar waveguides (CPWs) are ex-
cellent devices for confining quasi one-dimensional elec-
tromagnetic fields, which at low (cryogenic) temperatures
and GHz frequencies can behave quantum mechanically.
The boundary conditions for the field in a CPW can
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be made externally tunable by terminating the waveg-
uide through a SQUID. The SQUID effectively imposes
a boundary condition for the CPW, rather than being
a dynamical system in itself, if its plasma frequency is
much larger than all other relevant frequencies. The im-
posed boundary condition is then a function of the ex-
ternally applied magnetic flux through the SQUID loop.
This method of implementing tunable boundary condi-
tions has been used, e.g., in experiments on frequency-
tunable resonators (Palacios-Laloy et al., 2008; Sand-
berg et al., 2008), and for parametric amplification (Ya-
mamoto et al., 2008) and oscillations (Wilson et al., 2010)
(see Sec. IV.B).

It has also been proposed that SQUID-terminated
CPW devices can be used for experimental investigations
of the DCE (Johansson et al., 2009, 2010). For frequen-
cies far below the plasma frequency, it can be shown that
the boundary condition that the SQUID imposes on the
CPW reduces to that of a perfectly reflecting mirror at
an effective distance from the SQUID,

Leff =
L(I,Φext)

L0
. (71)

Here, L(I,Φext) is the Josephson inductance of the
SQUID [Eq. (67)], and L0 is the characteristic induc-
tance per unit length of the CPW. The effective length
Leff is a function of the externally applied magnetic flux
Φext. By applying an oscillating magnetic flux through
the SQUID loop, it is therefore possible to mimic the
boundary condition of an oscillating mirror, resulting in
DCE radiation.

The phase drop across a SQUID is exceptionally sensi-
tive to the applied magnetic flux, and the effective length
of the SQUID can therefore be tuned in a wide range
by small changes in the applied magnetic flux. In ad-
dition, sinusoidal magnetic fields that are generated by
ac currents through bias lines adjacent to the SQUID
can reach high frequencies (tens of GHz) in state-of-the-
art experiments with superconducting circuits (Wilson
et al., 2010; Yamamoto et al., 2008). This combination
of large-amplitude and high-frequency modulation makes
SQUID-terminated CPWs well suited for experimental
demonstration of the DCE, as this allows relatively large
photon production rates. Estimates suggests that with
realistic circuit parameters radiation energies on the or-
der of mK in temperature units can be achieved (Johans-
son et al., 2009), which is within the limit of sensitivity
in recent experiments using linear amplifiers.

After decades of eluding experimental observation, the
dynamical Casimir effect was recently demonstrated ex-
perimentally (Dalvit, 2011; Wilson et al., 2011) using the
kind of SQUID-terminated CPW device described above.
In the experimental demonstration it was shown that
the modulation of the boundary condition imposed by
the SQUID does indeed result in photon production, and
furthermore, that the generated radiation exhibits strong

two-mode squeezing, which is a distinct signature of the
quantum mechanical photon-pair creation process of the
dynamical Casimir effect.

Shortly thereafter, the DCE in a resonator with time-
dependent dielectric properties was also demonstrated
in a SQUID-array resonator (Lähteenmäki et al., 2011),
similar to those used in (Castellanos-Beltran et al., 2008;
Castellanos-Beltran and Lehnert, 2007), where the array
was operated in the linear regime with a high-frequency
magnetic flux field applied (uniformly) across the SQUID
array. The modulation of the inductances of the SQUIDs
due to the applied magnetic flux then results in time-
dependent dielectric properties of the SQUID-array res-
onator that corresponds to a modulation of the effective
length of the resonator Leff(t) = L

√
L(0)/L(t), where

L(t) = L(I,Φext(t)) now is the characteristic inductance
per unit length of the SQUID array, and L is the length
of the resonator.

Another type of superconducting device for study-
ing the DCE experimentally was introduced by (Segev
et al., 2007). That device consists of a superconduct-
ing stripline resonator that is illuminated with an op-
tical laser. The optical radiation modulates the ratio
of superconducting to normal electrons in the microwave
stripline resonator, which in turn modulates its dielectric
properties. Since a medium with time-dependent dielec-
tric properties has a similar effect on the electromagnetic
field as a time-dependent boundary condition (Johnston
and Sarkar, 1995; Yablonovitch, 1989), it is expected that
the laser illumination of the stripline resonator results in
photon creation due to the DCE. Promising initial exper-
imental results for this system has been reported (Segev
et al., 2007), where a resonance frequency shift due to
the laser illumination was demonstrated.

An alternative approach to amplification of vacuum
fluctuations in a superconducting circuit was proposed
in (De Liberato et al., 2009). There, it was shown that a
non-adiabatic modulation of the vacuum Rabi frequency
(i.e., the coupling strength) in a superconducting qubit-
resonator circuit can produce a significant amount of ra-
diation. Furthermore, the resulting radiation has spec-
tral properties that should distinguish it from spurious
photon sources, such as e.g. ambient thermal radiation.

Using CPWs or stripline resonators in experiments on
the DCE has the advantage that the electromagnetic field
is quasi one-dimensional. Although the general setting of
the DCE is the three-dimensional free space, most the-
oretical work on the DCE is, for simplicity, restricted
to systems with only one spatial dimension. The CPW
and stripline geometries are examples of physical real-
izations of such systems. The fact that the photons are
confined to the CPW should also simplify the process of
detecting the generated radiation. Once DCE radiation
has been successfully generated, there are a number of
characteristics in the photon statistics that can be used
to distinguish it from spurious photon noise sources. In



22

particular, the DCE results in correlated photon pairs
with two-mode quadrature squeezing and spectral prop-
erties that can be measured with standard homodyne de-
tection techniques (Castellanos-Beltran et al., 2008). In
addition, recent development of single-photon detectors
in the microwave regime (Chen et al., 2011) has opened
up the possibility to measure directly the correlations be-
tween individual DCE photon pairs in superconducting
circuits.

V. SUMMARY AND OUTLOOK

We have reviewed several important quantum vacuum
amplification effects; the Unruh effect, Hawking radia-
tion, and the dynamical Casimir effect, and emphasized
the interconnections between these effects. In particular,
we stressed the role of parametric amplification of vac-
uum fluctuations in these processes. In addition, we have
examined current and future experimental setups aimed
at observing these effects, or their analogs, in supercon-
ducting electrical circuits.

As we have shown, superconducting circuits are very
promising devices for experimental investigations of
quantum vacuum amplification effects, and such circuits
have already been used in the experimental demonstra-
tion of the DCE (Lähteenmäki et al., 2011; Wilson et al.,
2011). It appears likely that more such experiments will
be carried out in the near future. In fact, several promis-
ing experimental steps in this direction have been demon-
strated already in a variety of systems (Castellanos-
Beltran et al., 2008; Segev et al., 2007; Wilson et al., 2010;
Yamamoto et al., 2008). A particularly important exper-
imental breakthrough has been the recent development of
single-photon detectors in the microwave regime (Chen
et al., 2011). Should microwave single-photon detectors
become readily available, the detection of both the DCE
and HR in microwave circuits would be greatly simpli-
fied. This would allow probing of the quantum statistics
for the resulting radiation so as to identify the character-
istic signatures of these effects.

In addition to the quantum vacuum amplification ef-
fects discussed in this review, superconducting circuits
have also been proposed for realizing systems with ultra-
strong atom-cavity coupling (Ashhab and Nori, 2010;
Nataf and Ciuti, 2010; Peropadre et al., 2010). The cav-
ity field in these systems can have exotic properties such
as particles in the ground state, squeezing of field quadra-
tures, and ground state entanglement between the cav-
ity field and the atom. Moreover, the ability to create
degenerate vacuum states in a qubit array (Nataf and
Ciuti, 2010), allows for the possibility of vacuum state
qubits and quantum computation. Atom-cavity systems
in the ultra-strong coupling have only recently started to
become feasible experimentally (Forn-Dı́az et al., 2010;
Niemczyk et al., 2010). This is yet another example of

new regimes in quantum mechanics that are starting to
become accessible due to progress in the engineering of
quantum superconducting circuits.

Finally, as a quantum coherent device, the super-
conducting arrays of SQUIDs presented here may al-
low for investigating effects analogous to those of quan-
tum gravitational fluctuations on the Hawking pro-
cess and the propagation of photons. Making use of
the superconducting-to-insulator phase transition in the
SQUID array (Chow et al., 1998; Haviland et al., 2000),
the application of a sufficiently large external flux re-
sults in quantum fluctuations of the dynamical variables
governing the SQUID inductance in Eq. (67). As this in-
ductance determines the speed of light inside the array,
this result may be interpreted as analogue fluctuations of
the effective spacetime metric (Nation et al., 2009). For
analogue Hawking radiation, these fluctuations manifest
themselves as quantum uncertainty in the position of the
horizon in Eq. (44), a scenario that is of interest for actual
black holes as well (Ford and Svaiter, 1997; Parentani,
2001). As discussed in Sec. IV.D, our condensed matter
analogues cannot faithfully reproduce the full Einstein
equations, and the effective metric fluctuations do not
provide an analogue of the yet to be determined dynam-
ics expected from the quantum theory of gravity [e.g. the
Wheeler-Dewitt equation (DeWitt, 1967)]. Nevertheless,
given that a theory of quantized gravity remains out of
reach for the foreseeable future, the ability to reproduce
analogous fluctuating metric effects in a superconducting
circuit model should prove useful in addressing quantum
gravitational corrections to the Hawking effect.

Given the ability to fabricate a wide range of devices,
the full scope of quantum vacuum effects in supercon-
ducting circuits, and the possible applications thereof, is
still unknown and in need of further investigation. In-
deed, the superconducting circuit models discussed here
are an example of quantum simulators (Buluta and Nori,
2009; Lloyd, 1996): controllable quantum systems engi-
neered to reproduce the physical properties of another,
seemingly different, quantum system. The wide range of
amplification effects that can be simulated in these sys-
tems, hints at the possibility of a circuit-based universal
quantum vacuum amplification simulator; a device ca-
pable of exploiting the generality of Bogoliubov trans-
formations to reproduce the emission properties of any
vacuum amplifier. What is certain however, is that su-
perconducting circuits as a test bed for quantum-vacuum
related physics offer unique advantages that will help to
shed light on one of quantum mechanics’ most remark-
able features, namely the amplification of vacuum quan-
tum fluctuations.
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