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 The identity of the fundamental broken symmetry (if any) in the cuprate 

pseudogap state is unresolved. In fact, two apparently distinct forms of electronic 

symmetry breaking, one of intra-unit-cell rotational symmetry (𝑸=0 nematic) 

and the other of lattice translational symmetry (Q≠0 density wave), are reported 

extensively. However, indications of linkage between these two phenomena 

suggest the prospect of a unified fundamental description, with one intriguing 

possibility being an intra-unit-cell nematic density wave. Here we carry out site-

specific measurements within each CuO2 unit-cell, segregating the results into 

three separate electronic structure images containing only the Cu sites (Cu(r)) 

and only the x/y-axis O sites (Ox(r) and Oy(r)). Phase resolved Fourier analysis 

reveals directly that the incommensurate modulations in the Ox(r) and Oy(r) 

sublattice images consistently exhibit a relative phase of  We confirm this 

discovery on two highly distinct cuprate compounds, ruling out tunnel matrix-

element and materials specific systematics. These observations demonstrate by 

direct sublattice phase-resolved visualization that the cuprate density wave 

consists essentially of spatial modulations of the intra-unit-cell nematicity; this 

state can equally well be described as an intra-unit-cell density wave with a d-

symmetry form factor.  

CuO2 pseudogap / broken symmetry / intra-unit-cell nematic / density-wave form factor 
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Electronic Inequivalence at the Oxygen Sites of the CuO2 Plane in Pseudogap State 

 Understanding the microscopic electronic structure of the CuO2 plane represents 

the essential challenge of cuprate studies. As the density of doped-holes, p, increases 

from zero in this plane, the pseudogap state (1,2) first emerges, followed by the high 

temperature superconductivity. Within the elementary CuO2 unit cell, the Cu atom 

resides at the symmetry point with an O atom adjacent in the x-axis and y-axis (Fig. 1A). 

Intra-unit-cell (IUC) degrees of freedom associated with these two O sites (3,4), 

although often disregarded, may actually represent the key to understanding CuO2 

electronic structure. Among the proposals in this regard are valence-bond ordered 

phases having spin-singlet occupation only on Ox or Oy sites (5,6), electronic nematic 

phases having a distinct spectrum of eigenstates at Ox and Oy sites (7,8), and orbital-

current phases in which orbitals at Ox and Oy are distinguishable due to time-reversal 

symmetry breaking (9). A common element to these proposals is that, in the pseudogap 

state of lightly hole-doped cuprates, some form of electronic symmetry breaking 

renders the Ox and Oy sites of each CuO2 unit-cell electronically inequivalent. 

 Electronic structure studies that discriminate the Ox from Oy sites find a rich 

phenomenology. Direct oxygen site-specific visualization of electronic structure reveals 

that even the lightest hole-doping of the insulator immediately produces local IUC 

symmetry breaking rendering Ox and Oy inequivalent (10); that both Q≠0 density wave  

(11) and Q=0 IUC nematic state (12) involve electronic inequivalence of the Ox and Oy 

sites; and that the Q≠0 and Q=0 broken symmetries weaken simultaneously with 

increasing p and disappear near pc=0.19 (13). For multiple cuprate compounds, neutron 

scattering reveals clear intra-unit-cell breaking of rotational symmetry (14,15,16). 

Polar-Kerr effect (17) and thermal transport studies (18) can be likewise interpreted. 

Similarly, X-ray scattering studies reveal directly the electronic inequivalence between 

Ox and Oy sites (19), and that scattering at Ox and Oy sites is best modeled by spatially 

modulating their inequivalence with a d-symmetry form factor (20). Thus, evidence 
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from a variety of techniques indicates that IUC electronic inequivalence of Ox and Oy is a 

key element of underdoped-cuprate electronic structure. The apparently distinct 

phenomenology of Q≠0 incommensurate density waves (DW) in underdoped cuprates 

has also been reported extensively (21-28). Moreover, recent studies (29,30) have 

demonstrated beautifully that the density modulations first visualized by STM imaging 

(31) are indeed the same as the DW detected by these X-ray scattering techniques. 

However, although distinct in terms of which symmetry is broken, there is evidence 

that the 𝑸=0 and Q≠0 states are actually linked microscopically (13,16,20,43,45), thus 

motivating the search for a unified understanding. 

 

Density Waves that Modulate the CuO2 Intra-unit-cell States 

 Logically, such unification might be achieved if there exists some form of density 

wave that modulates the IUC nematic state.  Proposals for such exotic DW states in 

underdoped cuprates include charge density waves with a d-symmetry form factor 

(32,33) and modulated IUC electron-lattice coupling with a d-symmetry form factor 

(34,35). Modulations of an IUC nematic with wavevectors Q=(Q,Q);(Q,-Q) were then 

explored theoretically (36,37,38,39,40). Most recently, however, focus has sharpened 

on the models (34,35,40,41,42) yielding spatial modulations of an IUC nematic state 

that occur at incommensurate wavevectors Q=(Q,0);(0,Q) aligned with the CuO2 plane 

axes. The microscopics of such models are compared in full detail in SI Section I.  

 

 Intra-unit-cell density wave states in the CuO2 plane (Fig. 1A) can be challenging 

to conceptualize. Therefore, before explaining their modulated versions, we first 

describe the elementary symmetry decomposition of the IUC states. Figure 1B,C,D 

shows the three possible IUC states of CuO2: a uniform density on the copper atoms (s-

symmetry), a uniform density on the oxygen atoms (also an s-symmetry referred to 

here as extended-s or s’-symmetry) and a pattern with opposite-sign density on Ox and 
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Oy (d-symmetry). As they are spatially uniform, these three density patterns correspond 

to specific representations of the point group symmetry of the lattice. Phase-resolved 

Fourier transforms of each IUC state (Fig. 1E,F,G) reveal their point group symmetry 

from the structure of their Bragg peaks.  (For simplicity we place the origin at a Cu site 

and show the real (Re) or cosine-component here while the imaginary (Im) sine- 

component is then zero). The s-symmetry cases both share 90o-rotational symmetry in 

their Bragg peak values, while the d-symmetry Bragg peaks change sign under 90o 

rotations. There is also a clear distinction between the two s-symmetry patterns: the s-

form factor has the same magnitude and sign for all Bragg peaks while the s’-form factor 

has a finite peak at (0,0) but vanishing Bragg peaks at (1,0) and (0,1). Thus, by studying 

the magnitude and sign of the Bragg peak amplitudes in phase-resolved site specific 

electronic structure images, one can extract the degree to which any IUC pattern has an 

s-, or s’- or, as in our previous work (12,13,43,44,45) a d-form factor, and their 

associated symmetries (SI Section II).  

 

 Next we consider how a simple periodic modulation of each of these three IUC 

density patterns with wave vector 𝑸 = (0.25,0) ≡ (𝑄, 0), yields three distinct IUC DWs 

that preserve their respective s-, s’- and d-form factors. Since Q is a vector, however, its 

directionality breaks rotational symmetry and the resulting DWs are not symmetry 

distinct. Nevertheless, they are mathematically distinct so that, in principle, one can 

decompose any CuO2 IUC DW in terms of its s-, s’- and d-form factor components (SI 

Section II). To see this, consider the modulated s-, s’- and d-form factor patterns shown 

in Fig. 2A,B,C. They are constructed by multiplying the corresponding IUC pattern in Fig. 

1B,C,D by cos( 𝑸 ∙ 𝒓𝒊) where ri is the location of the ith Cu or O atom with the origin at a 

Cu site. This yields in Fig. 2A,B,C the  𝑆𝐷𝑊(𝒓) = 𝑆 cos(𝑸 ∙ 𝒓𝒊 )  for which only Cu sites are 

relevant, and both 𝑆′𝐷𝑊(𝒓) =  𝑆′ cos(𝑸 ∙ 𝒓𝒊 ) and  𝐷𝐷𝑊(𝒓) =  𝐷 cos(𝑸 ∙ 𝒓𝒊 ) for which 

only the Ox and Oy sites are relevant.  Then, the real component of the Fourier 
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transforms of these patterns, 𝑅𝑒𝑆̃𝐷𝑊(𝒒) , 𝑅𝑒𝑆 ′̃
𝐷𝑊(𝒒)  and 𝑅𝑒𝐷̃𝐷𝑊(𝒒)  (Figs. 2D,E,F 

respectively)  preserve the s-, s’- and d-form factors of the IUC density patterns of Figs 

1E,F,G respectively. Notice that the s-form factor IUC DW has the same sign (Fig. 2D), 

while the d-form factor IUC DW (Fig. 2F) has opposite sign, for the features surrounding 

the distinct Bragg peaks at Q’ = (1,0)±Q and Q’’=(0,1)±Q  (compare Fig. 1E,G). However, 

the most striking contrast between s’- and d-form factor IUC DW’s is manifest by the 

presence (Fig. 2E) or absence (Fig. 2F) of a peak at the basic modulation wavevector Q 

within the first Brillouin zone (BZ) (SI Section III). This distinguishing characteristic 

occurs because the relative phase of 𝜋 between density on the Ox and Oy sites in the IUC-

DW with d-form factor results in cancelation of the modulation peak at Q inside the first 

BZ (SI Section III).  

 

Sublattice-Phase-Resolved Fourier Transform STM 

 With the recent development of STM techniques to measure IUC electronic 

structure (10,11,12,13,45) while simultaneously achieving high-precision phase-

resolved Fourier analysis (12,13,43,45), it was suggested by one of us (S.S.) that a 

practical approach to the above challenge would be to separate each such an image of 

the CuO2 electronic structure, into three. The first contains only the Cu sites (Cu(r)) and 

the other two only the x/y-axis O sites Ox(r) and Oy(r). The latter are key because the 

𝑆 ′̃
𝐷𝑊(𝒒) and 𝐷̃𝐷𝑊(𝒒) are actually formed by using only phenomena from the Ox/Oy sites 

(Fig. 2B,C). Once the original electronic structure image is thus separated, the phase-

resolved Fourier transform of Ox(r) and Oy(r), 𝑂̃𝑥(𝒒) and 𝑂̃𝑦(𝒒), may, in principle, be 

used to reveal the form factor of any IUC DW. Thus, an intra-unit-cell nematic DW 

(IUCN-DW) of d-form factor with modulations along both x- and y-axes at Q=(Q,0);(0,Q) 

should exhibit two key characteristics exemplified by 𝑅𝑒𝐷̃𝐷𝑊(𝒒) shown in Fig. 2I, and 

whose equivalent experimental information is contained in 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒) (SI 

Section III). The first is that the modulation peaks at Q should disappear in 𝑅𝑒𝑂̃𝑥(𝒒) +
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𝑅𝑒𝑂̃𝑦(𝒒) while the Bragg-satellite peaks at Q’ = (1,0)±Q and Q’’=(0,1)±Q should exist 

with opposite sign as shown in Fig. 2I  (the same being true for 𝐼𝑚𝑂̃𝑥(𝒒) + 𝐼𝑚𝑂̃𝑦(𝒒)). 

The second predicted characteristic is that the DW peaks at Q should exist clearly in 

𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒) while their Bragg-satellite peaks at Q’ = (1,0)±Q and Q’’=(0,1)±Q 

should disappear (the same being true for 𝐼𝑚𝑂̃𝑥(𝒒) − 𝐼𝑚𝑂̃𝑦(𝒒).) This is required 

because, if all Oy sites are multiplied by -1 as when we take the difference 𝑅𝑒𝑂̃𝑥(𝒒) −

𝑅𝑒𝑂̃𝑦(𝒒), a d-form factor IUC DW (Fig. 2I) is converted to a s’-form factor IUC DW (Fig. 

2H). In that case, the signature of an IUCN-DW in 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒) is that it should 

exhibit the characteristics of Fig. 2H (SI Section III).  

 

Experimental Methods 

 To search for such phenomena, we use spectroscopic imaging STM (45) to 

measure both the differential tunneling conductance 𝑔(𝒓, 𝐸 = 𝑒𝑉) and the tunnel-

current magnitude 𝐼(𝒓, 𝐸 = 𝑒𝑉) , at bias voltage V, and on samples of both 

Bi2Sr2CaCu2O8+x (BSCCO) and Ca2-xNaxCuO2Cl2 (NaCCOC). Because the electronic 

density-of-states 𝑁(𝑟, 𝐸) enters as 𝑔(𝒓, 𝐸) ∝ [𝑒𝐼𝑠/ ∫ 𝑁(𝒓, 𝐸′)𝑑𝐸′
𝑒𝑉𝑠

0
] 𝑁(𝒓, 𝐸) where Is and 

Vs are arbitrary parameters, the unknown denominator ∫ 𝑁(𝒓, 𝐸′)𝑑𝐸′
𝑒𝑉𝑠

0
 always prevents 

valid determination of 𝑁(𝒓, 𝐸)  based only upon 𝑔(𝒓, 𝐸)  measurements. Instead, 

𝑍(𝒓, |𝐸|) = 𝑔(𝒓, 𝐸)/𝑔(𝒓, −𝐸) or 𝑅(𝒓, |𝐸|) = 𝐼(𝒓, 𝐸)/𝐼(𝒓, −𝐸), are used (11,12,13,43,45) 

in order to suppress the otherwise profound systematic errors. This approach allows 

distances, wavelengths, and phases of electronic structure to be measured correctly. 

Physically, the ratio 𝑅(𝒓, 𝑉) ∝ ∫ 𝑁(𝒓, 𝐸)𝑑𝐸
𝑒𝑉

𝑜
/ ∫ 𝑁(𝒓, 𝐸)𝑑𝐸

0

−𝑒𝑉
 is measured using an 

identical tip-sample tunnel junction formed at 𝒓 but using opposite bias voltage ±V ; it is 

a robust measure of the spatial symmetry of electronic states in the energy range 

|E|=eV. Additionally for this study, measurements at many pixels within each UC are 

required (to spatially discriminate every Ox , Oy and Cu site) while simultaneously 
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measuring in a sufficiently large FOV to achieve high resolution in phase definition 

(11,12, 44, 45).  

 

 Data acquired under these circumstance are shown in Figure 3A, the measured 

R(r, |E|=150meV) for a BSCCO sample with p=8±1%. This FOV contains ~ 15,000 each 

of individually resolved Cu, Ox and Oy sites. Figure 3B shows a magnified part of this R(r) 

with Cu sites indicated by blue dots; Figure 3C is the simultaneous topographic image 

showing how to identify the coordinate of each Cu, Ox and Oy site in all the images. Using 

the Lawler-Fujita phase-definition algorithm which was developed for IUC symmetry 

determination studies (12,44,45) we achieve a phase accuracy of ~0.01 (44) 

throughout. As an example, Fig. 3D,E shows the segregation of measured 𝑅(𝒓) into two 

oxygen-site-specific images Ox(r) and Oy(r) from Fig. 3B (segregated Cu-site specific 

image is shown SI Section V). Larger FOV Ox(r);Oy(r) images segregated from 𝑅(𝒓) in 

Fig. 3A, and their Fourier transforms are shown in SI Section V. 

 

Direct measurement of IUC DW Form-factor from Sublattice Phase-Resolved Images 

 Now we consider the complex Fourier transforms of 𝑂𝑥(𝒓) and 𝑂𝑦(𝒓), 𝑂̃𝑥(𝒒) and 

𝑂̃𝑦(𝒒), as shown in Fig. 4A,B.  We note that the use of 𝑅(𝒓, 𝑉) or 𝑍(𝒓, 𝑉) is critically 

important for measuring relative phase of Ox/Oy sites throughout any IUC-DW, because 

analysis of 𝑔(𝒓, 𝑉) shows how the tip-sample junction establishment procedure (11,45) 

scrambles the IUC phase information irretrievably. Upon calculating the sum 𝑅𝑒𝑂̃𝑥(𝒒) +

𝑅𝑒𝑂̃𝑦(𝒒) as shown in Fig. 4C, we find no DW modulation peaks in the vicinity of Q. 

Moreover there is evidence for a 𝜋-phase shift between much sharper peaks at Q’ and 

Q’’ (albeit with phase disorder). Both of these effects are exactly as expected for an 

IUCN-DW (see Fig. 2I). Further, the modulation peak at Q inside the first BZ that is weak 

in Figs. 4A and 4B and absent in Fig. 4C is strikingly visible in 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒) as 

shown in Fig. 4D. Hence the absence of this feature in 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒) cannot be 
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ascribed to broadness of the features surrounding 𝒒 = 0; rather, it is due to a virtually 

perfect phase cancelation of these peaks at Q (Fig 4C).  Finally, the Bragg-satellite peaks 

at Q’ = (1,0)±Q and Q’’=(0,1)±Q are absent in 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒). Comparison of all 

these observations with predictions for an IUCN-DW in Fig. 2H,I, demonstrates that the 

modulations at Q maintain a phase difference of  between Ox and Oy within virtually 

every unit cell, and are therefore predominantly an IUC nematic DW exhibiting a d-form 

factor.  

 

 To demonstrate that these phenomena are not a specific property of a given tip-

sample tunnel matrix element, or crystal symmetry, or surface termination layer, or 

cuprate material family, we carry out the identical analysis on data from NaCCOC 

samples with p=12±1% (SI Section V). For this compound, Fig. 4E,F are the measured 

𝑅𝑒𝑂̃𝑥(𝒒) and 𝑅𝑒𝑂̃𝑦(𝒒). Again, the absence of DW peaks at Q in Fig. 4G which shows 

𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒) are due to cancelation between Ox and Oy contributions, as these 

peaks are visible in𝑅𝑒𝑂̃𝑥(𝒒) and 𝑅𝑒𝑂̃𝑦(𝒒) (Figs. 4E,F). Moreover, the sign change 

between the Bragg satellites Q’ = (1,0)±Q and Q’’=(0,1)±Q in Fig. 4G exhibits a clear 

hallmark of an IUCN-DW. Finally 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒) reveals again that the modulation 

peaks at Q inside the first BZ that are invisible Fig. 4G become vivid in Fig. 4H, while the 

Bragg-satellites disappear. One can see directly that these results are in comprehensive 

agreement with observations in Figs 4A-D meaning that the IUCN-DW of NaCCOC also 

exhibits a robustly d-symmetry form factor. This observation rules out 

experimental/materials systematics as the source of the IUCN-DW signal and therefore 

signifies that this state is a fundamental property of the underdoped CuO2 plane.   

 

Cuprate IUC Nematic DW is both Predominant and Robust 

 The dominance of the IUCN-DW can be quantified by measuring the s-, s’- and d-

form factor components of  the DW near Q inside the first BZ (SI Section II). In Fig. 5 we 
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show the power spectral density Fourier transform analysis only of Cu sites |𝐶̃𝑢(𝒒)|2 

(Fig 5A) to determine the s-form factor, and only at the Ox/Oy sites |(𝑂̃𝑥(𝒒) + 𝑂̃𝑦(𝒒)) /

2|2 for the s’-form factor (Fig. 5B) and |(𝑂̃𝑥(𝒒) − 𝑂̃𝑦(𝒒)) /2|2 for the d-form factor (Fig. 

5C) (SI Section II).  The measured values are plotted along the dashed lines through Q in 

Fig. 5D and shows that the d-form factor component, manifest in |(𝑂̃𝑥(𝒒) − 𝑂̃𝑦(𝒒)) /2|2, 

is far stronger than the others. This is also the case in the NaCCOC data (SI Section V). 

Figure 5E shows examples of measured complex valued 𝑂̃𝑥(𝒒) ≡ 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑖𝐼𝑚𝑂̃𝑥(𝒒) 

and compares them to 𝑂̃𝑦(𝒒) ≡ 𝑅𝑒𝑂̃𝑦(𝒒) + 𝑖𝐼𝑚𝑂̃𝑦(𝒒)  for each of a series of 

representative q within the DW peaks surrounding Q (all such data are from Figs 3,4). 

Figure 5F is a 2d-histogram showing both the magnitude and the phase difference 

between all such pairs 𝑂̃𝑥(𝒒): 𝑂̃𝑦(𝒒) whose q is within the same broad DW peaks (SI 

Section V). These data reveal the remarkably robust nature of the d-form factor of the 

IUCN-DW, and that the strong spatial disorder in DW modulations (e.g. Fig. 3A and Ref.  

43) has little impact on the phase difference of  between Ox and Oy within every CuO2 

unit cell. Finally, focusing on specific regions of the R(r) images, one can now 

understand in microscopic detail how the well-known (11,13,43,45) but unexplained 

IUC spatial patterns of CuO2 electronic structure (e.g. Fig. 5G) are formed. In fact, the 

virtually identical electronic structure patterns in BSCCO and NaCCOC (Fig. 5G) 

correspond to the instance in which an IUCN-DW occurs locally with Q=(0.25,0) and 

with amplitude peaked on the central Ox sites (dashed vertical arrow).  A model of a d-

form factor IUC DW with this choice of spatial-phase is shown in Fig. 5H (SI Section I) 

with the calculated density adjacent; the agreement between data (Fig. 5G) and IUCN-

DW model (Fig. 5H) is striking, giving a strong visual confirmation that the patterns 

observed in real space R(r) data are a direct consequence of an IUCN-DW. 
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Conclusions and Discussion 

 By generalizing our technique of phase-resolved intra-unit-cell electronic 

structure imaging at Cu, Ox, Oy (11,12,13,43,44,45), to include segregation of such data 

into three images (Cu(r), Ox(r), Oy(r)), sublattice-phase-resolved Fourier analysis 

yielding 𝐶̃𝑢(𝒒) ,  𝑂̃𝑥(𝒒)and  𝑂̃𝑦(𝒒) becomes possible. Then, by comparing predicted 

signatures of an IUCN-DW in Figs. 2H,I with the equivalent measurements 𝑅𝑒 𝑂̃𝑥(𝒒) ±

𝑅𝑒 𝑂̃𝑦(𝒒) in Fig. 4D,C and Fig. 4H,G, respectively, we find them in excellent agreement 

for both BSCCO and NaCCOC Recently, Comin et al (20) have analyzed the polarization 

and angular dependence of the X-ray scattering cross-section of both underdoped 

Bi2Sr2CuO6 and YBa2Cu3O7. Using a model of the scattering amplitudes of the Cu and O 

atoms in the presence of charge-density modulations, they showed that a density wave 

that modulates IUC electronic structure with a d-form factor between Ox and Oy sites, 

provides a significantly better fit to the measured cross section than s- or s’-form 

factors. In our complementary approach, we demonstrate using direct sublattice-phase-

resolved visualization that the DW consists of spatial modulations of the intra-unit-cell 

nematicity exhibiting a comprehensive and robust d-form factor. Therefore the 

microscopic structure of the cuprate density waves involves, predominantly, 

modulations of the IUC nematicity that maintain a relative phase of  between Ox and 

Oy. Moreover, the identification of this d-form factor IUCN-DW reveals a simple and 

harmonious explanation for the coexistence of what had been viewed as the dissimilar 

and distinct Q=0 nematic and Q≠0 DW broken symmetries in underdoped cuprates. 

Finally, the robustness of the intra-unit-cell phase difference of , now demonstrated in 

both the Q=0 (12,13, SI Section V) and Q≠0 states (Fig. 5), implies that there must be a 

powerful and fundamentally important microscopic reason for universal inequivalence 

of electronic structure of the Ox and Oy sites in the pseudogap phase of underdoped 

cuprates.    
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Figure Captions  
 

Figure 1 Intra-unit-cell Electronic Structure Symmetry in the CuO2 Plane 

A. Elementary Cu, Ox and Oy orbitals (sites) within the CuO2 plane. 

B. Schematic of uniform density on the Cu atoms (s-symmetry). The inactive O 

sites are now indicated by grey dots. 

C. Schematic of uniform density on the O atoms (also an s-symmetry referred to 

here as extended-s or s’-symmetry). The inactive Cu sites are indicated by 

grey dots. 

D. Schematic pattern with opposite-sign density on Ox and Oy  (d-symmetry) as 

discussed in Ref. 12,45. The inactive Cu sites are indicated by grey dots. 

E. Real component of Fourier transform of the s-symmetry IUC patterns derived 

only from Cu sublattice in (B) and with no DW modulation. The Bragg peaks 

have the same sign indicating the IUC states have s-symmetry.  

F. Real component of Fourier transform of the s’-symmetry patterns derived only 

from Ox and Oy sublattices in (C) and with no DW. The Bragg peaks are no 

longer within the CuO2 reciprocal unit cell (RUC). 

G. Fourier transform of the d-symmetry IUC patterns derived only from Ox and 

Oy sublattices as shown in (D) and with no DW modulation. The Bragg peaks 

now have the opposite sign indicating the IUC states have d-symmetry 

(12,45). 

FIGURE 2 Types of CuO2 Intra-unit-cell Density Waves 

A. Spatial modulation with wavevector Q=(Q,0) of the s-symmetry IUC patterns 

in (1B) is described by  𝑆𝐷𝑊(𝒓) = 𝑆 cos(𝑸 ∙ 𝒓𝒊 ) ; only Cu sites are active. The 

inactive O sites indicated by grey dots. 
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B. Spatial modulation with wavevector Q of the patterns in (1C) described by 

𝑆′𝐷𝑊(𝒓) =  𝑆′ cos(𝑸 ∙ 𝒓𝒊 ) ; only Ox and Oy sites are active but they are always 

equivalent within each unit cell. The inactive Cu sites are indicated by grey 

dots. 

C. Spatial modulation with wavevector Q of the patterns in (1D) described by 

𝐷𝐷𝑊(𝒓) =  𝐷 cos(𝑸 ∙ 𝒓𝒊 ); only Ox and Oy sites are relevant but now they are 

always inequivalent and indeed out of phase. 

D. 𝑅𝑒𝑆̃𝐷𝑊(𝒒), the real-component of Fourier transform of the pattern in (2A). For 

this s-form factor DW, the DW satellites of inequivalent Bragg peaks Q’ and 

Q’’ exhibit same sign.  

E. 𝑅𝑒𝑆̃′𝐷𝑊(𝒒) , the real-component of Fourier transform of the pattern in (2B). 

For this s’-form factor DW, the peaks at Q are clear and the actual Bragg 

peaks of (2B) are outside the RUC of CuO2.  

F. 𝑅𝑒𝐷̃𝐷𝑊(𝒒) , the real-component of Fourier transform of the pattern in (2C).  

For this d-form factor DW, the DW Bragg-satellites peaks at Q’ and Q’’ exhibit 

opposite sign. More profoundly, because they are out of phase by  the 

contributions of Ox and Oy sites in each unit cell cancel, resulting in the 

disappearance of the DW modulation peaks Q within the BZ (dashed box). 

G. 𝑅𝑒𝑆̃𝐷𝑊(𝒒)  expected for an IUC DW with s-form factor having modulations 

along both x- and y-axes at Q=(Q,0);(0,Q) (SI Section III); the DW satellites of 

inequivalent Bragg peaks Q’ and Q’’ exhibit same sign and the basic 

modulations at Q are clear.  

H. 𝑅𝑒𝑆̃′𝐷𝑊(𝒒)  expected for an IUC DW with s’-form factor having modulations at 

Q=(Q,0);(0,Q) (SI Section III) ; the Bragg-satellite peaks are outside the CuO2 

RUC but modulation peaks at Q are clear.   

I. 𝑅𝑒𝐷̃𝐷𝑊(𝒒)  expected for an IUC DW with d-form factor having modulations at 

Q=(Q,0);(0,Q) (SI Section III); the DW satellites of inequivalent Bragg peaks 
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Q’ and Q’’ exhibit opposite sign, and the basic DW modulation peaks Q have 

disappeared from within the BZ. 

 

Figure 3 Oxygen-site-specific Imaging and Segregation of R(r) 

A. Measured R(r) with ~16 pixels within each CuO2 unit cell and ~45 nm square 

FOV for BSCCO sample with p~8+-1%. This R(r) electronic structure image 

reveals extensive Q=0 IUC nematic order (12,13) (SI Section V). 

B. Smaller section of R(r) in FOV of 3A, now showing the location of the Cu 

lattice as blue dots. The well known (11,12,13,45) breaking of rotational 

symmetry within virtually every CuO2 unit cell, or IUC nematicity, and the 

modulations thereof, are obvious.  

C. Topographic image of FOV in 3B showing Cu lattice sites as identified from 

the Bi atom locations as blue dots. By using the Lawler-Fujita algorithm 

(12,44) spatial-phase accuracy for the CuO2 plane of ~0.01 is achieved 

throughout .  

D. In the same FOV as 3B, we measure the value of R at every Ox site and show 

the resulting function Ox(r). 

E. In the same FOV as 3B, we measure the value of R at every Oy site and show 

the resulting function Oy(r). 

 

Figure 4 Sublattice Phase-resolved Fourier Analysis yields IUC Nematic DW 

A. Measured 𝑅𝑒𝑂̃𝑥(𝒒) from R(r) in 3A; the four DW peaks at Q, and the DW 

Bragg-satellite peaks exist but are all poorly resolved. 

B. 𝑅𝑒𝑂̃𝑦(𝒒) from 3A; the four DW peaks at Q, and the DW Bragg-satellite peaks 

exist but are all poorly resolved. 

C. Measured 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒) from A,B. The four DW peaks at Q are not 

detectable while the DW Bragg-satellite peaks are enhanced and clarified. 
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Comparing to Fig. 2I these are the expected phenomena of an IUC nematic 

DW (with spatial disorder in the DW).  

D. Measured 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒)  from A,B. The four DW peaks at Q are strongly 

enhanced while the DW Bragg-satellite peaks have disappeared. Comparing 

to Fig. 2H, these are once again the expected phenomena of a IUC nematic 

DW. 

E. Measured 𝑅𝑒𝑂̃𝑥(𝒒)  for NaCCOC sample with p~12+-1%; the DW peaks at Q, 

and the DW Bragg-satellite peaks exist but are poorly resolved. 

F. Measured 𝑅𝑒𝑂̃𝑦(𝒒) for NaCCOC; the DW peaks at Q, and the DW Bragg-

satellite peaks exist but are poorly resolved. 

G. Measured  𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒)  from E,F. The four DW peaks at Q are no 

longer detectable while the DW Bragg-satellite peaks are enhanced and 

clarified. Importantly (modulo some phase noise) the Bragg-satellite peaks at 

inequivalent Q’ and Q’’ exhibit opposite sign.  Comparing to Fig. 2I these are 

the expected phenomena of a IUCN- DW. 

H. Measured  𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒) from E,F. The four DW peaks at Q are 

enhanced while the DW Bragg-satellite peaks have disappeared. Comparing 

to Fig. 2H these confirm the IUCN- DW conclusion. 

 

Figure 5 IUC Nematic DW: Predominance and Robustness 

A. PSD Fourier transforms of R(r) measured only at Cu sites |𝐶̃𝑢(𝒒)|2  ; this 

provides the quantitative measure of s-form factor in the IUC DW. 

B. PSD Fourier transforms of R(r) measured only at only at the Ox/Oy sites 

yielding |(𝑂̃𝑥(𝒒) + 𝑂̃𝑦(𝒒)) /2|2. This provides the measure of relative strength 

of the s’-form factor in the IUC DW. 
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C. PSD Fourier transforms of R(r) measured only at only at the Ox/Oy sites 

yielding |(𝑂̃𝑥(𝒒) − 𝑂̃𝑦(𝒒)) /2|2. This provides the measure of relative strength 

of the d-form factor in the IUC DW.  

D. Measured PSD is plotted along the dashed line through Q in Fig. 5A,B,C and 

shows the d-form factor component predominates greatly. The measured 

ratios within the DW peaks surrounding Q is d/s > 5 and d/s’ > 12. 

E. 𝑂̃𝑥(𝒒) ≡ 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑖𝐼𝑚𝑂̃𝑥(𝒒)  compared to 𝑂̃𝑦(𝒒) ≡ 𝑅𝑒𝑂̃𝑦(𝒒) + 𝑖𝐼𝑚𝑂̃𝑦(𝒒)   for 

each of a series of representative q within the DW peaks surrounding Q. This 

shows how, wherever the CuO2 unit cell resides in the disordered DW (Fig 

3A), the relative phase between the Ox and Oy sites is very close to while 

the difference in magnitudes are close to zero. 

F. Two-axis histogram of difference in normalized magnitude (vertical) and 

phase (horizontal) between all pairs 𝑂̃𝑥(𝒓, 𝑸) and 𝑂̃𝑦(𝒓, 𝑸) which are obtained 

by Fourier filtration of Ox(r) and Oy(r) to retain only q~Q (SI Section V). This 

represents the measured distribution of amplitude difference, and phase 

difference, between each pair of Ox /Oy sites everywhere in the DW, It 

demonstrates directly that their relative phase is always close to  and that 

their magnitude differences are always close to zero.  

G. Measured R(r) images of local electronic structure patterns that commonly 

occur in BSCCO and NaCCOC (11). The Cu and Ox sites (as labeled by solid 

and dashed arrows respectively) were determined independently and directly 

from topographic images.(11)  

H. IUCN-DW model with Q=(0.25,0) and amplitude maximum on the central Ox 

site (dashed arrow); the calculated charge density pattern from this model is 

shown adjacent. Therefore an IUCN-DW model with this particular spatial-

phase provides an apparently excellent explanation for the observed density 

patterns shown in G and reported previously in Refs 11,12,13,45. 



16 

 

 

I. Acknowledgements 

We acknowledge and thank S. Billinge, R. Comin, A. Damascelli, D.-H. Lee, S.A. Kivelson, 

A. Kostin, and A.P. Mackenzie, for very helpful discussions and communications. 

Experimental studies were supported by the Center for Emergent Superconductivity, an 

Energy Frontier Research Center, headquartered at Brookhaven National Laboratory 

and funded by the U.S. Department of Energy under DE-2009-BNL-PM015, as well as by 

a Grant-in-Aid for Scientific Research from the Ministry of Science and Education 

(Japan) and the Global Centers of Excellence Program for Japan Society for the 

Promotion of Science. C. K. K. acknowledges support from the Fluct Team program at 

Brookhaven National Laboratory under contract DE-AC02-98CH10886. S.D.E. 

acknowledges the support of EPSRC through the Programme Grant ‘Topological 

Protection and Non-Equilibrium States in Correlated Electron Systems”. Y.K. 

acknowledges support form studies at RIKEN by JSPS KAKENHI (19840052, 

20244060). Theoretical studies at Cornell University were supported by NSF Grant 

DMR-1120296 to the Cornell Center for Materials Research and by NSF Grant DMR-

0955822. A.A. and S.S. are supported by NSF Grant DMR-1103860 and by the 

Templeton Foundation. 

  



17 

 

 

References  

                                                        

 

1  Orenstein J, Millis AJ (2000) Advances in the physics of high-temperature 

superconductivity. Science 288(5465):468―474. 
2  Timusk T, Statt B (1999) The pseudogap in high-temperature superconductors: An 

experimental survey. Rep Prog Phys 62(1):61―122. 
3  Emery VJ (1987) Theory of high-Tc superconductivity in oxides. Phys Rev Lett 

58(26):2794―2797. 
4  Varma CM, Schmitt-Rink S, Abrahams E (1987) Charge transfer excitations and 

superconductivity in “ionic” metals. Solid State Comm 62(10):681-685. 
5  Sachdev S, Read N (1991) Large N expansion for frustrated and doped quantum 

antiferromagnets. Int J Mod Phys B 5(1):219-249. 
6  Vojta M, Sachdev S (1999) Charge order, superconductivity, and a global phase 

diagram of doped antiferromagnets. Phys Rev Lett 83(19):3916―3919. 
7  Kivelson SA, Fradkin E, Geballe TH (2004) Quasi-one-dimensional dynamics and a 

nematic phases in two-dimensional Emery model. Phys Rev B 69(14):144505-

1―144505-7. 
8  Fisher MH, Kim E-A (2011) Mean-field analysis of intra-unit-cell order in the Emery 

model of the CuO2 plane. Phys Rev B 84(14):144502-1―144502-10. 
9  Varma C (1997) Non-Fermi-liquid states and pairing instability of a general model of 

copper oxide metals. Phys Rev B 55(21):14554―14580. 
10  Kohsaka Y, et al. (2012) Visualization of the emergence of the pseudogap state and the 

evolution to superconductivity in a lightly hole-doped Mott insulator. Nat Phys 

8(7):534―538. 
11   Kohsaka Y, et al. (2007) An intrinsic bond-centered electronic glass with 

unidirectional domains in underdoped cuprates. Science 315(5817):1380―1385. 
12  Lawler MJ, et al. (2010) Intra-unit-cell electronic nematicity of the high-Tc copper-

oxide pseudogap states. Nature 466(7304):347―351. 



18 

 

 

                                                                                                                                                                            

 

13    Fujita K., et al  (2014) Simultaneous Transitions in Cuprate Momentum-Space 

Topology and Electronic Symmetry Breaking.  Preprint available at 

http://arxiv.org/abs/1403.7788 
14  Fauqué B, et al. (2006) Magnetic order in the pseudogap phase of high-Tc 

superconductors. Phys Rev Lett 96(19):197001-1―197001-4. 
15  Li Y, et al. (2008) Unusual magnetic order in the pseudogap region of the 

superconductor HgBa2CuO4+δ. Nature 455(7211):372―375. 
16  Almeida-Didry SD, et al. (2012) Evidence for intra-unit-cell magnetic order in 

Bi2Sr2CaCu2O8+δ. Phys Rev B 86(2):020504-1―020504-4. 
17  Xia J, et al. (2008) Polar Kerr-effect measurements of the high-temperature 

YBa2Cu3O6+x superconductor: Evidence for broken symmetry near the pseudogap 

temperature. Phys Rev Lett 100(12):127002-1―127002-4. 
18  Daou, R. et al. (2010) Broken rotational symmetry in the pseudogap phase of a high-

Tc superconductor Nature 463, 519-523 
19  Achkar AJ, et al. (2013) Resonant X-ray scattering measurements of a spatial 

modulation of the Cu 3d and O 2p energies in stripe-ordered cuprate 

superconductors. Phys Rev Lett 110(1):017001-1―017001-5. 
20   Comin R, et al. (2014) The symmetry of charge order in cuprates. Preprint available 

arXiv:1402.5415. 
21  Tranquada JM, et al. (1996) Neutron-scattering study of stripe-phase order of holes 

and spins in La1.48Nd0.4Sr0.12CuO4. Phys Rev B 54(10):7489―7499. 
22  Kim YJ, Gu GD, Gog T, Casa D (2008) X-ray scattering study of charge density waves in 

La2-xBaxCuO4. Phys Rev B 77(6):064520-1―064520-10. 
23  Chang J, et al. (2012) Direct observation of competition between superconductivity 

and charge density wave order in YBa2Cu3O6.67. Nat Phys 8(12):871―876. 
24  Ghiringhelli G, et al. (2012) Long-range incommensurate charge fluctuations in 

(Y,Nd)Ba2Cu3O6+x. Science 337(6096):821―825. 



19 

 

 

                                                                                                                                                                            

 

25  Achkar AJ, et al. (2012) Distinct charge orders in the planes and chains of ortho-III-

ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. 

Phys Rev Lett 109(16):167001-1―167001-5. 
26  Torchinsky DH, Mahmood F, Bollinger AT, Božović I, Gedik N (2013) Fluctuating 

charge-density waves in a cuprate superconductor. Nat Mat 12(5):387―391 
27  Blackburn E, et al. (2013) X-ray diffraction observations of a charge-density-wave 

order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. 

Phys Rev Lett 110(13):137004-1―137004-5. 
28  Hinton JP, et al. (2013) New collective mode in YBa2Cu3O6+x observed by time-domain 

reflectometry. Phys Rev B 88(6):060508-1―060508-5. 
29  Comin R, et al. (2014) Charge order driven by Fermi-arc instability in Bi2Sr2-

xLaxCuO6+δ. Science 343(6169):390―392. 
30  da Silva Neto EH, et al. (2014) Ubiquitous interplay between charge ordering and 

high-temperature superconductivity in cuprates. Science 343(6169):393―396. 
31  Hoffman JE, et al. (2002) A four unit cell periodic pattern of quasi-particle states 

surrounding vortex cores in Bi2Sr2CaCu2O8+δ. Science 295(5554):466―469. 
32  Li J-X, Wu C-Q, Lee D-H (2006) Checkerboard charge density wave and pseudogap of 

high-Tc cuprate. Phys Rev B 74(18):184515-1―184515-6. 
33  Seo K, Chen H-D, Hu J (2007) d-wave checkerboard order in cuprates. Phys Rev B 

76(2):020511-1―020511-4. 
34  Newns DM, Tsuei CC (2007) Fluctuating Cu-O-Cu bond model of high-temperature 

superconductivity. Nat Phys 3(3):184-191. 
35  Honerkamp C, Fu HC, Lee D-H (2007) Phonons and d-wave pairing in the two-

dimensional Hubbard model. Phys Rev B 75(1):014503-1―014503-5. 
36  Metlitski MA, Sachdev S (2010) Instabilities near the onset of spin density wave order 

in metals. New J Phys 12(10):105007-1―105007-13. 
37   Holder T, Metzner W (2012) Incommensurate nematic fluctuations in two-

dimensional metals. Phys Rev B 85(16):165130-1―165130-7. 
38  Efetov KB, Meier H, Pépin C (2013) Pseudogap state near a quantum critical point. Nat 



20 

 

 

                                                                                                                                                                            

 

Phys 9(7):442―446. 
39  Bulut S, Atkinson WA, Kampf AP (2013) Spatially modulated electronic nematicity in 

the three-band model of cuprate superconductors. Phys Rev B 88(15):155132-

1―155132-13. 
40  Sachdev S, La Placa R (2013) Bond order in two-dimensional metals with 

antiferromagnetic exchange interactions. Phys Rev Lett 111(2):027202-1―027202-5. 
41  Davis JC, Lee D-H (2013) Concepts relating magnetic interactions, intertwined 

electronic orders, and strongly correlated superconductivity. Proc Nat Acad Sci 

110(44):17623―17630. 
42  Allais A, Bauer J, Sachdev S (2014) Bond order instabilities in a correlated two-

dimensional metal. arXiv:1402.4807. 
43  Mesaros A, et al. (2011) Topological defects coupling smectic modulations to intra-

unit-cell nematicity in cuprates. Science 333(6041):426―430. 
44  Hamidian M, et al. (2012) Picometer registration of zinc impurity states in 

Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM. 

New J Phys 14(5):053017-1―053017-13 
45   Fujita K, et al. (2011) Spectroscopic imaging scanning tunneling microscopy studies of 

electronic structure in the superconducting and pseudogap phases of cuprate high-Tc 

superconductors. J Phys Soc Jpn 81(1):011005-1―011005-17. 













1 
 

Supporting Information For 

 

Intra-unit-cell Nematic Density Wave:  

Unfied Broken Symmetry of the Cuprate Pseudogap State 

 
K. Fujita†, M. H. Hamidian†, S. D. Edkins, Chung Koo Kim, Y. Kohsaka, 

 M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, 

 M. J. Lawler, E. -A. Kim,  Subir Sachdev & J. C. Séamus Davis 

 
 

I Models of spatially modulated order in underdoped cuprates  

 The study of the underdoped cuprates has led to proposals of a large number of 

density-wave orders with non-trivial form factors [1]-[33]. Here we provide a unified 

perspective on these orders, while highlighting the key characteristics detected by our 

observations. 

 

 It is useful to begin by considering the following bi-local observable at the Cu sites 

𝒓𝒊 and 𝒓𝒋 [21, 22]  

 

 〈𝑐𝑖𝛼
† 𝑐𝑗𝛼〉 =  ∑ [∑ 𝑃(𝒌 𝒌,𝑸)𝑒𝑖𝒌∙(𝒓𝒊−𝒓𝒋)]𝑸 𝑒𝑖𝑸∙(𝒓𝑖+𝒓𝒋)/2 (1.1) 

 

where 𝑐𝑖𝛼 annihilates an electron with spin α on a site a position 𝒓𝒊. The wavevector Q is 

associated with a modulation in the average co-ordinate (𝒓𝒊 + 𝒓𝒋)/2 . The interesting 

form-factor is the dependence on the relative co-ordinate 𝒓𝒊 − 𝒓𝒋 . An advantage of the 

formulation in Eq. (1.1) is that it provides a very efficient characterization of symmetries. 

Hermiticity of the observable requires that 

 𝑃∗(𝒌, 𝑸) = 𝑃(𝒌,−𝑸) (1.2) 

while  

 𝑃(𝒌,𝑸) = 𝑃(−𝒌,𝑸) (1.3) 

if time-reversal symmetry is preserved.  

  

 A number of other studies [1, 4, 16, 17,19] have made the closely related, but 

distinct parameterization 

                                       〈𝑐𝑖𝛼
† 𝑐𝑗𝛼〉 =  ∑ [∑ 𝑓(𝒌 𝒌,𝑸)𝑒𝑖𝒌∙(𝒓𝒊−𝒓𝒋)]𝑸 𝑒𝑖𝑸∙𝒓𝒊                                             (1.4) 

and then considered various ansatzes for the function f(k,Q). These are clearly related to 

those for P(k,Q) by 

 𝑓(𝒌,𝑸) = 𝑃(𝒌 +
𝑸

2
, 𝑸)  (1.5) 
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It is now clear that the relations (1.2) and (1.3) take a more complex form in terms of 

𝑓(𝒌,𝑸). Also, a d-wave form factor for 𝑓(𝒌, 𝑸)  is not equal to a d-wave form factor for 

𝑃(𝒌,𝑸), except at 𝑸 = 0. 

 

 We conduct the remainder of the discussion using 𝑃(𝒌,𝑸)  and Eq. (1.1). 

Depending upon the value of Q, various crystalline symmetries can also place restrictions 

on 𝑃(𝒌,𝑸), and we illustrate this with a few examples. 

 

 An early discussion of a state with non-trivial form factors was the “staggered flux” 

state (also called the “d-density wave” state), which carries spontaneous staggered 

currents [2]-[6]. This state has 𝑃(𝒌,𝑸) non-zero only for Q=(π,π), and 

 

 𝑃(𝒌,𝑸) = 𝑃𝑠𝑓(sin(𝑘𝑥) − sin(𝑘𝑦)) + 𝑃𝑠𝑓
′ (sin(2𝑘𝑥) − sin(2𝑘𝑦)) + ⋯ (1.6) 

 

where 𝑃𝑠𝑓 , 𝑃𝑠𝑓
′  are constants. All terms on the right-hand-side are required by symmetry 

to be odd under time-reversal (i.e. odd in k), and odd under the interchange kx↔ky. In the 

present notation, therefore, the staggered-flux state is a p-density wave. Please note that 

a d-wave form factor in our notation refers to a distinct state below, which should not be 

confused with the “d-density wave” of Refs. [2]-[6]. With 𝑃(𝒌,𝑸) non-zero only for Q=0 

and odd in k, we obtain states with spontaneous uniform currents [7]. 

 

 Another much-studied state is the electronic nematic [8]-[10]. This has 𝑃(𝒌,𝑸) 

non-zero only for Q=0, with  

 𝑃(𝒌,𝑸) = 𝑃𝑛(cos(𝑘𝑥) − cos(𝑘𝑦)) + 𝑃𝑛
′(cos(2𝑘𝑥) − cos(2𝑘𝑦)) + ⋯ (1.7) 

 

Now all terms on the right-hand-side should be even in k, and odd under the interchange 

kx↔ky . The ansatz in Eq. (1.7)  also applies to “incommensurate nematics” [21]-[31] 

which have 𝑃(𝒌,𝑸) non-zero only for 𝑸 = (±𝑄0, ±𝑄0): these are density waves with Q 

along the diagonals of the square lattice Brillouin zone, and a purely d-wave form factor. 

 

 Finally, we turn to the density waves considered in our manuscript. These have 

𝑃(𝒌,𝑸) non-zero only for 𝑸 = (0,±𝑄0) and (±𝑄0, 0) . We assume they preserve time-

reversal, and then the form-factor has the general form [22]  

 𝑃(𝒌,𝑸) = 𝑃𝑠 + 𝑃𝑠′(cos(𝑘𝑥) + cos(𝑘𝑦)) + 𝑃𝑑(cos(𝑘𝑥) − cos(𝑘𝑦)) + ⋯ (1.8). 

For general incommensurate Q0, any even function of kx is allowed on the right-hand-

side. Using arguments based upon instabilities of metals with local antiferromagnetic 

correlations, it was argued in Ref. [22] that such a density wave is predominantly d-

wave i.e. |Pd|≫Ps and |Pd|≫Ps', so that it is very nearly, but not exactly, an 

incommensurate nematic. The d-wave-ness here is a statement about the physics of the 

local electronic correlations, and is not fully determined by symmetry.  
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 We now make contact with the local observables considered in SI section II and III 

and as measured by STM. Via the canonical transformation from the two-band to the 

single-band model of the CuO2 layer, we can deduce the general relationship 

 〈𝑐𝑖𝛼
† 𝑐𝑗𝛼 + 𝑐𝑗𝛼

† 𝑐𝑖𝛼〉 =

{
 
 

 
 

1

𝐾
𝑛(𝒓𝑪𝒖) for 𝑖 = 𝑗 

1

𝐾′
𝑛(𝒓𝑶𝒙) for 𝑖, 𝑗 n.n along x-direction

 
1

𝐾′
𝑛 (𝒓𝑶𝒚)  for 𝑖, 𝑗 n.n along y-direction

 (1.9). 

 

Here 𝑛(r)  is any density-like (i.e. invariant under time-reversal and spin rotations) 

observable and K,K’  are proportionality constants. Combining (1.1) (1.8) (1.9) we can 

now write  

 

  𝑛(𝒓𝑪𝒖)=2𝐾Re{[∑ 𝑃(𝒌,𝑸)𝑘 ]𝑒𝑖𝑸∙𝒓𝑪𝒖} 

 

 = Re{𝐴𝑠 𝑒
𝑖𝑸∙𝒓𝑪𝒖} (1.10) 

 

 

𝑛(𝒓𝑶𝒙) =2𝐾′Re{[∑ cos(𝑘𝑥)𝑃(𝒌,𝑸)𝑘 ]𝑒𝑖𝑸∙𝒓𝑶𝒙}  

 

 = Re{[𝐴𝑠′ + 𝐴𝑑]𝑒
𝑖𝑸∙𝒓𝑶𝒙} (1.11)

  

 

 𝑛(𝒓𝑶𝒚)=2𝐾′Re{[∑ cos(𝑘𝑦) 𝑃(𝒌,𝑸)𝑘 ]𝑒
𝑖𝑸∙𝒓𝑶𝒚} 

 

 = Re{[𝐴𝑠′ − 𝐴𝑑]𝑒
𝑖𝑸∙𝒓𝑶𝒚} (1.12) 

 

with 𝐴𝑠 =  𝐾𝑃𝑠 and 𝐴𝑠′,𝑑 = 𝐾′𝑃𝑠′,𝑑. Our Fourier transforms of the STM data in Fig. 3 of the 

main text  yield the prefactors in Eqs. (1.11 & 1.12). The observed change in sign between 

the prefactors demonstrates that |𝑃𝑑| ≫ |𝑃𝑠′| as anticipated in Refs. [22, 23,24]. 
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II Symmetry Decomposition of CuO2 IUC States 

 

 Here we present mathematical details behind the angular momentum form factor 

organization of density waves on the CuO2 plane. There are many ways of organizing 

density waves in the CuO2 plane. One organization is to think of them as a wave on the 

copper atoms, a wave on the x-axis bond oxygen atoms and a wave on the y-axis bond 

oxygen atoms. Another organization is in terms of amplitudes of three different Bragg 

reflected peaks such as 

 𝑛(𝒓𝒏) =  𝐴 cos 𝒒 ∙ 𝒓𝒏 + 𝐵 cos(𝒒 + 𝑮𝒙) ∙ 𝒓𝒏 + 𝐶 cos(𝒒 + 𝑮𝒚) ∙ 𝒓𝒏 (2.1) 

where 𝒓𝒏 is the location of either a copper or oxygen atom, 𝒒 is the wave vector of the 

wave and 𝑮𝒙 = (2𝜋 𝑎⁄ , 0), 𝑮𝒚 = (0, 2𝜋 𝑎⁄ ) are reciprocal lattice vectors. The amplitudes 

A, B and C here are related to the corresponding amplitudes of the same wave organized 

in terms of waves on the copper and two oxygen atoms within the unit cell through a 

simple linear relation. The results presented in the main manuscript, however, present a 

compelling case that a third organization captures the density wave observed near 𝒒 =

(2𝜋 4𝑎⁄ , 0) and 𝒒 = (0, 2𝜋 4𝑎⁄ ) in STM experiments performed on underdoped cuprate 

superconductors at the pseudogap energy scale in a remarkably simple way. This way 

organizes them by angular momentum form factors that we call s, s’ (“extended s”) and d. 

Organized this way, the observed density wave within experimental resolution has a 

finite amplitude for only its d-wave form factor.  

 

We can think of the angular momentum form factor organization as a modulation 

of 𝒒 = 0 “waves” whose point group symmetry is well defined, as shown in Fig. 1A of the 

main text. The  𝒒 = 0 s-wave has a density  

 𝑛(𝒓𝑪𝒖) =  𝐴𝑠   𝑛(𝒓𝑶𝒙) =  0  𝑛 (𝒓𝑶𝒚) =  0 (2.2) 

, the 𝒒 = 0 s’-wave has density 

 𝑛(𝒓𝑪𝒖) =  0, 𝑛(𝒓𝑶𝒙) =  𝐴𝑠′, 𝑛 (𝒓𝑶𝒚) =

 𝐴𝑠′ (2.3)  

, and the 𝒒 = 0 d-wave has density 

 𝑛(𝒓𝑪𝒖) =  0, 𝑛(𝒓𝑶𝒙) =  𝐴𝑑 , 𝑛 (𝒓𝑶𝒚) =  −𝐴𝑑  (2.4). 

 

. Modulating these waves, we then obtain 

𝑛𝑠(𝒓𝒏) = {

𝐴𝑠 cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑪𝒖,
0, 𝒓𝒏 = 𝒓𝑶𝒙
0, 𝒓𝒏 = 𝒓𝑶𝒚 ,

,                     𝑛𝑠′(𝒓𝒏) = {

0, 𝒓𝒏 = 𝒓𝑪𝒖,
𝐴𝑠′ cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒙
𝐴𝑠′ cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒚 ,

, 

 𝑛𝑑(𝒓𝒏) = {

0, 𝒓𝒏 = 𝒓𝑪𝒖,
𝐴𝑑 cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒙 ,

−𝐴𝑑 cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒚 ,
 (2.5) 

A graphical picture corresponding to these waves is presented in Fig. 2A,B,C of the main 

text.  
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Given these waves, we would like to understand how they relate to the other 

organizations discussed above. To understand the organization by Bragg reflected peaks 

we need merely Fourier transform. The result is presented in Figs. 1D,E,F of the main text. 

We then see that a density wave with the s-wave form factor has amplitudes A = As, B=As, 

C=As, an s’-wave form factor has amplitudes A = As’, B = C = 0 and a d-wave form factor 

has amplitudes A = 0, B = -C = Ad. 

 

Consider also the organization by atomic site. We see that the s-wave form factor is just a 

wave purely on the copper atoms with no weight on the oxygen atoms while the s’-wave 

and d-wave form factors involve purely the oxygen sites. There is also a curious but 

practically very important relationship between the s’-wave and d-wave form factors: in 

a sense they are like mirror images of each other. Consider the s’-wave form factor. 

Organized by atomic site, we then consider the two functions 

 𝑛𝑂𝑥(𝒓𝒏) = {

0, 𝒓𝒏 = 𝒓𝑪𝒖,
𝐴𝑠′ cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒙

0, 𝒓𝒏 = 𝒓𝑶𝒚 ,
,   𝑛𝑂𝑦(𝒓𝒏) {

0, 𝒓𝒏 = 𝒓𝑪𝒖,
0, 𝒓𝒏 = 𝒓𝑶𝒙

𝐴𝑠′ cos 𝒒 ∙ 𝒓𝒏, 𝒓𝒏 = 𝒓𝑶𝒚 ,
,    (2.6) 

 

with 𝑛𝐶𝑢(𝒓𝒏) = 0.  

 

Anticipating the result of Section III, taking the sum 𝑛̃𝑂𝑥(𝒒) + 𝑛̃𝑂𝑥(𝒒)   must 

recover the Fourier transform of the full s’-wave. However, taking the difference 

𝑛̃𝑂𝑥(𝒒) − 𝑛̃𝑂𝑦(𝒒), we obtain the Fourier transform of the d-wave form factor. Similarly, 

𝑛̃𝑂𝑥(𝒒) + 𝑛̃𝑂𝑦(𝒒) for a density wave with a pure d-wave form factor must recover the 

corresponding Fourier transform presented in Fig. 2I but the difference 𝑛̃𝑂𝑥(𝒒) − 𝑛̃𝑂𝑥(𝒒) 

will look like the Fourier transform of a density with a pure s’-wave form factor in Fig. 

2H. In this way, we see that for pure d-wave or s’-wave form factor density waves, there 

is a striking difference between the sum and difference of the atomic site organization 

waves and that the different cases always looks like the Fourier transform of the other 

form factor. 

 

 Finally, given the above understanding of how the overall electronic structure 

image ( e.g. R(r) ) is built up from its components, there is another possible approach to 

determining the form factor of any density wave.  Phase-resolved Fourier analysis of such 

an electronic structure image that has not been decomposed into its constituent parts 

Cu(r), Ox(r), Oy(r) but remains intact, should still reveal the relative magnitude of the 

three form factors. However, one can show that this is only possible if the three 

independent DW peaks at Q, Q' = (1,0) + Q and Q'' = (0,1)+Q, are well resolved.  
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III Predicted Fourier Transform STM Signatures of a IUC Nematic DW  

 

As discussed in SI sections I and II, the projection of a density wave (DW) into s, s’ 

and d form factor components is conceptually appealing. However, for the purposes of 

this section we will keep in mind the exigencies of the experimental technique and work 

in terms of the segregated oxygen sub-lattice images Ox,y(𝒓). In terms of the segregated 

sub-lattices, a d-wave form factor DW is one for which the DW on the Ox sites is in anti-

phase with that on the Oy sites. For q≠0 ordering the form factor does not uniquely 

determine the point group symmetry of the DW and hence in general s, s’ and  d form 

factors are free to mix. This section predicts the consequences of a primarily d-wave form 

factor density wave for 𝑂̃x,y(𝒒) and shows its consistency with the data presented in the 

main text.  

    

To deduce the logical consequences a d-wave form factor DW for the Fourier 

transforms of the segregated oxygen site images one can start by constructing the dual 

real and momentum-space representation of the sub-lattices:  

 

 LCu(𝒓) = ∑ 𝛿(𝒓 −𝑖,𝑗 𝑹𝒊,𝒋) ⟺ L̃Cu(𝒒) =  ∑ 𝛿(𝒒 − 𝑮𝒉,𝒌ℎ,𝑘 ) (3.1) 

 LOx
(𝑟) = LCu (𝒓 −

𝑎0𝒙̂

2
) ⟺ L̃Ox

(𝒒) =  𝑒𝑖𝒒∙
𝑎0𝒙̂

2 L̃Cu(𝒒) (3.2) 

 LOy
(𝑟) = LCu (𝒓 −

𝑎0𝒚̂

2
) ⟺ L̃Oy

(𝒒) =  𝑒𝑖𝒒∙
𝑎0𝒚̂

2 L̃Cu(𝒒) (3.3) 

 

. The {𝑹𝒊,𝒋} are the set of direct lattice vectors of the square lattice with lattice constant 𝑎0 

and the {𝑮𝒉,𝒌}  are the reciprocal lattice vectors. The displacement of the oxygen sub-

lattices from the copper sub-lattice has the effect of modulating the phase of their Bragg 

peaks along the direction of displacement with periodicity 
4𝜋

a0
 in reciprocal space. This is 

depicted in Fig. S1A.  

 

Using the convolution theorem, a d-wave form factor modulation of the oxygen site 

density takes on the dual description: 

 

 Ox(𝒓) =  LOx
(𝒓) ∙ AOx

(𝒓)  ⟺ Õx(𝒒) =  L̃Ox
(𝒒) ∗ ÃOx

(𝒒) (3.4) 

  

 Oy(𝒓) =  LOy
(𝒓) ∙ AOy

(𝒓)  ⟺ Õy(𝒒) =  L̃Oy
(𝒒) ∗ ÃOy

(𝒒) (3.5) 

 

 AOx
(𝒓) = −AOy

(𝒓)  =  A(𝒓) ⟺  ÃOx
(𝒒) = −ÃOy

(𝒒) = A(𝒒) (3.6) 

 

. The functions  Ox,y(𝒓)  are the segregated oxygen sub-lattice images. The AOx,y
(𝒓)  are 

continuous functions that when multiplied by the sub-lattice functions yield density 

waves in anti-phase on the separate oxygen sub-lattices (Fig. S1B) . Fig. S1C shows their 



7 
 

Fourier transforms ÃOx,y
(𝒒). Note that A(𝒓) may contain arbitrary amplitude and overall 

phase disorder and remain d-wave so long as the relative phase relation in Eq. (3.6) is 

maintained. 

 

As shown in Fig. S2A, the convolutions in Eqs. (3.4) & (3.5) create an image of ÃOx,y
(𝒒) at 

each reciprocal lattice vector that sum to form the total convolution. Labelling the 

convolution image due to the reciprocal lattice vector (h,k) in the x sub-lattice Õx
ℎ,𝑘
(𝒒): 

 

 

 Õx(𝒒) = ∑ Õx
ℎ,𝑘
(𝒒)ℎ,𝑘 = ∑ 𝑒𝑖𝑮

𝒉,𝒌∙
𝑎0𝒙̂

2𝑛 ÃOx
(𝒒 − 𝑮𝒉,𝒌)  (3.7) 

 

. In creating the (h,k) convolution image, the phase of the sub-lattice Bragg peak at 𝐺⃗ℎ,𝑘 

and that of the form factor ÃOx
(𝑞⃗) must be added: 

 arg {Õx
ℎ,𝑘
(𝒒)} = arg{ÃOx

(𝒒)} + arg {𝑒𝑖𝑮
𝒉,𝒌∙

𝑎0𝒙̂

2 }    (3.8). Thus it follows 

immediatley that  

 Õx
0,0
= A(𝒒)  Õy

0,0
= −A(𝒒)  (3.9) 

 Õx
1,0
= −A(𝒒) Õy

1,0
= −A(𝒒) (3.10) 

 Õx
0,1
= A(𝒒)    Õy

0,1
= A(𝒒) (3.11) 

and hence 

 

 Õx
0,0
+ Õy

0,0
=  0            Õx

0,0
− Õy

0,0
= 2A(𝒒) (3.12) 

 Õx
1,0
+ Õy

1,0
= −2A(𝒒)         Õx

1,0
− Õy

1,0
=   0 (3.13) 

 Õx
0,1
+ Õy

0,1
=     2A(𝒒)          Õx

0,1
− Õy

0,1
= 0 (3.14) 

 

 A direct consequence of a d-wave form factor is that in  Õx(𝒒) + Õy(𝒒) the 

amplitude of the convolution image at (0,0) is cancelled exactly whereas those at the 

(±1,0) and(0, ±1) points are enhanced as illustrated in Figs. S2B&C. The converse is true 

for Õx(𝒒) − Õy(𝒒). This holds for any d-wave modulation in the presence of arbitrary 

amplitude and overall phase disorder.  

 

 Figs. 2G-I of the main text show Fourier transforms of different form factor density 

waves in the CuO2 plane; for pedagogical reasons we labeled them 𝑆̃𝐷𝑊(𝒒), 𝑆 ′̃𝐷𝑊(𝒒) and 

𝐷̃𝐷𝑊(𝒒), with the obvious notation. A d-form factor density wave has modulations only 

on the oxygen sites and hence its contribution to the full Fourier transform is contained 

entirely within Õx(𝒒) + Õy(𝒒). From Eqs. (3.12-3.14) we must conclude that for density 

waves with principal wave-vectors that lie within the 1st BZ, 𝐷̃𝐷𝑊(𝒒)  will exhibit an 

absence of peaks at these wave-vectors in the 1st BZ.  For 𝑆̃(𝒒) and 𝑆̃′(𝒒) we may conclude 

that they will be present using similar arguments.  
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 Empirically (main text Figs. 4 and 5), our data contain modulations at two 

wavevectors Q1=(Q0,0) and Q2=(0,Q0) with Q0≈1/4 but with a great deal of fluctuation in 

the spatial-phase of the DW (see Ref. 43 of main text).  However, it would be improper to 

conclude from this that we observe a bi-directional d-wave DW, often termed the 

"checkerboard" modulation. The strong disorder of the density modulations in BSCCO 

and NaCCOC is apparent in the real-space images presented in Fig. 3 of the main text and 

Section V of this document. Random charge disorder can have the effect of taking a clean 

system with an instability toward uni-directional ("stripe") ordering and produce 

domains of uni-directional order than align with the local anisotropy. Conversely, a clean 

system with an instability towards bi-directional ("checkerboard") ordering may have 

local anisotropy imbued upon it by disorder. 

 

 Whilst the wave-vector(s) of the underlying instability of the copper oxide plane 

to DW ordering are of keen theoretical interest, pragmatically, any d-wave form factor 

DW containing two wave-vectors can be described by:  

 

 A(𝒓) = cos(𝑸𝟏 ∙  𝒓  ) ∙ H1(𝒓) + cos (𝑸𝟐 ∙  𝒓  ) ∙ H2(𝒓) (3.15) 

 A(𝒒) =
1

2
[𝛿(𝒒 − 𝑸𝟏) + 𝛿(𝒒 + 𝑸𝟏 )] ∗ H̃1(𝒒) +

1

2
[𝛿(𝒒 − 𝑸𝟐) + 𝛿(𝒒 + 𝑸𝟐 )] ∗ H̃2(𝒒)  

  (3.16) 

 

. The complex valued functions Hx,y(𝒓)  locally modulate the amplitude and phase of the 

density wave and hence encode its disorder. The problem now reduces to performing the 

convolutions contained in Eqs. (3.4,3.5&3.6).  

 

 For the specific example of 𝑄⃗⃗1 ≈ (
1

4
, 0) and 𝑄⃗⃗2 ≈ (0,

1

4
) considered in our study the 

primarily d-wave form factor requires that the peaks at (±
1

4
, 0) and (0,±

1

4
) present in 

both Õx(𝒒) and Õy(𝒒) must cancel exactly in Õx(𝒒) + Õy(𝒒) and be enhanced in Õx(𝒒) −

Õy(𝒒). Conversely the peaks at (±1 ±
1

4
, ±1 ±

1

4
) will be enhanced in Õx(𝒒) + Õy(𝒒) but 

will cancel exactly in Õx(𝒒) − Õy(𝒒). These are necessary consequences of a DW with a 

primarily d-wave form factor. This is discussed in the main text and in accord with the 

observations in Figs. 3& 4. 

 

  



9 
 

IV Sublattice Phase Definition: Lawler-Fujita Algorithm 

 

 Consider an atomically resolved STM topograph ,T(r) , with tetragonal symmetry 

where two orthogonal wavevectors generate the atomic corrugations.These are centered 

at the first reciprocal unit cell Bragg wavevectors 𝑸𝑎 = (𝑄𝑎𝑥, 𝑄𝑎𝑦) and 𝑸𝑏 = (𝑄𝑏𝑥, 𝑄𝑏𝑦) 

with a and b being the unit cell vectors.  Schematically, the ideal topographic image can 

be written as 

 𝑇(𝒓) = 𝑇0[cos(𝑸𝑎 ∙ 𝒓) + cos(𝑸𝑏 ∙ 𝒓)] (4.1) 

. In SI-STM, the T(r) and its simultaneously measured spectroscopic current map, 𝐼(𝒓, 𝑉), 

and differential conductance map, 𝑔(𝒓, 𝑉), are specified by measurements on a square 

array of pixels with coordinates labeled 𝒓 = (𝑥, 𝑦). The power-spectral-density (PSD) 

Fourier transform of T(r), |𝑇̃(𝒒)|
2
-where 𝑇̃(𝒒) = 𝑅𝑒 𝑇̃(𝒒) + 𝑖𝐼𝑚 𝑇̃(𝒒), then exhibits two 

distinct peaks at 𝒒 = 𝑸𝑎and 𝑸𝑏 . 

 

 In an actual experiment, T(r) suffers picometer scale disortions from the ideal 

representation in (4.1) according to a slowly varying ‘displacement field’, 𝒖(𝒓).  The same 

distortion is also found in the spectroscopic data. Thus, a topographic image, including 

distortions, is schematically written as 

 𝑇(𝒓) = 𝑇0[cos(𝑸𝑎 ∙ (𝒓+𝒖(𝒓))) + cos(𝑸𝑏 ∙ (𝒓+𝒖(𝒓)))]. (4.2) 

Then, to remove the effects of 𝒖(𝒓) requires an affine transformation at each point in 

space.  

 

To begin, define the local phase of the atomic cosine components, at a given point r, as 

 𝜑𝑎(𝒓) = 𝑸𝑎 ∙ 𝒓 + 𝜃𝑎(𝒓) 

 𝜑𝑏(𝒓) = 𝑸𝑏 ∙ 𝒓 + 𝜃𝑏(𝒓) (4.3) 

which recasts equation (4.2) as  

 𝑇(𝒓) = 𝑇0[cos(𝜑𝑎(𝒓)) + cos(𝜑𝑏(𝒓))] (4.4) 

where 𝜃𝑖(𝒓) = 𝑸𝑖 ∙ 𝒖(𝒓) is additional phase generated by the displacement field.  If there 

were no distortions and the T(r) image were perfectly periodic then 𝜃𝑖(𝒓)  would be 

constant.  From this perspective, the 2-dimensional lattice in (4.4) is a function of phase 

alone.  For example, the apex of every atom in the topographic image has the same 

phase,  0(mod 2𝜋)  regardless of where it is in the image.  When viewed in the r 

coordinates, the distance between such points of equal phase in the ‘perfect’ lattice and 

distorted lattice is not the same.    The problem of correcting T(r) then reduces to finding 

a transformation to map the distorted lattice onto the ‘perfect’ one, using the phase 

information 𝜑𝑖(𝒓) . This is equivalent to finding a set of local transformations which 

makes 𝜃𝑎(𝒓) and 𝜃𝑏(𝒓) constant over all space; call them 𝜃̅𝑎 and 𝜃̅𝑏  respectively.   

 

Let 𝒓 be a point on the unprocessed T(r) and let 𝒓̃ be the point of equal phase on 

the perfect lattice periodic image, which needs to be determined.  This produces a set of 

equivalency relations 

 𝑸𝑎 ∙ 𝒓 + 𝜃𝑎(𝒓) =  𝑸𝑎 ∙ 𝒓̃ +  𝜃̅𝑎  
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 𝑸𝑏 ∙ 𝒓 + 𝜃𝑏(𝒓) =  𝑸𝑏 ∙ 𝒓̃ + 𝜃̅𝑏 (4.5) 

Solving for 𝒓̃ =  (𝑥̃, 𝑦̃)  and then assigning the values of the topographic image at 𝒓 =

(𝑥, 𝑦) , 𝑇(𝒓), to 𝒓̃ produces the ‘perfect’ lattice.  To solve for 𝒓̃ rewrite (4.5) in matrix form 

 𝑸(
𝑥̃
𝑦̃
) =  𝑸 (

𝑥
𝑦) − (

𝜃̅𝑎 − 𝜃𝑎(𝒓)

𝜃̅𝑎 − 𝜃𝑏(𝒓)
) (4.6) 

where   𝑸 = (
𝑄𝑎𝑥 𝑄𝑎𝑦
𝑄𝑏𝑥 𝑄𝑏𝑦

). (4.7) 

Because 𝑸𝑎 and 𝑸𝑏  are orthogonal, 𝑸  is invertible allowing one to solve for the 

displacement field 𝒖(𝒓) which maps 𝒓 to 𝒓̃: 

 𝒖(𝒓) =  𝑸−1 (
𝜃̅𝑎 − 𝜃𝑎(𝒓)

𝜃̅𝑏 − 𝜃𝑏(𝒓)
). (4.8) 

In practice, we use the convention 𝜃̅𝑖 = 0  which generates a ‘perfect’ lattice with an 

atomic peak centered at the origin.  This is equivalent to setting to zero the imaginary 

component of the Bragg peaks in the Fourier transform.   

 

Of course, to employ the transformation in (4.6) one must first extract 𝜃𝑖(𝒓) from 

the topographic data.  This is accomplished by using a computational lock-in technique 

in which the topograph, 𝑇(𝒓), is multiplied by reference sine and cosine functions with 

periodicity set by 𝑸𝑎and 𝑸𝑏 . The resulting four images are filtered to retain only the q-

space regions within a radius 𝛿𝑞 =
1

𝜆
 of the four Bragg peaks; the magnitude of 𝜆 is chosen 

to capture only the relevant image distortions. This procedure results in retaining the 

local phase information 𝜃𝑎(𝒓), 𝜃𝑏(𝒓) that quantifies the local displacements from perfect 

periodicity: 

 𝑌𝑖(𝒓) =  sin 𝜃𝑖(𝒓) ,   𝑋𝑖(𝒓) =  cos 𝜃𝑖(𝒓) (4.9) 

Dividing the appropriate pair of images allows one to extract 𝜃𝑖(𝒓): 

 𝜃𝑖(𝒓) =  tan
−1 𝑌𝑖(𝒓)

𝑋𝑖(𝒓)
 . (4.10) 
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V Data Analysis  

 

 In Fig. 5F of main text, we show the 2D histogram of the amplitude 

difference and the phase difference between Ox(r) and Oy(r). In order to construct this, 

first, “fouirer filter” is applied to get both real and imaginary part of Ox(r) and Oy(r) only 

associated with Qx~(1/4,0) and Qy~(0,1/4),  

𝑂̃𝛼(𝐫, 𝐐𝛽) = ∫𝑑𝐑𝑂𝛼(𝐑) 𝑒
𝑖𝐐𝛽∙𝐑𝑒

−
|𝐫−𝐑|2

2Λ
2 1

2𝜋Λ
2, 

(5.1a) 

where , =x, y, and  the averaging length to be ~30Å. 

For q=Qx, amplitudes and phases are given by 

𝐴𝑥(𝐫, 𝐐𝑥) = √𝑅𝑒𝑂̃𝑥(𝐫,𝐐𝑥)2 + 𝐼𝑚𝑂̃𝑥(𝐫,𝐐𝑥)2, (5.1a) 

𝐴𝑦(𝐫,𝐐𝑥) = √𝑅𝑒𝑂̃𝑦(𝐫,𝐐𝑥)2 + 𝐼𝑚𝑂̃𝑦(𝐫,𝐐𝑥)2, 
(5.1b) 

 

𝜙𝑥(𝐫, 𝐐𝑥) = 𝑡𝑎𝑛
−1 (

𝐼𝑚𝑂̃𝑥(𝐫,𝐐𝑥)

𝑅𝑒𝑂̃𝑥(𝐫,𝐐𝑥)
), (5.2a) 

𝜙𝑦(𝐫,𝐐𝑥) = 𝑡𝑎𝑛
−1 (

𝐼𝑚𝑂̃𝑦(𝐫,𝐐𝑥)

𝑅𝑒𝑂̃𝑦(𝐫,𝐐𝑥)
). 

(5.2b) 

 

Similarly, for q=Qy, 

𝐴𝑥(𝐫, 𝐐𝑦) = √𝑅𝑒𝑂̃𝑥(𝐫, 𝐐𝑦)
2
+ 𝐼𝑚𝑂̃𝑥(𝐫, 𝐐𝑦)

2
, 

(5.3a) 

𝐴𝑦(𝐫, 𝐐𝑦) = √𝑅𝑒𝑂̃𝑦(𝐫, 𝐐𝑦)
2
+ 𝐼𝑚𝑂̃𝑦(𝐫,𝐐𝑦)

2
, 

(5.3b) 

 

𝜙𝑥(𝐫, 𝐐𝑦) = 𝑡𝑎𝑛−1 (
𝐼𝑚𝑂̃𝑥(𝐫,𝐐𝑦)

𝑅𝑒𝑂̃𝑥(𝐫,𝐐𝑦)
), 

(5.4a) 

𝜙𝑦(𝐫, 𝐐𝑦) = 𝑡𝑎𝑛−1 (
𝐼𝑚𝑂̃𝑦(𝐫,𝐐𝑦)

𝑅𝑒𝑂̃𝑦(𝐫,𝐐𝑦)
). 

(5.4b) 

 

Next, the normalized amplitude difference and the phase difference for q=Qx are then defined 

by 
𝐴𝑥(𝐫,𝐐𝑥)−𝐴𝑦(𝐫,𝐐𝑥)

𝐴𝑥(𝐫,𝐐𝑥)+𝐴𝑦(𝐫,𝐐𝑥)
, (5.5a) 

|𝜙𝑥(𝐫,𝐐𝑥) − 𝜙𝑦(𝐫,𝐐𝑥)| (5.5b) 

 

, respectively. Similarly, for q=Qy, 

𝐴𝑥(𝐫,𝐐𝑦)−𝐴𝑦(𝐫,𝐐𝑦)

𝐴𝑥(𝐫,𝐐𝑦)+𝐴𝑦(𝐫,𝐐𝑦)
, 

(5.6a) 

|𝜙𝑥(𝐫, 𝐐𝑦) − 𝜙𝑦(𝐫,𝐐𝑦)|. (5.6b) 

 

Finally, using (5.5) and (5.6) we obtain a two dimensional histogram for both Qx and Qy, 

independently, and then take sum of them to construct single distribution containing the 

information for both Qx and Qy. 

 

 

In Fig. S3 we show the measured 𝑅(𝒓) (subset of  main Fig. 3A is presented since 

original FOV is so large DW is no longer visible clearly) and its segregation into three site-
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specific images Cu(r) , Ox(r) and Oy(r) as described in the main text. With the origin set at 

a Cu site, Fig. S4 then shows the three complex valued Fourier transform images derived 

from Fig. 3A: 𝐶̃𝑢(𝒒) ≡ 𝑅𝑒 𝐶̃𝑢(𝒒) + 𝑖𝐼𝑚 𝐶̃𝑢(𝒒)  , 𝑂̃𝑥(𝒒) ≡ 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑖𝐼𝑚𝑂̃𝑥(𝒒)  , 𝑂̃𝑦(𝒒) ≡

𝑅𝑒𝑂̃𝑦(𝒒) + 𝑖𝐼𝑚𝑂̃𝑦(𝒒) . This type of sublattice-phase-resolved Fourier analysis which we 

introduce in this paper provides the capability to measure the relative phase of different 

sites with each CuO2 unit cell. The inset to Fig. S3A shows the difference between the real 

component of Bragg intensity for (1,0) and (0,1) peaks in the Fourier transforms of the 

electronic structure images before sublattice segregation. It is this difference that was 

originally used to determine the d-form factor of the intra-unit-cell nematic state; see Ref. 

12, 45 of main text. Figures S5 and S6 present the equivalent data and analysis for 

NaCCOC.  

 

 Figure S7 shows the comparison between the analysis of Z(r,|E|)=g(r,E)/g(r,-E) 

E=150meV for both BSCCO in S7A-D and NaCCOC in S7E-H. Both  Z(r,|E|) are segregated 

into three site-specific images Cu(r) , Ox(r) and Oy(r). The analysis is then presented in 

terms of their complex Fourier transforms  𝑅𝑒𝑂̃𝑥(𝒒)  ,  𝑅𝑒𝑂̃𝑦(𝒒)  as described in the main 

text . One can see directly that the phenomena are extremely similar for both compounds 

, in terms of 𝑅𝑒𝑂̃𝑥(𝒒)  ,  𝑅𝑒𝑂̃𝑦(𝒒)  and 𝑅𝑒𝑂̃𝑥(𝒒)±𝑅𝑒𝑂̃𝑦(𝒒)  . Moreover they are in excellent 

agreement with expectations for a IUCN-DW in Fig 2H,I of main text . Thus, in the main 

text, we present analysis of Z(r,E=150) on an equivalent basis to R(r,E=150) when 

deriving 𝑂̃𝑥(𝒒) ≡ 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑖𝐼𝑚𝑂̃𝑥(𝒒)  , 𝑂̃𝑦(𝒒) ≡ 𝑅𝑒𝑂̃𝑦(𝒒) + 𝑖𝐼𝑚𝑂̃𝑦(𝒒)  for Fig. 3E-H of 

the main text.   
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Supporting Figure Captions  

 

 

Figure S1 Sub-lattice Decomposition of d Form Factor DW 

 

A. Fourier transforms of the x-bond and y-bond oxygen sublattices without a DW 

modulation.  

 

B. Schematic of continuous functions AOx,y
(𝒓) which when multiplied by the sublattice 

functions LOx,y
(𝒓)  yield density waves in anti-phase on the two sublattices with a 

modulation along the x direction. 

 

C. Fourier transforms of the functions AOx,y
(𝒓) exhibiting a relative phase of π as required 

for a d form factor density wave. 

 

Figure S2 Fourier Analysis of DW using the Convolution Theorem 

 

A.  Schematic of the segrated sublattice images Ox,y(𝒓)  and their Fourier transforms 

Õx,y(𝒒) which can be obtained from Fig. S1 by application of the convolution theorem. 



15 
 

 
B. Sum and difference of 𝑅𝑒Õx(𝒒) and 𝑅𝑒Õy(𝒒) for a d-form factor density wave with 

modulation along the x direction at Q=(Q,0). Note that the origin of co-ordinates in real 
space has been chosen such that the Fourier transforms are purely real.  
 
C. Sum and difference of 𝑅𝑒Õx(𝒒) and 𝑅𝑒Õy(𝒒) for a d form factor density wave with 

modulations along the x and y directions at Q=(Q,0),(0,Q). The key signature of the d-form 
factor is the absence of the peaks at (Q,0),(0,Q) in  𝑅𝑒Õx(𝒒) + 𝑅𝑒Õy(𝒒) and their presence 

in 𝑅𝑒Õx(𝒒) − 𝑅𝑒Õy(𝒒); the converse being true for the DW peaks surrounding (±1, ±1).  

 
Figure S3 Sublattice Segregation for BSCCO 

 

A. Measured R(r) for BSCCO sample with p~8±1%. This data is a subset of Fig. 3A 
reproduced here for clarity. The inset demonstrates an inequivalence between the real 
component of Bragg intensity for (1,0) and (0,1) peaks in the Fourier transforms of the 
electronic structure image before sublattice segregation signalling a Q=0 nematic state.  
 

B. Copper site segregated image, Cu(r), in which the spatial average is subracted, with 

copper sites selected from A. 

 

C. x-bond oxygen segregated specific image, Ox(𝒓) , in which the spatial average is 

subracted,  with x-oxygen sites selected from A. 

 

D.  y-bond oxygen segregated specific image, Oy(𝒓) , in which the spatial average is 

subracted, with y-oxygen sites selected from A. 

 

 

 

Figure S4 Sublattice Phase Resolved Fourier Analysis for BSCCO 

 

A. Measured ReCu(q) for BSCCO sample in Fig. 3A. No DW peaks are discernable at 

Q=(Q,0),(0,Q) or as Bragg satellites surrounding(±1,0) and (0, ±1) . This indicates a very 

small s wave component for the density wave form factor.  

 

B. Measured ImCu(q) which also indicates a very small s wave component.  

 

C. Measured ReOx(q) showing DW peaks at Q=(Q,0),(0,Q) and corresponding Bragg 

satellites. 

 

D.  Measured ImOx(q) which exhibits the same structure as C. The strong overall phase 

disorder is apparent in the colour variation within the DW peaks.  

 

E. Measured ReOy(q) which also shows DW peaks at Q=(Q,0),(0,Q) along with Bragg 

satellites.  



16 
 

 

F.  Measured ImOy(q) which exhibits the same structure as E.  

 

 

Figure S5 Sub-Lattice Segregation for NaCCOC 

A. Measured Z(r,E=150mV) for NaCCOC sample with p~12±1%;. The inset demonstrates 

an inequivalence between the real component of Bragg intensity for (1,0) and (0,1) peaks 

in the Fourier transforms of the electronic structure image before sublattice segregation 

signalling a Q=0 nematic state, as Fig S3A 

 

B. Copper site segregated image, Cu(r), in which spatial average is subracted, with copper 

sites selected from A. 

 

C. x-bond oxygen site segregared image, Ox(𝒓), in which the spatial average is subracted, 

with x-oxygen sites selected from A. 

 

D.  y-bond oxygen site segregated image, Oy(𝒓), in which the spatial average is subracted, 

with y-oxygen sites selected from A. 

 

 
Figure S6 Sublattice Phase Resolved Fourier Analysis for NaCCOC 

 

A. Measured ReCu(q) for NaCCOC sample with p~12±1%. No DW peaks are discernable 

at Q=(Q,0),(0,Q) or as Bragg satellites surrounding (±1,0) and (0, ±1). This indicates that 

the DW in NaCCOC has, like BSCCO, a very small s wave component in its form factor.  

 

B. Measured ImCu(q).  

 

C. Measured ReOx(q) showing DW peaks at Q=(Q,0),(0,Q) and corresponding Bragg 

satellites. 

 

D.  Measured ImOx(q) which exhibits the same structure as C. The colour variation within 

the DW peaks is smaller for NaCCOC than for BSCCO indicating a less disordered DW.  

 

E. Measured ReOy(q) which also shows DW peaks at Q=(Q,0),(0,Q) along with Bragg 

satellites.  

 

F.  Measured ImOy(q) which exhibits the same structure as E.  

 

 

Figure S7 Comparison of Z(r,E=150meV) between BSCCO and NaCCOC 
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A. Measured Ox(𝒒) for BSCCO sample with p~8±1% obtained using Z(r,|E|)=g(r,E)/g(r,-

E), E=150meV.   

 

B. Measured Oy(𝒒) for BSCCO sample using same analysis as in A.  

 

C. Measured 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒)  from A,B. The absence of the four DW peaks at Q is 

characteristic of a d form factor DW.  

 

D. Measured 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒)  from A,B. The presence of the four DW peaks at Q and 

absence of the Bragg satellite peaks is another expectation for a d form factor DW. 

 

E. Measured Ox(𝒒)  for NaCCOC sample with p~12±+-1% obtained using 

Z(r,|E|)=g(r,E)/g(r,-E), E=150meV.   

 

F. Measured Oy(𝒒) for NaCCOC sample using same analysis as in E. 

 

G. Measured 𝑅𝑒𝑂̃𝑥(𝒒) + 𝑅𝑒𝑂̃𝑦(𝒒)  from E,F. The same key signature of a d form factor DW 

is present in this measurement of NaCCOC as is present in that for BSCCO in C.  

 

H. Measured 𝑅𝑒𝑂̃𝑥(𝒒) − 𝑅𝑒𝑂̃𝑦(𝒒)  from E,F. The signatures of a d form factor DW are once 

again seen for NaCCOC in this image and should be compared to that for BSCCO in D.  
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