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In the fermionic sector of top-down approaches to holographic systems, one generically finds that the

fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal coupling. In this

Letter, we take one such interaction—a Pauli, or dipole, interaction—and study its effects on fermion

correlators. We find that this interaction modifies the fermion spectral density in a remarkable way. As we

change the strength of the interaction, we find that spectral weight is transferred between bands, and

beyond a critical value, a gap emerges in the fermion density of states. A possible interpretation of this

bulk interaction then is that it drives the dynamical formation of a (Mott) gap, in the absence of continuous

symmetry breaking.
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Holography provides a method to study the dynamics of
certain strongly correlated systems. In the recent past, there
has been much discussion about the two-point correlation
functions (and thus the spectral density) of probe fermionic
operators coupled to these strongly correlated systems;
see, for example, [1–4] and their citations. By modifying
the geometry and field content of the bulk geometry,
one changes the properties of the strongly coupled system
under study. The infrared properties of the correlation
functions of the probe operators are determined both by
the properties of the dual geometry and how the probes are
coupled to it. A variety of emergent infrared properties
have been identified.

In most cases, we do not possess a microscopic under-
standing of the field theory dynamics under study, beyond
simple properties such as temperature, charge density, etc.
In the so-called ‘‘bottom-up’’ approaches, one modifies
these simple properties by changing features of the bulk
theory. In some situations, where we have explicit ‘‘ultra-
violet completions’’ in terms of string or M-theory con-
structions, one may know more of how to interpret the dual
field theory. Starting in 10 or 11 dimensions, one can obtain
(super)gravitational descriptions of the bulk physics, and
in some cases corresponding knowledge of the dual field
theory. Recently, it was shown [5–8] that there are consis-
tent truncations of 10- and 11-dimensional supergravities
to five- and four-dimensional bulk theories that possess an
interesting class of gauge interactions and charged matter.
The gauge and matter content allows for interesting con-
densed matter physics phenomena in either two or three
(spatial) dimensions, such as superconductivity, to be ex-
plored in a fully consistent ‘‘top-down’’ approach [9–11].
In addition to this construction, there are of course many
other brane constructions that have and can be used.

Recently, the fermionic content of these consistent trun-
cations has been worked out in detail [12,13]. We empha-
size here that the fermionic sectors possess a number of
generic features, many of which have not been explored in

the holographic literature to date, and thus there is a good
chance that these features might lead to interesting phe-
nomena related to condensed matter physics. In this Letter,
we study a simple example in which a fermion is coupled
to a gauge field through a dipole interaction in the bulk.
Remarkably, we find that as the strength of this interaction
is varied, a new band in the density of states emerges,
spectral density is transferred between bands, and, beyond
a critical interaction strength, a gap opens up [14].
Such phenomena occur in several important condensed

matter systems. The typical systems, Mott insulators,
where a gap is dynamically generated, possess a half filled
band [16,17]. A key consequence of the dynamical gen-
eration of a charge gap is that of spectral weight transfer
[18,19]—the removal of a single fermionic charge carrier
(attained by doping) results in rearrangements of the spec-
trum on all energy scales. Since the formation of bound
states [16,17,20] in the Mott problem represents an ex-
ample of strong-coupling physics, it should in principle
be describable by gauge-gravity duality [21]. The holo-
graphic system that we study in this Letter describes both
the dynamical appearance of a gap to low energy fermion
transport and spectral weight transfer, the two key features
of Mott physics.
The consistent truncation referred to above gives rise to

a number of generic couplings of fermions. One feature
which we believe to be important, but will not consider
here, is the fact that quite generically one finds couplings
between spin-1=2 and spin-3=2 fermions. Since string orM
theory is at its core a gravitational theory with supersym-
metry, spin-3=2 gravitinos (massive or massless) are
generically present and coupled to other fermions. In ad-
dition, there are gauge fields and both charged and un-
charged matter fields, such as scalars, that are coupled in
specific ways, and, depending on the range of parameters,
could cause instabilities. For applications to holographic
superconductors, one finds suitable Majorana charge cou-
plings, for example.
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In this Letter, we consider just one form of nonminimal
coupling, in which the gauge field couples to spin-1=2
fermions through a dipole interaction of the form
Fab

�c�abc . In fact, we will only consider here the simplest
possible setup, in which the fermion propagates in the
background of a Reissner-Nordström (RN) anti–de Sitter
(AdSdþ1) black hole. In this sense, we are employing a
bottom-up construction, inspired by generic top-down
models. It would be interesting to extend our results to
other bulk systems, for example, those in which there are
also charged scalars which can, in principle, condense and
give rise to superconductivity.

Thus, we consider here the Lagrangian (in dþ 1 � 4
dimensions)

ffiffiffiffiffiffiffi�g
p

i �c ð 6D�m� ipFÞc ; (1)

where 6D ¼ eMc �
cð@M þ 1

4!
ab
M �ab � iqAMÞ and F ¼

1
2 �

abeMa e
N
b FMN , with eMa and !ab

M being the (inverse) viel-

bein and the spin connection, respectively.
For notational simplicity, we will rescale p, namely,

p ! pL=ðd� 2Þ, in what follows. The significance of
the parameters m and q are well known: they correspond
to the scaling dimension and global Uð1Þ charge of dual
fermionic operators. The significance of p in the dual field
theory is not apparent however. In the holographic system,
since p is a coupling of the probe fermion to the bulk
geometry, we expect that it may modify the correlation
functions of the dual fermionic operator.

The Reissner-Nordström AdSdþ1 (RN-AdS) geometry
has a metric and a gauge connection which can be written

ds2 ¼ r2

L2

�

�fðrÞdt2 þ d~x2
�

þ L2

r2
dr2

fðrÞ ; (2)

A ¼ �½1� ðr0=rÞd�2�dt; (3)

where fðrÞ ¼ 1�Mðr0=rÞd þQ2ðr0=rÞ2ðd�1Þ, M ¼
1þQ2, � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 1Þ=ð2d� 4Þp

Qr0=L
2, with r0 being

the horizon radius. To decouple the equation of motion,

we introduce projectors �� ¼ 1
2 ð1� �r�tk̂ � ~�Þ and write

c�ðrÞ ¼ rd=2fðrÞ1=4��c ðrÞ. Without loss of generality,
we take k1 ¼ k and ki ¼ 0 for i ¼ 2; . . . ; d� 2, and take
the basis �r ¼ �1 � �3 � 1, �t ¼ i1 � �1 � 1, �1 ¼
��3 � �2 � 1. One then finds

�
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c�:

(4)

We see that the principle effect of the Pauli coupling is
to modify the appearance of k in the equation of motion.
As we will explain below, this feature can lead to a gap in
the spectral density.

To see the effects more clearly, consider the solutions of
the Dirac equations (4) in the two (asymptotic and near
horizon) regimes. Asymptotically, the solutions behave as

c�ðr;!;kÞ¼a�ð!;kÞrmL 0
1

� �

þb�ð!;kÞr�mL 1
0

� �

: (5)

The effect of p asymptotically is to modify the subleading
terms. In this Letter, we take m 2 ½0; 12Þ and consider a� to

be the sources (conventional quantization). Having chosen
in-falling boundary condition near the horizon, the re-
tarded correlator is then of the form

GRð!; kÞ ¼ Gþð!; kÞ1 0
0 G�ð!; kÞ1

� �

; (6)

with G�ð!; kÞ ¼ b�ð!; kÞ=a�ð!; kÞ. Note that the Dirac
equations (4) implyGþð!; kÞ ¼ G�ð!;�kÞ. In this Letter,
we consider the extremal case (zero temperature). When
the background is extremal, fðrÞ has a double zero at the
horizon, and this fact renders the limit ! ! 0 of the Dirac
equations (4) near the horizon subtle. To take care of the
subtlety, one realizes [4,22] that near the horizon (in which
the geometry approaches AdS2 � R2 for T ¼ 0) the equa-
tions for c� in (4) organize themselves as functions of

� ¼ !L2
2=ðr� r0Þ with L2 ¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd� 1Þp

being the ra-
dius of AdS2. The coordinate � is the suitable radial
coordinate for the AdS2 part of the near horizon region,
and in this region, we can write c� in terms of � and

expand in powers of ! as follows: c I�ð�Þ ¼ c ð0Þ
I�ð�Þ þ

!c ð1Þ
I�ð�Þ þ!2c ð2Þ

I�ð�Þ þ � � � . Now, substituting this equa-
tion into (4), we find that to leading order

c ð0Þ00
I� ð�Þ ¼ L2

�

�

m�3 þ
�

cd
p

L
� kL

r0

�

�1

�

c ð0Þ
I�ð�Þ

� i�2

�

1þ qed
�

�

c ð0Þ
I�ð�Þ; (7)

where ed ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2dðd� 1Þp

and cd ¼ 1=½ð2d� 4Þed�.
Equations (7) are identical to the equations of motion for
massive spinor fields [4] with masses (m; ~mþ) and (m; ~m�)
in AdS2, where ~m� are time-reversal violating mass terms,
with the identification

~m� ¼ cd
p

L
� kL

r0
: (8)

Thus, c ð0Þ
I�ð�Þ are dual to spinor operators O� in the IR

conformal field theory with conformal dimensions
�� ¼ �� þ 1

2 , where

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
k�L

2
2 � q2e2d � i�

q

;

m2
k� ¼ m2 þ

�

cd
p

L
� kL

r0

�
2
: (9)

We see that turning on p modifies the scaling in the
infrared in an important way—effectively, the momentum
is pushed up or down by p.

PRL 106, 091602 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 MARCH 2011

091602-2



In what follows, we will numerically solve the Dirac
equations (4) for generic ! and k. It is convenient to write
c T� ¼ ð��; ��Þ and define 	� ¼ ��=��, in terms
of which the Dirac equations (4) then reduce to flow
equations

r2

L2

ffiffiffiffiffiffiffiffiffi

fðrÞ
q

@r	� ¼ �2m
r

L
	� þ ½v�ðrÞ � k�

þ ½vþðrÞ � k�	2�; (10)

where

v�ðrÞ ¼ 1
ffiffiffiffiffiffiffiffiffi

fðrÞp

�

!þ�q

�

1� rd�2
0

rd�2

��

��p

�

r0
r

�
d�2

:

Expressed in terms of 	�, the matrix of Green functions (6)
becomes

GRð!; kÞ ¼ lim
�!0

��2mL 	þ1 0
0 	�1

� ���
�
�
�
�
�
�r¼1

�

; (11)

where one is instructed to pick the finite terms as � ! 0.
We focus on the d ¼ 3 case and consider the extremal

RN-AdS4 background (for which Q2 ¼ 3). Thus, we have
a (2þ 1)-dimensional boundary theory at zero temperature
and finite charge density. Our results below are easily
carried over to higher dimensions. We take m ¼ 0, so
that the scaling dimension of the boundary theory fermion
operator is �c ¼ 3=2. Also, in what follows, we set q ¼ 1

as we vary p. The effect of nonzero p for other values of
the parameters m and q will be discussed elsewhere. To
compute the retarded Green function (and hence the spec-
tral density) of the dual fermionic operator, one imposes an
in-falling boundary condition near the horizon for c� [23].
In terms of 	�, the in-falling boundary condition reads (for
! � 0) 	�ðr0; !; kÞ ¼ i. We can now numerically inte-
grate the flow equations (10) and read off the asymptotic
values of c� from which the matrix of retarded Green
functions is easily computed using (11). The quantity of
interest for us is the fermion spectral function, which, up to

normalization, is given by Að!; kÞ ¼ Im½TrGRð!; kÞ�. We
will also be interested in the density of states Að!Þ, which
is given by the integral of Að!; kÞ over k.
The plots in Fig. 1 show ImG�ð!; kÞ for p ¼ 0 and p ¼

4:5. The left plot has p ¼ 0, analyzed previously in [2]:
the quasiparticlelike peak represents a Fermi surface
(kF ’ �0:92) where the excitations near the surface are
of non-Fermi liquid type. The right plot, for which p ¼
4:5, clearly shows a gap around ! ¼ 0. In Fig. 2, we plot
Að!; kÞ for p ¼ 0 and p ¼ 4:5 for sample values of k.
Figure 2(b) emphasizes that the gap in the spectral density
exists for all k. In Fig. 3, we show the density of states
near the chemical potential for various values of p. Our
numerical computations indicate that the onset of the gap is
near p ¼ 4. Finally, in Fig. 4, we plot the width of the gap
� versus p. What we see from the numerical results is the
following. For small p, the dominant feature of the spectral
density is the well-known Fermi peak at k ¼ kF. As p
increases, the intensity of this peak degrades, and spectral
density begins to appear at negative!. We will refer to this
as the lower band. At a critical value pcrit, a gap separating
the lower band from the original (upper) band emerges, for
all k. As p increases further, this gap widens, and peaks
begin to appear in the lower band. The difference between
Að!;p ¼ 0Þ and Að!;p ¼ 6Þ is shown in the inset of

FIG. 1 (color online). ImG�ð!; kÞ for p ¼ 0 and p ¼ 4:5. A gap is clearly visible around ! ¼ 0 in the second plot. We show
just G�ð!; kÞ; Gþð!; kÞ can be recovered using the relation Gþð!; kÞ ¼ G�ð!;�kÞ implied by the Dirac equation. We have set
L ¼ r0 ¼ 1.
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FIG. 2. (a) Að!; kÞ as a function of ! for sample values of k 2
½0:1; 3:2� for p ¼ 0. k ¼ kF ’ 0:92 for the peak at ! ¼ 0.
(b) The same plot but for p ¼ 4:5. The gap around ! ¼ 0
persists for all values of k.
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Fig. 3. This illustrates clearly that the gap is accompanied
by transfer of spectral weight over all energy scales, not
just on the order of the gap as typified by systems in which
a continuous symmetry is broken, for example, BCS
superconductors.

The behavior for p > pcrit strongly reminds us of the
Mott gap in a half filled band in which no continuous
symmetry is broken in the formation of the gap. This would
naively suggest that p plays the role of the dimensionless
interaction strength, U=t, in the Hubbard model. However,
in the present work lowering p not only closes the gap but
also shifts spectral weight from the upper to the lower band
(Fig. 3 inset). In the Hubbard model, it is the doping that
leads to spectral weight transfer. Hence, the parameter p
seems to, in terms of the Hubbard model, mimic the
combined effects of doping and interaction strength. It
would be interesting to determine (but is beyond the scope
of this discussion) if a condensate violating some discrete
symmetry is present when� � 0. Note, however, that such
a transition is expected to only involve energy scalesOð�Þ,
in contrast to the redistributions of the spectral weight on
all energy scales seen in Fig. 3.

Finally, it is important to appreciate the vagaries of
holographic studies such as this one. We are not claiming
that turning on the Pauli coupling to a probe fermion opens
up a gap in charge transport. Indeed, because we are not
considering backreaction in any sense, one expects that
charge current correlators are unmodified. The probe fer-
mion makes a negligible contribution to charge transport
in the dual field theory. However, transport of the dual
fermion operator is gapped.
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