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We study the properties of fermion correlators in a boundary theory dual to the Reissner-Nordström

AdSdþ1 background in the presence of a bulk dipole (Pauli) interaction term with strength p. We show that

by simply changing the value of the parameter p we can tune continuously from a Fermi liquid (small p),

to a marginal-Fermi liquid behavior at a critical value of p, to a generic non-Fermi liquid at intermediate

values of p, and finally to a Mott insulator at large values of the bulk Pauli coupling. As all of these phases

are seen in the cuprate phase diagram, the holographic model we study has the key elements of the strong-

coupling physics typified by Mott systems. In addition, we extend our analysis to finite temperature and

show that the Mott gap closes. Of particular interest is that it closes when the ratio of the gap to the critical

temperature is of the order of 10. This behavior is very much similar to that observed in the classic Mott

insulator VO2. We then analyze the nonanalyticities of the boundary theory fermion correlators for generic

values of frequency and momentum by calculating the quasinormal modes of the bulk fermions. Not

surprisingly, we find no evidence for the dipole interaction inducing an instability in the boundary theory.

Finally, we briefly consider the introduction of superconducting condensates and find that, in that case, the

fermion gap is driven by scalar-fermion couplings rather than by the Pauli coupling.
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I. INTRODUCTION

Holography can offer unprecedented insight into the
dynamics of strongly coupled systems. In the recent past,
it has become clear that the domain of applicability of
holography goes beyond high energy physics and includes
strongly correlated systems in condensed matter physics,
as well (see [1–4] for reviews). Since in most cases of
interest we do not possess a microscopic understanding of
the field theory dynamics under study, a phenomenological
point of view (the so-called ‘‘bottom-up’’ approach) is
taken where a minimal gravitational setup is devised for
analyzing a specific strong-coupling feature of a system. In
some situations where string or M-theory completion of a
bottom-up construction is known, one may wonder how a
bottom-up result is modified in a top-down approach. For
example, a quantity of interest in strongly correlated con-
densed matter systems, which can easily be computed
using holography, is the fermion spectral function (which
is proportional to the imaginary part of the fermion re-
tarded two-point function). There has recently been much
discussion about this quantity in the holographic literature
[5–9] where analyzing the Dirac equation for a charged
probe fermion propagating in a gravitational background
(usually a charged black hole), one can show that the
retarded two-point function of the dual fermionic operator
in the boundary theory shows a variety of unexpected
emergent phenomena. In top-down approaches to holo-
graphic systems, the fermions are generically coupled to
gravity and gauge fields in a variety of ways, beyond
minimal coupling. It is certainly desirable to analyze how
such nonminimal bulk couplings modify the fermion spec-
tral function in the boundary theory or may lead to new
interesting emergent phenomena.

Recently, it was shown [10–13] that there are consistent
truncations of ten- and eleven-dimensional supergravities
to five- and four-dimensional bulk theories that possess an
interesting class of gauge interactions and charged matter,
allowing for novel condensed matter physics phenomena,
such as superconductivity, to be explored in a consistent
top-down approach [14–16]. The fermionic sector of these
truncations has also been worked out in [17,18] where a
number of generic couplings for the fermions (with pos-
sible applications to strongly correlated condensed matter
systems) have been realized.
Motivated by these studies, we considered in [19] a

generic nonminimal fermion coupling in which a spin-1=2
fermion couples to the gauge field through a dipole (Pauli)
interaction of the form Fab

�c�abc . In fact, we just consid-
ered the simplest possible setup, in which a spin-1=2
fermion propagates in the background of a Reissner-
Nordström AdSdþ1 black hole. We found that as one
changes the strength of this interaction, spectral weight of
the dual fermionic operator is transferred between bands,
and beyond a critical value of the dipole coupling, a gap
emerges in the fermion density of states.We then concluded
that a possible interpretation of this interaction is that it
drives the dynamical formation of a (Mott) gap, in the
absence of continuous symmetry breaking. In the
Hubbard model, the Mott gap forms in d > 1 once the on-
site interaction U exceeds a critical value in the half-filled
system. Upon doping, spectral weight shifts from high to
low energies. Consequently, we argued that the strength of
the dipole interaction mimics the combined effects of
doping and the on-site interaction strength U.
In this paper, we continue our study of the dipole inter-

action in more detail. We investigate the existence of Fermi
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surfaces as the dipole coupling p is varied. For the range of
parameters considered in this paper, we find that there is no
Fermi surface above a certain value of p. This is the range
of parameters considered in [19], where the boundary
theory exhibits two main features of Mott insulators: a
dynamically generated gap (in the absence of continuous
symmetry breaking) and spectral weight transfer. In addi-
tion, for the values of the dipole coupling p for which there
is a Fermi surface in the boundary theory, we find that at a
critical value of this coupling, marginal-Fermi liquid be-
havior ensues. Consequently, we are able with our model
(see Fig. 1) to describe, at one extreme, the Mott insulating
state with a dynamically generated gap, a transition to a
marginal-Fermi liquid (MFL) and, at the other, a Fermi-
liquid-like regime in which the excitation spectrum scales
linearly with the frequency. As all of these regimes are
accessed simply by changing the value of the dipole cou-
pling p, this suggests a direct parallel between p and the
hole-doping level in the high-temperature copper-oxide
superconductors (hereafter cuprates). In the cuprates, the
strong electron correlation physics ends at a value of
doping (typically optimal doping) where marginal-Fermi
liquid [20] behavior ensues. Perhaps the occurrence of the
MFL state of the probe fermions in our holographic setup is
an indication that this phenomenological model is ulti-
mately a robust feature of the transition from strong to
weakly interacting physics in doped Mott systems.

Having discussed the pole structure of the boundary
theory fermion (retarded) correlators for nonzero values
of p at small frequency, we analyze the nonanalyticities of
those correlators for generic values of frequency and mo-
mentum. We do this by numerically calculating the quasi-
normal modes of the bulk fermion in the (extremal)

Reissner-Nordström AdSdþ1 background. Following the
motion of the poles in the complex frequency plane as a
function of momentum, we compute their dispersion rela-
tions and, for the range of parameters considered, confirm
that all of the poles stay in the lower half of the complex
frequency plane, for all momenta. Hence, as expected,
turning on a nonzero bulk dipole coupling in our setup
does not cause an instability in the boundary theory.
We consider our setup at finite temperature and find that

as the temperature increases the gap closes and, moreover,
the critical temperature for which this happens is much less
than the value of the gap. In this regard, the closing of the
gap induced by temperature parallels what one obtains in
the classic Mott systemVO2 [21]; namely, the gap closes at
a temperature much lower than the gap.
The paper is organized as follows. In Sec. II we consider

a bulk fermion in the Reissner-Nordström AdSdþ1 black-
hole background and couple it to the U(1) gauge field
nonminimally through a dipole interaction with strength
p. We then derive the Dirac equations and rewrite them as
flow equations which will be more convenient for numeri-
cally calculating the boundary theory fermion correlators.
In Sec. III we investigate the existence of Fermi surfaces as
a function of p by solving the Dirac equations at zero
frequency. In Sec. IV, we first discuss the small-frequency
behavior of the poles of the boundary theory fermion
(retarded) correlators when p is nonzero. We then analyze
the nonanalyticities of those correlators for generic values
of frequency and momenta. In Sec. V we study the effects
of temperature in our holographic setup. Finally, in
Sec. VI, we discuss the relevance of our work to the cuprate
phase diagram and conclude with open questions as well as
extensions for future work. In particular, we contemplate
the extension of our results to superconducting back-
grounds, which also do not possess a finite ground state
degeneracy at zero temperature.

II. BULK ANALYSIS

As we alluded to above, we consider just one form of
nonminimal coupling, in which a spin-1=2 fermion is
coupled to the gauge field through a dipole interaction1

of the form Fab
�c�abc and propagates in the background

of a Reissner-Nordström AdSdþ1 black hole (hereafter,
denoted by RN-AdSdþ1). Thus, we consider the bulk
Lagrangian ffiffiffiffiffiffiffi�g

p
i �c ð 6D�m� ipFÞc ; (1)

in dþ 1 � 4 dimensions where

�c ¼ c�t; 6D¼ eMc �
cð@M þ 1

4!
ab
M �ab � iqAMÞ;

F ¼ 1
2�

abeMa e
N
b FMN; (2)

FLMI

NFL

T

P

MFL

QCP

FIG. 1. A cartoon of the phase diagram of the boundary theory
considered here. MI indicates a Mott insulator, a phase with a
gap in the absence of symmetry breaking. NFL denotes non-
Fermi-liquid behavior which is distinct from the gapped spec-
trum of a Mott insulator. MFL indicates marginal-Fermi liquid
behavior in which the electron self-energy scales as ! log! at
T ¼ 0, and FL (Fermi liquid) a regime in which the dispersion is
linear in frequency. The tuning parameter in this model is the
Pauli (dipole) coupling. Similar behavior is obtained in the
nonsuperconducting features of the cuprate materials by tuning
the hole-doping level x.

1In even bulk dimensions, there is a similar interaction which
includes a �5. We will not consider this interaction in this paper.
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with eMa and !ab
M being the (inverse) vielbein and the spin

connection, respectively. We denote the bulk coordinate
indices by capital letters M;N; . . . ¼ ft; xi; rg while the
tangent space indices are denoted by a; b; . . . ¼ ft; xi; rg.
We will reserve the Greek indices �; �; . . . to denote
boundary coordinate directions. We use Dirac matrices
�t;�1; . . . ;�r satisfying the Clifford algebra f�a;�bg ¼
2�ab. Also, �ab ¼ 1

2 ½�a;�b�. In what follows, we will

rescale p ! pL=ðd� 2Þ for convenience.
The RN-AdSdþ1 background has a metric and a gauge

connection which can be written

ds2 ¼ r2

L2
½�fðrÞdt2 þ d~x2� þ L2

r2
dr2

fðrÞ ; (3)

A ¼ �

�
1�

�
r0
r

�
d�2

�
dt; (4)

where

fðrÞ ¼ 1�M

�
r0
r

�
d þQ2

�
r0
r

�
2ðd�1Þ

;

� ¼
�
d� 1

2d� 4

�
1=2 Qr0

L2
; M ¼ 1þQ2; (5)

with r0 being the horizon, given by the largest real root
of fðr0Þ ¼ 0. The temperature T of this (black-hole) back-
ground is given by

T ¼ ðd� 2Þ r0
4�L2

�
d

d� 2
�Q2

�
: (6)

From the above equation, one notes that the RN-AdSdþ1

black hole is extremal when Q2 ¼ d=ðd� 2Þ while the
density and entropy remain finite. Since the background
is invariant under At ! �At, without loss of generality, we
can choose �, or equivalently Q, to be positive. Thus, we

can take 0<Q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=ðd� 2Þp

, where the equality corre-
sponds to extremality.

To analyze the Dirac equations of the bulk fermion, we
find it more convenient to go to momentum space
by Fourier transforming c ðr; x�Þ � eik:xc ðr; k�Þ, where
k� ¼ ð!; ~kÞ. The Fourier transform of the Dirac operator
6D is of the form

6D ¼ r

L

ffiffiffiffiffiffiffiffiffi
fðrÞ

q
�r

�
@r þ f0ðrÞ

4fðrÞ þ
d

2r

�

� i
L

r
ffiffiffiffiffiffiffiffiffi
fðrÞp �t½!þ qAtðrÞ� þ i

L

r
~k � ~�; (7)

while

F ¼ ðd� 2Þ�
r0

�
r0
r

�
d�1

�r t: (8)

To decouple the Dirac equations, we introduce pro-

jectors �� ¼ 1
2 ð1� �r�tk̂ � ~�Þ and write c�ðrÞ ¼

rd=2fðrÞ1=4��c ðrÞ. Without loss of generality, we set k1 ¼
k and ki�1 ¼ 0 and take the basis

�r ¼ ��3 � 1 0

0 ��3 � 1

 !
;

�t ¼ i�1 � 1 0

0 i�1 � 1

 !
;

�1 ¼ ��2 � 1 0

0 �2 � 1

 !
; (9)

where �j’s are the Pauli matrices and 1 is a

2ðd�3Þ=2-dimensional identity matrix for odd values of d

and 2ðd�4Þ=2-dimensional for d even. Note that by choosing
k1 ¼ k and ki�1 ¼ 0 the rest of the gamma matrices do not
appear in the Dirac equations. So, we did not bother to
include those in (9). One then finds

r2

L2

ffiffiffiffiffiffiffiffiffi
fðrÞ

q
@rc� ¼ i�2ffiffiffiffiffiffiffiffiffi

fðrÞp
�
!þ�q

�
1� rd�2

0

rd�2

��
c�

� �1

�
�p

rd�2
0

rd�2
� k

�
c� � �3

r

L
mc�: (10)

We see that the Pauli coupling modifies the appearance of k
in the above Dirac equations. To see the effects of p more
clearly, consider the solutions of the Dirac equations (10)
in the asymptotic and near-horizon regimes. Asymp-
totically, the solutions behave as

c�ðr;!; kÞ ¼ a�ð!; kÞrmL 0
1

� �
½1þ � � ��

þ b�ð!; kÞr�mL 1
0

� �
½1þ � � ��: (11)

The effect of p asymptotically is to modify the subleading
terms. For m 2 ½0; 12Þ both terms in (11) are normalizable

and one can choose either a� or b� to be the sources for
the dual fermion operator in the boundary theory. In this
paper, we take m 2 ½0; 12Þ and consider the conventional

quantization where a� are the sources. Thus, the dual
fermion operator has dimension � ¼ 3

2 þm. Choosing

in-falling boundary conditions near the horizon results in
a retarded correlator of the form

GRð!; kÞ ¼ Gþð!; kÞ1 0
0 G�ð!; kÞ1

� �
; (12)

with G�ð!; kÞ ¼ b�ð!; kÞ=a�ð!; kÞ. Note that the Dirac
equations (10) imply Gþð!; kÞ ¼ G�ð!;�kÞ.
When the background is extremal, fðrÞ has a double zero

at the horizon, fðrÞ � dðd� 1Þð1� r0=rÞ2 þ � � � , and this
fact makes taking the limit of ! ! 0 of Eqs. (10) near the
horizon subtle. To take care of the subtlety, one realizes
[8,22] that near the horizon (in which the geometry ap-
proaches AdS2 	 Rd�1 for T ¼ 0) the equations for c� in
(10) organize themselves as functions of � ¼ !L2

2=ðr�
r0Þ with L2 ¼ L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp

being the radius of AdS2. The
coordinate � is the suitable radial coordinate for the AdS2
part of the near-horizon region, and in this region, we can
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write c� in terms of � and expand in powers of ! as
follows:

c I�ð�Þ ¼ c ð0Þ
I�ð�Þ þ!c ð1Þ

I�ð�Þ þ!2c ð2Þ
I�ð�Þ þ � � � : (13)

Now, substituting (13) into (10), we find that to leading
order

c ð0Þ0
I� ð�Þ ¼ L2

�

�
m�3 þ

�
cd

p

L
� kL

r0

�
�1

�
c ð0Þ

I�ð�Þ

� i�2

�
1þ qed

�

�
c ð0Þ

I�ð�Þ; (14)

where ed ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd� 1Þp

and cd ¼ 1=½ð2d� 4Þed�.
Equations (14) are identical to the equations of motion
for massive spinor fields [8] with masses ðm; ~mþÞ and
ðm; ~m�Þ in AdS2, where ~m� are time-reversal violating
mass terms, with the identification

~m� ¼ cd
p

L
� kL

r0
: (15)

Thus, c ð0Þ
I�ð�Þ are dual to spinor operators O� in the IR

conformal field theory (CFT) with conformal dimensions
�� ¼ ��

k þ 1
2 , where

��
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

k�L
2
2 � q2e2d � i�

q
;

m2
k� ¼ m2 þ

�
cd

p

L
� kL

r0

�
2
: (16)

We see that turning on p modifies the scaling in the
infrared in an important way—effectively, the momentum
is pushed up and down by p. We will explore the details of
this in what follows.

One can write a formal expression for the fermion
retarded correlator (12) at low frequency in terms of the
retarded Green functions of the IR CFT spinor operators
O�. As shown in [8], such a formal expression is extremely
useful in analyzing the small ! behavior of the boundary
theory Green functions. This is done by matching the inner
AdS2 and outer AdS4 solutions in the so-called ‘‘matching
region’’ where the � ! 0 and!=� ! 0 limits are taken. In
so doing, one finds that the coefficients a�ð!; kÞ and
b�ð!; kÞ in (12) are given by

a�ð!; kÞ ¼ ½að0Þ� þ!að1Þ� þOð!2Þ�
þ ½~að0Þ� þ!~að1Þ� þOð!2Þ�G�

k ð!Þ; (17)

b�ð!; kÞ ¼ ½bð0Þ� þ!bð1Þ� þOð!2Þ�
þ ½~bð0Þ� þ!~bð1Þ� þOð!2Þ�G�

k ð!Þ; (18)

where aðnÞ� , ~aðnÞ� , bðnÞ� , and ~bðnÞ� are all functions of k and can,
in principle, be determined numerically. Also, in the above
expressions, G�

k ð!Þ denote the retarded Green functions of
the dual IR CFT operators O� which are given by [8]

G �
k ð!Þ ¼ c�ðkÞ!2�� ; (19)

with

c�ðkÞ ¼ e�i���
�ð�2��Þ�ð1þ �� � iqedÞ
�ð2��Þ�ð1� �� � iqedÞ

	 ðmþ i ~m�ÞL2 � iqed � ��
ðmþ i ~m�ÞL2 � iqed þ ��

: (20)

Note that the expressions (17) and (18) are not valid when
2�� is an integer. In such cases there would be additional
terms like!n log! (with n being a positive integer) on the
right-hand sides of (17) and (18).
In order to obtain G�ð!; kÞ for generic values of ! and

k, one must solve the Dirac equations (10) numerically. For
numerical purposes, it is convenient to work with dimen-
sionless quantities. So, we rescale r, !, and k in the Dirac
equations (10) by defining

r ! r0u; ! ! r0
L2

!; k ! r0
L2

k: (21)

It is also more convenient to convert the Dirac equations
(10) into the so-called flow equations [6,23]. For that, we
first write c T� ¼ ð	�; 
�Þ and define �� ¼ 	�=
�, in
terms of which the Dirac equations (10) then reduce to the
nonlinear flow equations

u2
ffiffiffiffiffiffiffiffiffi
fðuÞ

q
@u�� ¼ �2ðmLÞu�� þ ½v�ðuÞ 
 k�

þ ½vþðuÞ � k��2�; (22)

where

v�ðuÞ ¼ 1ffiffiffiffiffiffiffiffiffi
fðuÞp ½!þQqð1� u2�dÞ� �Qpu2�d: (23)

To obtain the retarded Green functions of the boundary
theory operators, one has to choose the in-falling boundary
condition at the horizon for the (dual) bulk fields [24,25].
Expressed in terms of ��, the in-falling boundary condi-
tion for c T� ¼ ð	�; 
�Þ at the horizon translates into

��ðu ¼ 1Þ ¼
8<
: i ! � 0;

ðmL2 � ��Þ=ðqed þ ~m�L2Þ ! ¼ 0:

(24)

The matrix of Green functions (12) then takes the form

GRð!; kÞ ¼ lim
�!0

��2mL
�þ1 0

0 ��1

 !��������u¼ð1=�Þ
; (25)

where one picks the finite terms as � ! 0. Up to normal-
ization, the fermion spectral function is defined by

Að!; kÞ � Tr ImGRð!; kÞ: (26)

III. CONTINUUM AND BOUND STATES

In this section, we will study the effects of small and
negative values of p. As we will see, in this regime, there is
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a (non-Fermi-liquid) Fermi peak whose properties change
as we vary p. In this regime, there is some similarity to the
properties of Fermi surfaces studied in [6,8]. As we change
parameters, the scaling dimensions change, and we can
pass from a non-Fermi liquid to a MFL and on to fermions
which have some resemblance to Landau Fermi liquids.
However, we will see clearly that there is a positive value
of p beyond which the Fermi peak ceases to exist. In what
follows, we will mostly set m ¼ 0 and q ¼ 1 (as we vary
p), although similar results hold for a range of these
parameters.

We begin by focusing on the regime that has been called
log-oscillatory in [6,8], in which Fermi peaks do not occur.
There are some important changes when p � 0 that we
will explain below. When q2 > 2m2L2, there exists a range
of momenta k 2 Iþ for which the dimension of the IR
CFT operator Oþ becomes imaginary. Similarly, for
k 2 I� the dimension of O� becomes imaginary. Here,
we have defined I� ¼ ð
cdp� ko;
cdpþ koÞ with

ko ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðq2=2Þ �m2L2

p
. (Figure 2 shows plots of I� versus

p.) Consequently, ImG�ð0; kÞ is generically nonvanishing
for k 2 I�, respectively; see Fig. 3 for plots of ImG�ð0; kÞ
as a function of p. At p ¼ 0, one has Iþ ¼ I� � I . This
case was analyzed in [6,8] where it was found that for
k 2 I and for small !, both ImG�ð!; kÞ are periodic in
log!, with the same period.

At p ¼ 0, the range of momenta for which ImG�ð!; kÞ
become log-oscillatory at small ! is the same for each,
namely, k 2 I . This degeneracy does not persist for non-
zero p, and hence the fermion spectral function Að!; kÞ
will also have nonoscillatory components. For p 2
½�ko=cd; ko=cd� � f0g, both ImG�ð!; kÞ show log-
oscillatory behavior (with different periods, though) only
for k 2 Iþ \ I�. For jpj> ko=cd where Iþ \ I� ¼ ;,

one finds that in the regime where ImG�ð!; kÞ shows
log-oscillatory behavior, ImGþð!; kÞ is not oscillatory
and vice versa.
For real ��

k , the boundary conditions for ��ðu ¼ 1Þ at
! ¼ 0 are real. Since Eqs. (22) are real, one deduces

that ImG�ð0; kÞ ¼ 0. Thus, ReG�ð0; kÞ ¼ G�ð0; kÞ ¼
bð0Þ� =að0Þ� .ReG�ð0; kÞmay have poles which would be given

generically by the zeros of að0Þ� . Each zero of að0Þ� defines a

Fermi momentum kF, given that bð0Þ� do not vanish as

k ! kF. Since G�ð!; kÞ ¼ Gþð!;�kÞ, vanishing of að0Þ�
at some k ¼ kF implies that að0Þþ vanishes at k ¼ �kF. So,

in order to find kF, we can just analyze the zeros of að0Þ� .
From the asymptotic behavior of c� which is given in (11),
together with (17) and the definition of c T� ¼ ð	�; 
�Þ, it
is easy to see that, at ! ¼ 0, 
�ðu; kÞ ¼ að0Þ� umL þ � � � as
u ! 1. [Also, note that at ! ¼ 0, 	�ðu; kÞ ¼ bð0Þ� u�mL þ
� � � as u ! 1.] So the kF’s define a set of momenta for
which, at ! ¼ 0, c�ðu; kÞ becomes normalizable (a
‘‘bound state’’) as u ! 1. To find the kF’s, we analyze
the equation for 
�ðu; kÞ as follows.
Plugging c T� ¼ ð	�; 
�Þ into the Dirac equations (10),

one obtains a set of two coupled linear differential equa-
tions for 
� and 	�. Setting ! ¼ 0 and decoupling these
two equations, we obtain

� u2
ffiffiffiffiffiffiffiffiffi
fðuÞp

v0�ðuÞ þ k
@u

�
u2

ffiffiffiffiffiffiffiffiffi
fðuÞp

v0þðuÞ � k
@u

�

� ¼ 
�; (27)

� u2
ffiffiffiffiffiffiffiffiffi
fðuÞp

v0þðuÞ � k
@u

�
u2

ffiffiffiffiffiffiffiffiffi
fðuÞp

v0�ðuÞ þ k
@u

�
	� ¼ 	�; (28)

where we have set m ¼ 0 for convenience. In (27), the
superscript ‘‘0’’ on v�ðuÞ indicates that we have set! ¼ 0
in (23). Once again, we set d ¼ 3 and q ¼ 1 in what
follows. As we vary p, we look (numerically) for the
momenta kF for which 
�ðu ¼ 1; kFÞ ¼ 0, given an ap-
propriate boundary condition for 
�ðu;! ¼ 0; kÞ at the
horizon. Indeed, solving (27) near the horizon, one easily

obtains that 
�ðu; kÞ � fðuÞ���
k
=2 as u ! 1. Because by

assumption we are in a regime where ��
k is real and

positive2 (and, in fact, generically irrational), fðuÞ���
k
=2

blows up as u ! 1. Thus, 
�ðu ! 1; kÞ � fðuÞ��
k
=2 is the

regular horizon boundary condition that should be chosen.
In Fig. 4 we have plotted such values of kF as a function

of p. Starting with negative values of p (while keeping
q ¼ 1 fixed), kF increases as we raise p causing it to move
towards the boundary of the oscillatory region I�. As p
approaches 1=

ffiffiffi
6

p
from below, kF approaches

ffiffiffi
2

p
(in units

2 1 0 1 2

4

2

0

2

4

p

k

FIG. 2 (color online). Plots of I� versus p (for d ¼ 3, �c ¼
3=2, and q ¼ 1). The red band depicting I� is where
ImG�ð!; kÞ becomes oscillatory at small !. The blue band
(Iþ) shows the region where ImGþð!; kÞ is oscillatory (at
small !).

2For ��
k ¼ 0, one finds that 
�ðu ! 1; kÞ ¼

að1þ � � �Þ þ b logðu� 1Þð1þ � � �Þ, where the dots represent
terms which vanish as u ! 1 and a and b are some constants.
In order for 
�ðu; kÞ not to blow up at the horizon, one should
then choose b ¼ 0.
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of r0=L
2, from below). The blue dots in Fig. 4 show the

location of kF’s versus p and the red band depicts the
oscillatory region. There is a single Fermi surface for

each p as we increase p up to p ¼ 1=
ffiffiffi
6

p
. We have ex-

plicitly checked that 	�ðu ¼ 1; k ¼ kFÞ does not vanish,
so k ¼ kF are genuine poles of ReG�ð0; kÞ. At p ¼ 1=

ffiffiffi
6

p
,

kF ¼
ffiffiffi
2

p
, and as a result ��

kF
vanishes (recall that d ¼ 3,

m ¼ 0, and q ¼ 1). (At this point, and in fact at any point
in which 2��

kF
2 Z, the analysis should be more carefully

done, as logarithms must be included.) For p > 1=
ffiffiffi
6

p
, we

do not see a Fermi surface as 
�ðu ¼ 1; kÞ does not
vanish outside the oscillatory region. We have checked
this numerically up to p ¼ 10, and, given the observed
behavior of 
�ðu ¼ 1; kÞ, we do not expect it to change as
we increase p further. Indeed, Fig. 5 shows plots of

�ðu ¼ 1; kÞ versus k for sample values of p. We have
also plotted 	�ðu ¼ 1; kÞ, shown by the red curves in
Fig. 5.

Following [8], the excitations around these Fermi sur-
faces can be analyzed. Using (17) and (18), near k ¼ kF

and at small !, G�ð!; kÞ takes the form

G�ð!; kÞ � bð0Þ� ðkFÞ
@ka

ð0Þ� ðkFÞk? þ!að1Þ� ðkFÞ þ ~að0Þ� ðkFÞG�
kF
ð!Þ ;

(29)

where k? ¼ k� kF. Suppose the denominator in (29)
vanishes at some !
ðkÞ ¼ Re!
ðkÞ � iIm!
ðkÞ. For
p ¼ 0, the dispersion relation, the width, and the residue
of the pole were worked out in detail in [8]. Parts of the
data in these quantities (such as the scaling of the
dispersion relation) come from the IR CFT (or, equiv-
alently, the AdS2 part of the near-horizon geometry), and
other parts (such as Fermi velocity) from the UV phys-
ics. For nonzero p, the data which come from the IR
CFT will be slightly modified according to (16) whereas
the data coming from the UV physics could be substan-
tially modified.

For�0:53< p< 1=
ffiffiffi
6

p
, we find that 1=2> ��

kF
> 0. As

a result, the small ! excitations around k ¼ kF will have a
(non-Fermi-liquid) dispersion relation Re!
ðkÞ / kz? and a

width Im!
ðkÞ / kz?, where z ¼ 1=ð2��
kF
Þ. Thus, for this

range of p, Im!
ðkÞ=Re!
ðkÞ does not vanish as ! ! 0,
implying that these excitations are not stable. Note that the

residue at the pole is given by Z / kz�1
? . At p ¼ �0:53,

��
kF
¼ 1=2 and the excitations near the Fermi surface are of

the marginal-Fermi liquid type. For �1:54< p<�0:53,
1> ��

kF
> 1=2, and, hence, the small ! excitations around

k ¼ kF will have a linear dispersion relation Re!
ðkÞ / k?
and a width Im!
ðkÞ / k

2��
kF

? . So, for this range of p, these
excitations are stable as Im!
ðkÞ=Re!
ðkÞ ! 0 as ! ! 0.
It is in this sense that we refer to this region as the Fermi
liquid. Also, we found that kF goes through zero at p ¼
�1:317, signifying that the excitations change over from
‘‘particlelike’’ to ‘‘holelike.’’ Consequently, we find that
simply by varying p, we can tune from a Fermi liquid p <
�0:53, to a marginal-Fermi liquid at p ¼ �0:53, to a

generic non-Fermi liquid for �0:53<p< 1=
ffiffiffi
6

p
, and fi-

nally to a Mott insulator for p sufficiently large. Precisely

4 2 0 2 4
0.0
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1.5

k

Im
G

0,
k

(a)

4 2 0 2 4
0.0

0.5
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1.5

k

Im
G

0,
k

(b)
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k

Im
G

0,
k
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FIG. 3. Plots of ImG�ð0; kÞ (solid line) and ImGþð0; kÞ (dashed line) for (a) p ¼ 0, (b) p ¼ 0:1, and (c) p ¼ 1:8. We set d ¼ 3,
�c ¼ 3=2, and q ¼ 1. Similar plots can be obtained for negative values of p by switching the solid lines with the dashed lines.

Focusing on positive p, we see that the maximum value of ImG�ð0; kÞ increases as p ! 1=
ffiffiffi
6

p
, after which (namely, for p > 1=

ffiffiffi
6

p
) it

rapidly decreases.

2 1 0 1 2

2

1

0

1

2

3

p

k F

FIG. 4 (color online). kF’s (shown by blue dots) versus p. For
p � 1=

ffiffiffi
6

p
there is a single Fermi surface for each p. For p >

1=
ffiffiffi
6

p
we do not find Fermi surfaces. The orange band shows the

oscillatory region I�.
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how the system behaves for large values of p will now be
addressed in the quasinormal mode analysis.

IV. QUASINORMAL MODES AND STABILITY

In this section we analyze the poles of G�ð!; kÞ and, in
particular, discuss how they move in the complex ! plane
as we vary k. Since Gþð!;�kÞ ¼ G�ð!; kÞ, without loss
of generality, we can just focus on the poles of G�ð!; kÞ.
We denote the poles of G�ð!; kÞ by!
ðkÞ. At small !, the
poles of G�ð!; kÞ can be worked out semianalytically.
Indeed, for p ¼ 0, the small ! poles were worked out in
detail in [8] for k 2 I as well as k close to kF where it was
argued that such poles are all located in the lower half of
the complex ! plane. Since the arguments of [8] are
mainly based on the data coming from the IR region (the
near-horizon AdS2 region of the background), they can
easily be extended to nonzero values of p, where results
similar to those in the case of p ¼ 0 are obtained. For
example, at small ! and for k 2 I�, where ImG�ð!; kÞ is
oscillatory, the poles (for a fixed k) are exponentially
separated on a straight line which is in the lower half !
plane. (The line is diagonally oriented; i.e. it ends on the

! ¼ 0 branch point.) Equivalently, for those values of p
for which there exists a Fermi surface, the small ! poles
near k ¼ kF are all located in the lower half ! plane. In
particular, if ��

kF
< 1=2, then!
ðk ! kFÞ as a function of k

follows a straight line in the lower half of the complex !
plane. The semianalytic arguments of [8], and their gen-
eralizations to nonzero p, are applicable only for small !,
and for k 2 I�, or when k is near kF. Nevertheless, on
general grounds, one expects the poles to be located in the
lower half ! plane beyond the small ! regime (and, of
course, for all values of k). To find the poles beyond the
small ! regime, one is usually forced to do numerics
which, in the context of the AdS/CFT correspondence,
involves performing some quasinormal mode analyses in
the bulk.
Besides isolated poles, G�ð!; kÞ at zero temperature

will have a branch cut (at least for small !) which could
be understood without doing the numerics. Note that since

G�
k ð!Þ �!2��

k appears in the expressions for a�ð!; kÞ and
b�ð!; kÞ in (17) and (18), G�ð!; kÞ will have a branch
point at ! ¼ 0 for generic values of k (where 2��

k are

irrational) and a branch cut, which we take to be extended

FIG. 5 (color online). Plots of 
�ðu ¼ 1; kÞ (black curves) and 	�ðu ¼ 1; kÞ (red curves) versus k for (a) p ¼ �0:4, (b) p ¼ 0,
(c) p ¼ 0:2, and (d) p ¼ 1. The orange strip in each plot shows the oscillatory region I�. The plots are generated for d ¼ 3, m ¼ 0,
and q ¼ 1. By k ! �k, similar plots could be obtained for 
þðu ¼ 1; kÞ and 	þðu ¼ 1; kÞ.
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in the negative imaginary axis. For those values of k for
which 2��

k 2 Z, there is still a branch cut which is due to

the appearance of logarithmic terms of the form !n log!
(n 2 Z) in the expressions for a�ð!; kÞ and b�ð!; kÞ. The
branch cut seems to be a distinctive feature of the two-point
retarded correlators of operators in the zero-temperature
d-dimensional boundary theory dual to the extremal
RN-AdSdþ1 background. Indeed, the branch cut was ob-
served explicitly in the correlators of scalar and spinor
operators in [8,26] as well as the conserved currents in
the shear and sound channels in [27,28]. As we will see
below, this branch cut appears in our quasinormal mode
analysis. At finite temperature, however, the branch cut
dissolves into a series of isolated poles on the negative
imaginary axis.

Generically, GRð!; kÞ will have poles whenever
a�ð!; kÞ ¼ 0. In the context of the AdS/CFT correspon-
dence, this problem could be addressed by computing the
quasinormal modes of c� in the RN-AdSdþ1 background,
which are solutions to the Dirac equations (10) subject to
the boundary conditions that they are in-falling at the
horizon and normalizable asymptotically. Except in very
special cases, the generic values of the quasinormal
frequencies are usually computed numerically. We use
the so-called Leaver’s method [29] for this purpose. For
concreteness, we take the boundary theory to be (2þ 1)-
dimensional, i.e. d ¼ 3. Our analysis can straightforwardly
be extended to larger values of d. Also, as in the previous
discussions, we consider m ¼ 0 and q ¼ 1.

Substituting c T� ¼ ð	�; 
�Þ in the Dirac equations (10)
and setting m ¼ 0, one finds

u2
ffiffiffiffiffiffiffiffiffi
fðuÞ

q
@u	� ¼ ½v�ðuÞ 
 k�
�; (30)

u2
ffiffiffiffiffiffiffiffiffi
fðuÞ

q
@u
� ¼ �½vþðuÞ � k�	�: (31)

The equations for 
� are the relevant equations for obtain-
ing the quasinormal frequencies of c�. Squaring the above
equations, the decoupled equations for 
� are easily
obtained:

u2
ffiffiffiffiffiffiffiffiffi
fðuÞp

v�ðuÞ 
 k
@u

�
u2

ffiffiffiffiffiffiffiffiffi
fðuÞp

vþðuÞ � k
@u

�

� ¼ �
�: (32)

As we alluded to above, without loss of generality, we can
focus on the quasinormal frequencies of c� and just
analyze the equation for 
� in (32).

In what follows, we switch to a new radial coordinate
z ¼ 1=u which is more convenient for doing the numerics
in this section. In terms of the new radial coordinate, the
horizon is at z ¼ 1 and the asymptotic boundary at z ¼ 0.
The equation for 
� in (32) then becomes

ffiffiffiffiffiffiffiffiffi
fðzÞp

v�ðzÞ þ k
@z

� ffiffiffiffiffiffiffiffiffi
fðzÞp

vþðzÞ � k
@z

�

� ¼ �
�: (33)

To compute the quasinormal modes of c�, the behavior
of 
� should be in-falling at the horizon and normalizable
at the boundary. As mentioned above, we use Leaver’s
method [29] to compute the quasinormal frequencies. For
that, we first pull out the leading behavior of 
� at the
horizon as well as the boundary and write


�ðzÞ ¼ eið!=6ð1�zÞÞfðzÞ�ið!=9þq=4
ffiffi
3

p Þz~
�ðzÞ: (34)

Note that ~
�ðz ¼ 1Þ is a constant which could be set equal
to unity as the equation for 
� is homogeneous. Next, we
write ~
�ðzÞ as a power series in z around a point z0 ¼ 1=2
(so that the radius of convergence of the series covers both
the horizon and the boundary):

~
�ðzÞ ¼
XM
m¼0

~
�
mð!; kÞ

�
z� 1

2

�
m
: (35)

Substituting (34) and (35) into (33), one obtains

XM
m¼0

A�
mpð!; kÞ~
�

mð!; kÞ ¼ 0; (36)

where A�
mpð!; kÞ are the elements of a (Mþ 1) by (Mþ 1)

matrix A�ð!; kÞ. The quasinormal frequencies (for a fixed
k) are then the solutions to

detA�ð!; kÞ ¼ 0: (37)

The bottom plot in Fig. 6 shows the quasinormal fre-
quencies of 
� for p ¼ 5 and k ¼ 2. To generate this plot
we set M ¼ 250. Because of space limitations, the plot
only shows a handful of the quasinormal frequencies. AsM
is increased, the poles located along the negative imaginary
axis become closer to one another, suggesting that their
existence is due to takingM to be finite, and in the limit of
M ! 1 they should indeed form the branch cut we men-
tioned earlier. On the other hand, increasing M does not
seem to change the qualitative behavior of the poles which
are oriented almost diagonally on each side of the negative
imaginary axis. Notice that the poles are all located on the
lower half ! plane. As may be seen from the plot, the
branch cut bends to the right for large negative values of
Im!. This behavior is different from the cases studied in
[27,28] where the unbroken parity symmetry of the bound-
ary theory forces the branch cut of the retarded correlators
to stay on the negative imaginary axis. Indeed, the bending
of the branch cut is similar to what was observed in [26] for
the retarded correlators of charged scalar operators in the
presence of a magnetic field. The top plot in Fig. 6 shows
ImG�ð!; k ¼ 2Þ as a function of !. The location of the
peak on the left-hand side and the bump on the right-hand
side match quite well with the two quasinormal frequencies
which are closest to the real axis. It is apparent that all of
the other quasinormal modes are relatively wide and indi-
vidually have small residue.
The dispersion relation !
ðkÞ of the quasinormal fre-

quencies shown in Fig. 6(b) can be computed numerically
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by following their motion in the complex ! plane as k is
varied. As shown in Fig. 7, the two quasinormal frequen-
cies which are closest to the real axis have markedly
different dispersion relations than the rest (higher reso-
nances). The effects of these higher resonances become
important as one goes beyond the small frequency and
momentum approximation. For large jkj, the imaginary
part of the quasinormal frequencies is approximately con-
stant (and negligible compared to the real part). In contrast,
for large jkj, the real part is proportional to k, with the
constant of proportionality being equal to �1 (within our
numerical precision). This behavior is expected because at
large frequency and momentum, the vacuum of the bound-
ary theory is effectively Lorentz-invariant. So, the disper-
sion relation of the excitations should effectively be
relativistic at large frequency and momentum where the
effect of charge density is negligible.

To have a better understanding of the spectrum, it is
important to know how the residues (at the poles) behave as
a function of k. In order to numerically compute the
residues of G�ð!; kÞ at ! ¼ !
ðkÞ, we first developed
series expansions for 
�ðz;!; kÞ and 	�ðz;!; kÞ both
near the horizon around z ¼ 1� � and near the boundary
around z ¼ �. We then numerically integrated the (de-
coupled) differential equation for 
�ðz;!; kÞ and

	�ðz;!; kÞ from z ¼ 1� � to z ¼ � and matched the
numerically integrated solutions and their (first) derivatives
with their boundary series expansions at z ¼ �. In so
doing, we were able to compute the residues of G�ð!; kÞ
at ! ¼ !
ðkÞ for a fixed k, denoted by ResG�ð!
; kÞ.
Repeating the same steps for different k’s, one can numeri-
cally obtain the dependence of the residues on k. We
computed the k dependence of the residues of G�ð!; kÞ
for the leading negative-frequency pole (closest to the
real axis). Shown in Fig. 8 is the absolute value of
ResG�ð!
; kÞ as a function of k for this pole. Also, the
plots in Fig. 9 show a close-up of the real and imaginary
parts of the dispersion relation of this pole. Comparing the
plot of the residue to Fig. 6(a), it is now apparent why the
gap forms: As the leading negative-frequency quasinormal
mode approaches! ¼ 0, its residue dies off quickly. Since
no other mode has appreciable spectral weight, this
accounts for the suppression of the spectral weight near
! ¼ 0. For larger values of p, the residue falls off more
rapidly, and consequently the gap widens.

V. FINITE TEMPERATURE

So far, our analysis has been at zero temperature.
However, there are important aspects of Mott insulators
that transpire at finite temperature. In particular, there are
Mott insulators [21] exhibiting a transition to a conducting
state as the temperature is increased. The classic example
of this is VO2. Below T
 ¼ 340 K, VO2 becomes insulat-
ing with a gap of � ¼ 0:6 eV. This ratio of the gap to the
critical temperature �=T
 is approximately 20. This be-
havior should be contrasted with systems such as super-
conductors in which U(1) symmetry is broken and
�=Tc � 1–2. That �=T
 well exceeds unity is one of the
unresolved puzzles with VO2. It points to strong correla-
tions being the source of the gap rather than the breaking of
some spontaneous symmetry as in the case of supercon-
ductivity. Optical conductivity studies [30] reveal that
spectral weight as far away as 6 eV contributes to the
formation of the Drude peak at zero frequency once the
Mott gap closes. Such UV-IR mixing is a ubiquitous fea-
ture of Mott systems. While we have argued that our
holographic setup can capture the high-low energy spectral
weight transfer, we have not yet addressed the finite tem-
perature aspects of the Mott problem.
The boundary theory we are investigating here can

easily be studied at finite temperature by considering the
RN-AdS4 background away from extremality, namely, for

0<Q<
ffiffiffi
3

p
. Using the same procedures outlined above,

we obtained the spectral function and studied the density of
states as a function of temperature. As Fig. 10 reveals, the
Mott gap observed here does in fact close as the tempera-
ture increases. Further, the transition is sharp. To estimate
the ratio of the zero-temperature gap to the temperature at
which the gap closes, T
, we take a close-up of the density
of states and study its evolution as a function of tempera-
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FIG. 6. (a) ImG�ð!; kÞ as a function of ! for k ¼ 2. (b) The
quasinormal frequencies of 
� for k ¼ 2. d ¼ 3, p ¼ 5, q ¼ 1,
and m ¼ 0 in both plots. Also, M ¼ 250.
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ture; see Fig. 11. Indeed for p ¼ 6 (or p ¼ 7), we find that
�=T
 � 10. Though smaller than�=T
 in vanadium oxide,
it does illustrate that the dynamically generated gap we
have found here does possess nontrivial temperature
dynamics.

For the record, we show in Fig. 12 the quasinormal
frequencies of 
� (bottom plot) as well as ImG�ð!; kÞ
(top plot) for k ¼ 2, p ¼ 5, and T=� ¼ 0:16. Notice that
the branch cut at zero temperature has dissolved at finite
temperature into a series of isolated poles on the negative
imaginary axis.3 Also, as it can easily be seen from the
plots in Fig. 12, the (real part of the) two quasinormal
frequencies of 
� which are closest to the real axis match
quite well with the location of the peak on the left-hand
side and the bump on the right-hand side in ImG�ð!; k ¼
2Þ. The other quasinormal frequencies represent poles in
ImG�ð!; k ¼ 2Þ which are relatively wide and have small

residue. Although not shown, to the extent that we have
checked, all the poles stay on the lower half! plane as k is
varied.

VI. DISCUSSION

We have studied extensively the dichotomous behavior
of the boundary theory fermion correlators in the presence
of a bulk Pauli coupling in our holographic setup. For the
boundary theory dual to the extremal RN-AdS4 back-
ground, we showed that as we vary p from large negative

values up to a small positive value of p ¼ 1=
ffiffiffi
6

p
(while

keeping m ¼ 0 and q ¼ 1 fixed), the behavior of the ex-
citations change from Fermi-liquid-like (for p <�0:53),
though not in the precise Landau sense in which the width
of the excitations is quadratic in frequency, to a marginal-
Fermi liquid at p ¼ �0:53 and on to a non-Fermi liquid for

�0:53<p � 1=
ffiffiffi
6

p
. In the context of the earlier work [8]

in which such behavior was observed by changing the
scaling dimension, as well as the charge, of the boundary
theory fermion operator, the Pauli coupling offers a more
direct connection with Mott physics. Our argument here is
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FIG. 7 (color online). The top two plots show the dependence on k (dispersion relation) of the real and imaginary parts of the first
five quasinormal modes [depicted in Fig. 6(b)] on the left-hand side of the negative imaginary axis. The bottom two plots show the
dispersion relation of the real and imaginary parts of the first five quasinormal modes of Fig. 6(b) which are on the right-hand side of
the negative imaginary axis. The plots are generated for d ¼ 3, p ¼ 5, m ¼ 0, q ¼ 1, and M ¼ 250. The red data correspond to the
mode closest to the real axis in the complex ! plane.

3Note that in order to generate the bottom plot in Fig. 12, the
expression in (34) should be appropriately modified to reflect the
fact that the system is at finite temperature. This is tied to the fact
that at finite temperature fðrÞ has a single zero at the horizon.
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based on the fact that for large positive values of p a Mott
gap arises (as evidenced by a vanishing of the quasiparticle
residue shown in Fig. 8) in the spectrum of the boundary
theory fermion operator without the apparent breaking of a
continuous symmetry. This is Mott physics. We have seen
these features by holding m and q fixed while varying p. It
is clear that the basic properties that we have seen will
persist throughout a domain in them; q; p parameter space.
In Fig. 13, we suggest that some locus through the parame-
ter space can be identified with doping in the cuprate phase
diagram: Each of the principle features in the normal state
of the cuprates is present. It is interesting to compare this
heuristic phase diagram with that of the cuprates in which
there is a continuous evolution from a Mott insulator in the
undoped state to a Fermi liquid in the overdoped regime. In
between these extremes lie nonsuperconducting non-
Fermi-liquid states characterized by a pseudogap (a sup-
pression of the density of states without any long-range

superconductivity) and a strange metal in which the resis-
tivity is a linear function of temperature. Our work sug-
gests that the Pauli coupling mimics the role of the electron
filling.
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FIG. 8. jResG�ð!
; kÞj as a function of k for the leading
negative-frequency pole in Fig. 6(b) which is closest to the
real axis and located to the left of the negative imaginary axis.
We set d ¼ 3, p ¼ 5, q ¼ 1, and m ¼ 0.
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FIG. 9 (color online). A close-up of the real (left plot) and imaginary (right plot) parts of the dispersion relation of the leading pole
shown in Fig. 6(b) which is closest to the real axis and located to the left of the negative imaginary axis.

FIG. 10 (color online). A close-up of the density plots of
ImG�ð!; kÞ for p ¼ 6 and T=� ’ 5:15	 10�3 (left) and T=� ’
3:98	 10�2 (right). A gap is still seen in the plot on the left
while it is closed in the plot on the right.
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FIG. 11. A close-up of the density of states Að!Þ at p ¼ 6 for
T=� ’ 0:44 (dotted line), 0.16 (dashed line), and 5:15	 10�3

(solid line).
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It is natural to investigate how the introduction of a
superconducting condensate would complement the phys-
ics that we have discussed here. A suitable charged back-
ground at zero temperature was studied in [31], following
[32,33]. For a range of parameters (namely, for m2

� �
2q2� <�3=2, where m� and q� are the mass and the

charge of the bulk scalar field, respectively), a bulk solu-
tion with a nonzero charged scalar condensate is preferred
over the Reissner-Nordström solution. (Indeed, for this
range of parameters, the Reissner-Nordström solution is
unstable against turning on the scalar field in the bulk.)
This solution is asymptotically AdS4, and m� ¼ 0 has a

near-horizon geometry that is also AdS4 with a finite speed
of light cIR and a finite dynamical exponent. The horizon of
the zero-temperature solution (which is the Poincaré hori-
zon of AdS4) is at r ¼ 0 and there is no residual entropy at
zero temperature. Although we will discuss this elsewhere
[34], preliminary studies of the effect of the Pauli coupling
on the boundary theory fermion correlators4 indicate that

the main contributor to the gap in the fermion spectral
density in the superconducting phase is the so-called
Majorana scalar-fermion coupling (denoted by �5 in
[36]). As there are limited tools available for the study of
‘‘electrons’’ at strong coupling, the model proposed here
could offer key insight into how superconductivity emerges
from a background in which all energy scales are coupled.
As a first step, we set �5 ¼ 0 and briefly discuss here the
effect of the Pauli coupling on fermion correlators in a
boundary theory dual to the superconducting background

of [31]. Supposem� ¼ 0 and q� >
ffiffiffi
3

p
=2, so that the near-

horizon geometry is AdS4 (with a characteristic radius
LIR), and assume there exists a (2þ 1)-dimensional IR
CFT dual to thisAdS4 near-horizon geometry. For definite-
ness, we set q� ¼ 2q, where q is the charge of the bulk

fermion.5 The Dirac equation for c� (as well as the
corresponding flow equations for ��) and the IR boundary
conditions can easily be worked out. A crucial difference
compared to the case of the RN-AdS4 is that here the
dimension of the IR CFT operators dual to c�ðr ! 0Þ
does not depend on p. Depending on the sign of s2 �
�!2=c2IR þ k2, the Green functions G�ð!; kÞ exhibit
different behaviors. [Note that one still has G�ð!; kÞ ¼
Gþð!;�kÞ.] For s2 > 0 (IR spacelike region), the horizon
boundary conditions for �� are real and, since the flow
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FIG. 12. The plots in (a) and (b) show, for k ¼ 2 and T=� ¼
0:16, ImG�ð!; kÞ as a function of ! and the quasinormal
frequencies of 
�, respectively. Here, d ¼ 3, p ¼ 5, q ¼ 1,
m ¼ 0, and M ¼ 250.

p
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MFL

m
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FL

NFL

FIG. 13 (color online). A cartoon of the zero-temperature
‘‘phase diagram’’ in the m; q; p parameter space. Different
regions of the phase diagram correspond to each of the principal
structures in the cuprate phase diagram (compare to Fig. 1).

4See [35–40] where the authors analyze fermion correlators (in
the absence of the Pauli interaction) in some superconducting
backgrounds.

5This condition is not required when �5 ¼ 0. We consider this
condition so that our analysis here can be generalized to the case
where �5 � 0 [34]. Also, note that the convention of charge in
[31,36] is different than our convention in previous sections by a
factor of 2, namely, qhere ¼ 2qthere. In this discussion, we use the
convention of [31,36] for q and q�.
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equations are also real, one concludes that the boundary
theory fermion spectral density is zero in this region,
except when there are bound states [by which we mean
poles of ReG�ð!; kÞ in the s2 > 0 region] of the Dirac
equation. For s2 < 0 (IR timelike region), on the other
hand, the horizon boundary conditions are complex result-
ing generically in a nonvanishing fermion spectral density.
The IR spacelike region is the primary feature of the finite
cIR theory that distinguishes it from the RN-AdS4 theory.
In particular, there is no analogue here of the log-
oscillatory region (at ! ¼ 0) and thus no analogous
mechanism for the disappearance of zero-frequency poles
as p is increased. Indeed as we describe below, as p is
increased, the zero-frequency pole moves but persists.
Thus in the presence of superconductivity where the U(1)
symmetry is spontaneously broken, the gap in the fermion
spectral density is determined by the Majorana scalar-
fermion coupling �5. This implies that the parameter re-
sponsible for Mottness is distinct from those involved in
superconductivity.

Figure 14 shows a density plot of the fermion spectral
function for p ¼ 0 (left) and p ¼ 3 (right), where q� ¼
1:5 and � ¼ 2

ffiffiffi
3

p
. The density plot for p ¼ 0, which has

been previously obtained in [36], is also shown for the
purpose of comparison with the density plot for a nonzero
value of p such as p ¼ 3. As the plot in Fig. 14(b) shows,
turning on a nonzero value of p suppresses the spectral
density of the incoherent excitations (those in the IR time-
like region) and pushes them away from the boundary (the
IR lightlike region, depicted by solid black lines). But,

since at! ¼ 0 there is a Fermi peak (and indeed an infinite
number of long-lived bound states for other values of ! in
the IR spacelike region), turning on p does not result in the
formation of a gap. In fact, for the above-mentioned pa-
rameters, we find that, for p ¼ 3, kF � 6:0. For p ¼ 0, the
Fermi peak, for the same parameters, is at kF � 1:5 [36].
Turning on pmoves around the location of this Fermi peak
as shown in Fig. 15.
We note again that there are regions of parameter space

(in particular, q� and m�) where the preferred geometry is

either Reissner-Nordström or the superconducting geome-
try. Our results indicate that while the fermion gap in the
superconducting geometry is controlled by the Majorana
scalar-fermion coupling [31], a Mott gap can still form in
the Reissner-Nordström regime. The decoupling of these
two effects is promising in the context of the cuprate phase
diagram.
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