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Abstract

Superconductors will be considered as macroscopic quantum gravitational antennas and trans-

ducers, which can directly convert upon reflection a beam of quadrupolar electromagnetic radiation

into gravitational radiation, and vice versa, and thus serve as practical laboratory sources and re-

ceivers of microwave and other radio-frequency gravitational waves. An estimate of the transducer

conversion efficiency on the order of unity comes out of the Ginzburg-Landau theory for an extreme

type II, dissipationless superconductor with minimal coupling to weak gravitational and electro-

magnetic radiation fields, whose frequency is smaller than the BCS gap frequency, thus satisfying

the quantum adiabatic theorem. The concept of “the impedance of free space for gravitational

plane waves” is introduced, and leads to a natural impedance-matching process, in which the two

kinds of radiation fields are impedance-matched to each other around a hundred coherence lengths

beneath the surface of the superconductor. A simple, Hertz-like experiment has been performed

to test these ideas, and preliminary results will be reported.
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I. INTRODUCTION

In 1966, DeWitt [1] considered the interaction of a superconductor with gravitational

fields, in particular with the Lense-Thirring field. Starting from the general relativistic

Lagrangian for a single electron with a charge e and a mass m, he derived in the limit of

weak gravity and slow particles a nonrelativistic Hamiltonian for a single electron in the

superconductor, which satisfied the minimal-coupling rule

p → p − eA −mh, (1)

where p is the canonical momentum, A is the usual vector potential, and h is a gauge-like

vector potential formed from the three space-time components gi0 of the metric tensor viewed

as an ordinary three-vector. Papini [2] in 1967 considered the possibility of the detection

the quantum phase shift induced by h arising from the Lense-Thirring field generated by a

nearby rotating massive body, by means of a superconducting interference device (or SQUID)

using Josephson junctions. In 1983, Ross [3] derived the modified London equations for a

superconductor in a gravitational field, and showed that these equations are consistent with

the modified fluxoid quantization condition in a gravitational field found earlier by DeWitt

in 1966.

In a series of papers in the early 1980s, Anandan and I considered the possibility of

constructing antennas for time-varying Lense-Thirring fields, and thus for gravitational ra-

diation, using Josephson junctions as transducers, in neutral superfluid helium analogs of

the SQUID using an antenna geometry in the form of a figure 8 superfluid loop, and also an

antenna bent into a the form of a baseball seam [4]. In 1985, Anandan [5] considered the

possibility of using superconducting circuits as detectors for astrophysical sources of grav-

itational radiation, but did not mention the possibility of superconductors being efficient

emitters, and thus practical laboratory sources of gravity waves, as is being considered here.

In 1990, Peng and Torr used the generalized London equations to treat the interaction of

a bulk superconductor with gravitational radiation, and concluded that such a supercon-

ducting antenna would be many orders of magnitude more sensitive than a Weber bar [6].

There have also been earlier predictions of a modified Meissner effect in the response of

superconductors to time-varying Lense-Thirring fields, and hence to gravitational radiation

[7][8]. For recent work along these lines, see [9]. These papers, however, also did not

consider the possibility of a transducer action between EM and GR radiation mediated by
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the superconductor, as is being considered here. Also, the theoretical approach taken here

is quite different, as our approach will be based on the Ginzburg-Landau theory of supercon-

ductivity, and the resulting constitutive relation for the gravitomagnetic field, rather than

on the modified London equations.

Here, I shall show that Josephson junctions, which are difficult to implement experi-

mentally, are unnecessary, and that a superconductor can by itself be a direct transducer

from electromagnetic to gravitational radiation upon reflection of the wave from a vacuum-

superconductor interface, with a surprisingly good conversion efficiency. By reciprocity,

this conversion process can be reversed, so that gravitational radiation can also be con-

verted upon reflection into electromagnetic radiation from the same interface, with equal

efficiency. The geometry of a superconducting slab-shaped antenna proposed here is much

simpler than some of the earlier proposed antenna geometries. These developments suggest

the possibility of a simple, Hertz-like experiment, in which the emission and the reception

of gravitational radiation at microwave frequencies can be implemented by means of a pair

of superconductors used as transducers. Preliminary results of a first experiment will be

reported here.

II. SUPERCONDUCTORS AS ANTENNAS FOR GRAVITATIONAL RADIA-

TION

A strong motivation for performing the quantum calculation to be given below, is that it

predicts a large, counterintuitive quantum rigidity of a macroscopic wavefunction, such as

that in a big piece of superconductor, when it interacts with externally applied gravitational

radiation fields. Mathematically, this quantum rigidity corresponds to the statement that

the macroscopic wavefunction of the superconductor must remain single-valued at all times

during the changes arising from adiabatic perturbations due to radiation fields. This implies

that objects such as superconductors should be much better gravitational-wave antennas

than Weber bars [4][5][6].

The rigidity of the macroscopic wavefunction of the superconductor originates from the

instantaneous Einstein-Podolsky-Rosen (EPR) correlations-at-a-distance in the behavior of

a Cooper pair of electrons in the Bardeen-Cooper-Schrieffer (BCS) ground state in distant

parts of the superconductor viewed as a single quantum system, when there exists some
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kind of gap, such as the BCS gap, which keeps the entire system adiabatically in its ground

state during perturbations due to radiation. Two electrons which are members of a single

Cooper pair are in a Bohm singlet state, and hence are quantum-mechanically entangled

with each other, in the sense that they are in a superposition state of opposite spins and

opposite momenta. This quantum entanglement gives rise to EPR correlations at long

distance scales within the superconductor. The electrons in a superconductor in its ground

BCS state are not only macroscopically entangled, but due to the existence of the BCS gap

which separates the BCS ground state energetically from all excited states, they are also

protectively entangled, in the sense that this entangled state is protected by the presence

of the BCS gap from decoherence arising from the thermal environment, provided that the

system temperature is kept well below the BCS transition temperature.

The resulting large quantum rigidity is in contrast to the tiny rigidity of classical matter,

such as that of the normal metals used in Weber bars, in their response to gravitational radi-

ation. The essential difference between quantum and classical matter is that there can exist

macroscopic quantum interference, and hence macroscopic quantum coherence, throughout

the entire quantum system, which is absent in a classical system. One manifestation of

the tiny rigidity of classical matter is the fact that the speed of sound in a Weber bar is

typically five orders of magnitude less than the speed of light. In order to transfer energy

coherently from a gravitational wave by classical means, for example, by acoustical modes

inside the bar to some local detector, e.g., a piezoelectric crystal glued to the middle of the

bar, the length scale of the Weber bar L is limited to a distance scale on the order of the

speed of sound times the period of the gravitational wave, i.e., an acoustical wavelength

λsound, which is typically five orders of magnitude smaller than the gravitational radiation

wavelength λ to be detected. This makes the Weber bar, which is thereby limited in its

length to L ≃ λsound, much too short an antenna to couple efficiently to free space.

However, macroscopic quantum objects such as superconductors used as antennas are not

limited by these classical considerations, but can have a length scale L on the same order as

(or even much greater than) the gravitational radiation wavelength λ. Since the radiation

efficiency of a quadrupole antenna scales as the length of the antenna L to the fourth power

when L << λ, quantum antennas should be much more efficient in coupling to free space

than classical ones like the Weber bar by at least a factor of (λ/λsound)
4. Also, we shall see

below that a certain type of superconductor may be a transducer for directly converting
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gravitational waves into electromagnetic waves, and vice versa; this then dispenses altogether

with the necessity of the use of piezoelectric crystals as transducers.

Weinberg [10] gives a measure of the efficiency of coupling of a Weber bar antenna of mass

M , length L, and velocity of sound vsound, in terms of a branching ratio for the emission of

gravitational radiation by the Weber bar, relative to the emission of heat, i.e., the ratio of

the rate of emission of gravitational radiation Γgrav relative to the rate of the decay of the

acoustical oscillations into heat Γheat, which is given by

η ≡ Γgrav

Γheat
=

64GMv4
sound

15L2c5Γheat
≃ 3 × 10−34. (2)

The quartic power dependence of the efficiency η on the velocity of sound vsound arises from

the quartic dependence of the coupling efficiency to free space of a quadrupole antenna upon

its length L, when L << λ.

Assuming for the moment that the quantum rigidity of a superconductor allows us to

replace the velocity of sound vsound by the speed of light c (i.e., that the typical size L of a

quantum antenna bar can become as large as the wavelength λ), we see that superconductors

can be more efficient than Weber bars, based on the v4
sound factor alone, by twenty orders of

magnitude, i.e.,
(

c

vsound

)4

≃ 1020. (3)

Thus, even if it should turn out that superconducting antennas in the final analysis are

still not very efficient generators of gravitational radiation, they should be much more

efficient receivers of this radiation than Weber bars for detecting astrophysical sources of

gravitational radiation [5][6]. However, I shall give arguments below as to why under

certain circumstances involving “natural impedance matching” between quadrupolar EM

and GR plane waves upon a mirror-like reflection at the planar surface of extreme type II,

dissipationless superconductors, the efficiency of such superconductors used as simultaneous

transducers and antennas for gravitational radiation, might in fact become of the order of

unity, so that a gravitational analog of Hertz’s experiment might then become possible.

But why should the speed of sound in superconductors, which is not much different from

that in normal metals, not also characterize the rigidity of a superconducting metal when

it is in a superconducting state? What is it about a superconductor in its superconducting

state that makes it so radically different from the same metal when it is in a normal state?

The answer lies in the important distinction between longitudinal and transverse mechan-
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ical excitations of the superconductor. Whereas longitudinal, compressional sound waves

propagate in superconductors at normal sound speeds, transverse excitations, such as those

induced by a gravitational plane wave incident normally on a slab of superconductor in its

superconducting state, cannot so propagate.

Suppose that the opposite were true, i.e., that there were no substantial difference between

the response of a superconductor and a normal metal to gravitational radiation. (Let us

assume for the moment the complete absence of any electromagnetic radiation.) Then the

interaction of the superconductor with gravitational radiation, either in its normal or in its

superconducting state, will be completely negligible, as is indicated by Eq. (2). We would

then expect the gravitational wave to penetrate deeply into the interior of the superconductor

(see Figure 1).

The motion of a Cooper pair deep inside the superconductor (i.e., deep on the scale of

the London penetration depth λL given by Eq. (62)), would then be characterized by a

velocity vpair(t) which would not be appreciably different from the velocity of a normal

electron or of a nearby lattice ion (we shall neglect the velocity of sound in this argument,

since vsound << c). Hence locally, by the weak equivalence principle, Cooper pairs, normal

electrons, and lattice ions (i.e., independent of the charges and masses of these particles)

would all undergo free fall together, so that

vpair(t) = −h(t), (4)

where vpair(t) is the local velocity of a Cooper pair, and where −h(t) is the local velocity

of a classical test particle, whose motion is induced by the presence of the gravitational

wave, as seen by an observer sitting in an inertial frame located at the center of mass of the

superconductor. Then the curl of the velocity field vpair(t) deep inside the superconductor,

as seen by this observer, would be nonvanishing

∇× vpair(t) = −∇× h(t) = −BG(t) 6= 0, (5)

since the Lense-Thirring or gravitomagnetic field BG(t) of gravitational radiation does not

vanish deep in the interior of the superconductor when gravitational radiation is present (we

shall see presently that the h(t) field plays the role of a gravitomagnetic vector potential,

just like the vector potential A(t) in the electromagnetic case).

However, this leads to a contradiction. It is well known that for adiabatic perturbations

(e.g., for gravity waves whose frequencies are sufficiently far below the BCS gap frequency,
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so that the entire quantum system remains adiabatically in its ground state), the superfluid

velocity field vpair(t) deep in the interior of the superconductor (i.e., at a depth much greater

than the London penetration depth) must remain irrotational at all times [11], i.e.,

∇× vpair(t) = 0. (6)

Otherwise, if this irrotational condition were not satisfied in the presence of gravitational

radiation, the wavefunction would not remain single-valued. Deep inside the superconduc-

tor, vpair(t) = h̄
m2

∇φ(t), where m2 is the mass of the Cooper pair. Thus the superfluid or

Cooper pair velocity is directly proportional to the spatial gradient of the phase φ(t) of the

Cooper-pair condensate wavefunction. It would then follow from such a supposed violation

of the irrotational condition that

∆φ(t) =
∮

C
∇φ(t) · dl =

m2

h̄

∮

C
vpair(t) · dl

=
m2

h̄

∫ ∫

S(C)
∇× vpair(t) · dS = −m2

h̄

∫ ∫

S(C)
BG(t) · dS 6= 0, (7)

where ∆φ(t) is the phase difference after one round-trip back to the same point around an

arbitrary closed curve C deep inside the superconductor in its ground state, and S(C) is a

surface bounded by C (see Figure 1). We shall see that the phase shift ∆φ(t) is a gauge-

invariant quantity (see Eq.(13)), and that, for small circuits C, it is directly proportional to

a nonvanishing component of the Riemann curvature tensor. However, that the round-trip

phase shift ∆φ(t) is nonvanishing in the ground state wavefunction of any quantum system,

is impossible in QM due to the single-valuedness of the wavefunction in the local inertial

frame of the center-of-mass of the system.

There is extensive experimental evidence that the single-valuedness of the wavefunction

in QM is not violated. For example, the observed quantization of orbital angular momen-

tum in atoms and molecules constitutes such evidence on microscopic length scales. Also,

the observations of quantization of the circulation of vortices in both superfluids helium

of isotope 3 and helium of isotope 4, and of the quantization of flux in superconductors,

constitute such evidence on macroscopic length scales. As a special case of the latter when

the topological winding number is zero, the Meissner effect is itself evidence for the validity

of the principle of the single-valuedness of the macroscopic wavefunction.

Therefore, in the presence of a gravity wave, Cooper pairs cannot undergo free fall, and the

transverse excitations of the Cooper pair condensate must remain rigidly irrotational at all
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times in the adiabatic limit. This leads to a Meissner-like effect in which the Lense-Thirring

field BG(t) is expelled, and would seemingly lead to infinite velocities for the transverse

excitations inside the superconductor. (It should be noted here that superluminal, i.e.,

faster-than-c, infinite, and negative, group velocities for wave packet excitations in a wide

variety of classical and quantum settings have been predicted and observed [12]. An analytic

function, e.g., a Gaussian wave packet, contains sufficient information in its early tail such

that a causal medium can, during its propagation, reconstruct the entire wave packet with

a superluminal pulse advancement, and with little distortion. Relativistic causality only

forbids the front velocity, which connects causes to their effects, from exceeding the speed

of light c, but does not forbid a wave packet’s group velocity from being superluminal.)

However, such transverse excitations should be coupled to perturbations of the metric of

spacetime through the Maxwell-like equations for the time-varying gravitational fields to be

discussed below, and then the speed of such excitations may turn out to be governed by the

vacuum speed of light c.

III. MEISSNER-LIKE EFFECT IN THE RESPONSE OF A SUPERCONDUCTOR

TO GRAVITATIONAL RADIATION

The calculation of the quantum response of large objects, for example, a big piece of

superconductor, to weak gravitational radiation, is based on the concept of wavefunction,

or quantum state, for example, the BCS state, and proceeds along completely different lines

from the calculation for the classical response of a Weber bar to this radiation, which is

based on the concept of geodesic, or classical trajectory [13]. When the frequency of the

gravitational radiation is much less than the BCS gap, the entire superconductor should

evolve in time in accordance with the quantum adiabatic theorem, and should therefore

stay rigidly, i.e., adiabatically, in its ground state. There results a large, diamagnetic-like

linear response of the entire superconductor to externally applied, time-varying gravitational

fields. This Meissner-like effect does not alter the geodesic center-of-mass motion of the

superconductor, but radically alters the internal behavior of its electrons, which are all

radically delocalized due instantaneous EPR-correlations within the superconductor, even

at large distances.
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A. Calculation of diamagnetic-like coupling energies: The interaction Hamiltonian

Consider a gravitational plane wave propagating along the z axis, which impinges at

normal incidence on a piece of superconductor in the form of a large circular slab of radius

r0 and of thickness d. Let the radius r0 be much larger than the wavelength λ of the

plane wave, so that one can neglect diffraction effects. Similarly, let d be much thicker

than λ. For simplicity, let the superconductor be at a temperature of absolute zero, so

that only quantum effects need to be considered. The calculation of the coupling energy of

the superconductor in the simultaneous presence of both electromagnetic and gravitational

fields starts from the Lagrangian for a single particle of rest mass m and charge e (i.e., an

electron, but neglecting its spin)

L = −m(−gµν ẋ
µẋν)1/2 + eAµẋ

µ, (8)

from which a minimal-coupling form of the Hamiltonian for an electron in a superconductor,

in the limit of weak gravitational fields and low velocities, has been derived by DeWitt [1].

Here we apply this minimal-coupling Hamiltonian to pairs of electrons (i.e, Cooper pairs in

spin-zero singlet states),

H =
1

2m2eff

(p− e2A −m2h)2 in SI units, (9)

where m2 = 2me is the rest mass of a Cooper pair, m2eff is its effective mass, e2 = 2e is

its charge, p is its canonical momentum, A is the electromagnetic vector potential, and h

is the gravitomagnetic vector potential, which is the gravitational analog of A in the case

of weak gravity. The gravitomagnetic vector potential h is the three-velocity formed from

the space-time components hi0 of the small deviations of the metric tensor hµν = gµν − ηµν

from flat spacetime (the metric tensor being given by gµν , and the Minkowski tensor for flat

spacetime being given by ηµν = diag(−1, 1, 1, 1)). Thus we shall define

h|i ≡ hi0c . (10)

It is convenient for performing this calculation to choose the radiation gauge for both A and

h, so that

∇ · A = ∇ · h = 0, (11)

where the chosen coordinate system is that of an inertial frame which coincides with the

freely-falling center of mass of the superconductor at the origin (this is not the transverse-
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traceless gauge choice). The physical meaning of h is that, apart from a sign, it is the

three-velocity of a local, freely-falling test particle as seen by an observer in an inertial

frame located at the center of mass of the superconductor. In Eq. (9), we have neglected

for the moment the interactions of the Cooper pairs with each other.

Why not use the standard transverse-traceless gauge in order to perform these calcula-

tions? The answer is given in Figure 1, in which we depict a side view of a snapshot of a

gravitational plane wave propagating to the right. The arrows indicate the instantaneous

velocity vectors −h of the test particles induced by the wave, as seen by an inertial observer

at the center-of-mass. Note that the gravitational tidal forces reverse in sign after a prop-

agation by half a wavelength to the right along the k axis. Therefore, by inspection of the

diagram, we see that the circulation integrals around circuits C1 and C2

∮

C1

h · dl 6= 0, and
∮

C2

h · dl 6= 0 (12)

do not vanish. These circulation integrals are gauge-invariant quantities, since there are

related to the gauge-invariant general relativistic time shift ∆t (and the corresponding quan-

tum phase shift), where

∆t = −
∮

C

g0idx
i

g00
≈ 1

c

∮

C
h · dl 6= 0. (13)

For weak gravity, the time shift ∆t is related through Stokes’ theorem (see Eq. (7)) to the

flux of the gravitomagnetic (or Lense-Thirring) field through the circuit C, which, for small

circuits C, is directly proportional to the nonvanishing Riemann curvature tensor component

R0i0j , where the spatial indices i and j are to be contracted with those corresponding to the

small area element enclosed by the circuit C (see Figure 1).

Since in the transverse-traceless gauge, h is chosen to be identically zero, there would be

no way to satisfy Eqs. (12) and (13). In the long-wavelength limit, i.e., in the case where the

antenna is much shorter than a wavelength, such as in Weber bars, the transverse-traceless

gauge can be a valid and more convenient choice than the radiation gauge being used here.

However, we wish to be able to consider the case of superconducting slabs which are thick

compared with a wavelength, where the long-wavelength approximation breaks down, and

therefore we cannot use the transverse-traceless gauge, but must use the radiation gauge

instead.

The electromagnetic vector potential A in the above minimal-coupling Hamiltonian gives

rise to Aharonov-Bohm interference. In like manner, the gravitomagnetic vector potential
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h gives rise to a general relativistic twin paradox for rotating coordinate systems and for

Lense-Thirring fields given by Eq. (13). Therefore h gives rise to Sagnac interference in

both light and matter waves. The Sagnac effect has recently been observed in superfluid

helium interferometers using Josephson junctions, and has been used to detect the Earth’s

rotation around its polar axis [14].

From the above Hamiltonian, we see that the minimal coupling rule for Cooper pairs now

becomes

p → p− e2A−m2h (14)

in the simultaneous presence of electromagnetic (EM) and weak general relativistic (GR)

fields. This minimal-coupling rule has been experimentally tested in the case of a uniformly

rotating superconducting ring, since it predicts the existence of a London magnetic moment

for the rotating superconductor, in which magnetic flux is generated through the center of the

ring due to its rotational motion with respect to the local inertial frame. The consequences

of the above minimal coupling rule for the slightly different geometry of a uniformly rotating

superconducting sphere can be easily worked out as follows: Due to the single-valuedness of

the wavefunction, the Aharonov-Bohm and Sagnac phase shifts deep inside the bulk of the

spherical superconductor (i.e., in the interior far away from the surface) arising from the A

and the h terms, must cancel each other exactly. Thus the minimal coupling rule leads to

a relationship between the A and the h fields inside the bulk given by

e2A = −m2h . (15)

This relationship in turn implies that a uniform magnetic field B = ∇×A, where

A =1
2
B × r in the symmetric gauge, will be generated in the interior of the spherical super-

conductor due to its uniform rotational motion at an angular velocity Ω with respect to the

local inertial frame, where h = Ω × r in the rotating frame. Thus the London moment

effect will manifest itself here as a uniform magnetic field B in the interior of the rigidly

rotating sphere, which can be calculated by taking the curl of both sides of Eq. (15), and

yields

B = −2m2

e2
Ω , (16)

which is consistent with Larmor’s theorem. In general, the proportionality constant of the

London moment will be given by the inverse of the charge-to-mass ratio e2/m2, where m2
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has been experimentally determined to be the vacuum value of the Cooper pair rest mass,

apart from a small discrepancy of the order of ten parts per million, which has not yet been

completely understood [15].

However, in the above argument, we have been assuming rigid-body rotation for the

entire body of the superconductor, which is obviously not valid for microwave-frequency

gravitational radiation fields, since the lattice cannot respond to such high frequencies in

such a rigid manner. Hence the above analysis applies only to time-independent (i.e., mag-

netostatic) and spatially homogeneous (i.e., uniform) magnetic fields and steady rotations,

and is not valid for the high-frequency, time-dependent, and spatially inhomogeneous case

of the interaction of gravitational and electromagnetic radiation fields near the surface of

the superconductor, since the above magnetostatic analysis ignores the boundary-value and

impedance-matching problems for radiation fields at the vacuum-superconductor interface,

which will be considered below.

One can generalize the above time-independent minimal-coupling Hamiltonian to adia-

batic time-varying situations as follows:

H =
1

2m2eff
(p − e2A(t) −m2h(t))2 , (17)

where A(t) and h(t) are the vector potentials associated with low-frequency electromagnetic

and gravitational radiation fields, for example. (This time-dependent Hamiltonian can also

of course describe low-frequency time-varying tidal and Lense-Thirring fields, as well as radi-

ation fields, but the adiabatic approximation can still be valid for radiation fields oscillating

at high microwave frequencies, since the BCS gap frequency of many superconductors lie in

the far-infrared part of the spectrum.) Again, it is natural to choose the radiation gauge

for both A(t) and h(t) vector potentials, Eq. (11), in the description of these time-varying

fields. The physical meaning of h(x, y, z, t) ≡ h(t) is that it is the negative of the time-

varying three-velocity field vtest(x, y, z, t) of a system of noninteracting, locally freely-falling

classical test particles as seen by the observer sitting in an inertial frame located at the

center of mass of the superconductor. At first, we shall treat both A(t) and h(t) as classical

fields, but shall treat the matter, i.e., the superconductor, quantum mechanically, in the

standard semiclassical approximation.

The time-dependent Hamiltonian given by Eq. (17) is, I stress, only a “guessed” form

of the Hamiltonian, whose ultimate justification must be an experimental one. In case of
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the time-dependent vector potential A(t), there have already been many experiments which

have justified this “guess,” but there have been no experiments which have tested the new

term involving h(t). However, one justification for this new term is that in the static limit,

this “guessed” Hamiltonian goes over naturally to the magnetostatic minimal-coupling form,

which, as we have seen above, has been tested experimentally.

From Eq. (17), we see that the time-dependent generalization of the minimal-coupling

rule for Cooper pairs is

p → p− e2A(t) −m2h(t). (18)

It would be hard to believe that one is allowed to generalize A to A(t), but that somehow

one is not allowed to generalize h to h(t).

One important consequence that follows immediately from expanding the square in Eq.

(17) is that there exists a cross-term [16]

Hint =
1

2m2eff
{2e2m2A(t) · h(t)} =

(

m2

m2eff

)

e2A(t) · h(t). (19)

It should be emphasized that Newton’s constant G does not enter here. The physical mean-

ing of this interaction Hamiltonian Hint is that there should exist a direct coupling between

electromagnetic and gravitational radiation mediated by the superconductor that involves

the charge e2 as its coupling constant, in the quantum limit. Thus the strength of this

coupling is electromagnetic, and not gravitational, in its character. Furthermore, the A · h
form of Hint implies that there should exist a linear and reciprocal coupling between these

two radiation fields mediated by the superconductor. This implies that the superconductor

should be a quantum-mechanical transducer between these two forms of radiation, which

can, in principle, convert power from one form of radiation into the other, and vice versa,

with equal efficiency.

We can see more clearly the significance of the interaction Hamiltonian Hint once we

convert it into second quantized form and express it in terms of the creation and annihilation

operators for the positive frequency parts of the two radiation fields, as in the theory of

quantum optics, so that in the rotating-wave approximation

Hint ∝ a†b+ b†a (20)

where the annihilation operator a and the creation operator a† of a single classical mode of

the electromagnetic radiation field, obey the commutation relation [a, a†] = 1, and where
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the annihilation operator b and the creation operator b† of a matched single classical mode of

the gravitational radiation field, obey the commutation relation [b, b†] = 1. (This represents

a crude, first attempt at quantizing the gravitational field, which applies only in the case of

weak gravity.) The first term a†b then corresponds to the process in which a graviton is

annihilated and a photon is created inside the superconductor, and similarly the second term

b†a corresponds to the reciprocal process, in which a photon is annihilated and a graviton is

created inside the superconductor. Energy is conserved by both of these processes. Time-

reversal symmetry, and hence reciprocity, is also respected by this interaction Hamiltonian.

B. Calculation of diamagnetic-like coupling energies: The macroscopic wavefunc-

tion

At this point, we need to introduce the purely quantum concept of wavefunction, in

conjunction with the quantum adiabatic theorem. To obtain the response of the super-

conductor, we must make explicit use of the fact that the ground state wavefunction of the

system is unchanged (i.e., “rigid”) during the time variations of both A(t) and h(t). The

condition for validity of the quantum adiabatic theorem here is that the frequency of the

perturbations A(t) and h(t) must be low enough compared with the BCS gap frequency of

the superconductor, so that no transitions are permitted out of the BCS ground state of

the system into any of the excited states of the system. However, “low enough” can, in

practice, still mean quite high frequencies, e.g., microwave frequencies in the case of high Tc

superconductors, so that it becomes practical for the superconductor to become comparable

in size to the microwave wavelength λ.

Using the quantum adiabatic theorem, one obtains in first-order perturbation theory the

coupling energy ∆E
(1)
int of the superconductor in the simultaneous presence of both A(t) and

h(t) fields, which is given by

∆E
(1)
int =

(

m2

m2eff

)

〈ψ |e2A(t) · h(t)|ψ〉 =

(

m2

m2eff

)

∫

V
dxdydz ψ∗(x, y, z)A(x, y, z, t) · h(x, y, z, t)ψ(x, y, z) (21)

where

ψ(x, y, z) =
(

N/πr2
0d
)1/2

= Constant (22)
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is the Cooper-pair condensate wavefunction (or Ginzburg-Landau order parameter) of a

homogeneous superconductor of volume V [17], the normalization condition having been

imposed that
∫

V
dxdydz ψ∗(x, y, z)ψ(x, y, z) = N, (23)

where N is the total number of Cooper pairs in the superconductor. Assuming that both

A(t) and h(t) have the same (“+”) polarization of quadrupolar radiation, and that both

plane waves impinge on the slab of superconductor at normal incidence, then in Cartesian

coordinates,

A(t) = (A1(t), A2(t), A3(t)) =
1

2
(x,−y, 0)A+ cos(kz − ωt) (24)

h(t) = (h1(t), h2(t), h3(t)) =
1

2
(x,−y, 0)h+ cos(kz − ωt). (25)

One then finds that the time-averaged interaction or coupling energy in the rotating-wave

approximation between the electromagnetic and gravitational radiation fields mediated by

the superconductor is

∆E
(1)
int =

1

16

(

m2

m2eff

)

Ne2A+h+r
2
0. (26)

Note the presence of the factor N , which can be very large, since it can be on the order of

Avogadro’s number N0.

The calculation for the above coupling energy ∆E
(1)
int proceeds along the same lines as

that for the Meissner effect of the superconductor, which is based on the diamagnetism term

Hdia in the expansion of the same time-dependent minimal-coupling Hamiltonian, Eq. (17),

given by

Hdia =
1

2m2eff
{e2A(t) · e2A(t)} . (27)

This leads to an energy shift of the system, which, in first-order perturbation theory, again

in the rotating-wave approximation, is given by

∆E
(1)
dia =

1

32m2eff

Ne22A
2
+r

2
0. (28)

Again, note the presence of the factorN , which can be on the order of Avogadro’s number N0.

From this expression, we can obtain the diamagnetic susceptibility of the superconductor.

We know from experiment that the size of this energy shift is sufficiently large to cause

a complete expulsion of the magnetic field from the interior of the superconductor, i.e., a

Meissner effect. Hence there must also be a complete reflection of the electromagnetic wave
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from the interior of the superconductor, apart from a thin surface layer of the order of the

London penetration depth. All forms of diamagnetism, including the Meissner effect, are

purely quantum effects.

Similarly, there is a “gravitodiamagnetic” term HGdia in the expansion of the same

minimal-coupling Hamiltonian given by

HGdia =
1

2m2eff

{m2h(t) ·m2h(t)} . (29)

This leads to a gravitodiamagnetic energy shift of the system given in first-order perturbation

theory in the rotating-wave approximation by

∆E
(1)
Gdia =

1

32m2eff

Nm2
2h

2
+r

2
0. (30)

From this expression, we can obtain the gravitodiamagnetic susceptibility of the supercon-

ductor.

IV. THE IMPEDANCE OF FREE SPACE FOR GRAVITATIONAL PLANE

WAVES

It is not enough merely to calculate the coupling energy arising from the interaction

Hamiltonian given by Eq. (26). We must also compare how large this coupling energy is

with respect to the free-field energies of the uncoupled problem, in particular, that of the

gravitational radiation, in order to see how big an effect we expect to see in the gravitational

sector. To this end, I shall introduce the concept of impedance matching, both between

the superconductor and free space in both forms of radiation, and also between the two

kinds of waves inside the superconductor viewed as a transducer. The impedance matching

problem determines the efficiency of power transfer from the antenna to free space, and

from one kind of wave to the other. It is therefore useful to introduce the concept of the

impedance of free space ZG for a gravitational plane wave, which is analogous to the concept

of the impedance of free space Z0 for an electromagnetic plane wave (here SI units are more

convenient to use than Gaussian cgs units)

Z0 =
E

H
=

√

µ0

ε0
= 377 ohms, (31)

where µ0 is the magnetic permeability of free space, and ε0 is the dielectric permittivity of

free space.
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The physical meaning of the “impedance of free space” in the electromagnetic case is

that when a plane wave impinges on a large, but thin, resistive film at normal incidence, due

to this film’s ohmic losses, the wave can be substantially absorbed and converted into heat

if the resistance per square element of this film is comparable to 377 ohms. In this case,

we say that the electromagnetic plane wave has been approximately “impedance-matched”

into the film. If, however, the resistance of the thin film is much lower than 377 ohms per

square, as is the case for a superconducting film, then the wave will be reflected by the film.

In this case, we say that the wave has been “shorted out” by the superconducting film, and

that therefore this film reflects electromagnetic radiation like a mirror. By contrast, if the

resistance of a normal metallic film is much larger than 377 ohms per square, then the film is

essentially transparent to the wave. As a result, there will be almost perfect transmission.

The boundary value problem for Maxwell’s equations coupled to a thin resistive film with

a resistance per square element of Z0/2, yields a unique solution that this is the condition

for the maximum possible fractional absorption of the wave energy by the film, which is

50%, along with 25% of the wave energy being transmitted, and the remaining 25% being

reflected (see Appendix A) [19]. Under such circumstances, we say that the film has been

“optimally impedance-matched” to the film. This result is valid no matter how thin the

“thin” film is.

The gravitomagnetic permeability µG of free space is [20][21]

µG =
16πG

c2
= 3.73 × 10−26 m

kg
, (32)

i.e., µG is the coupling constant which couples the Lense-Thirring field to sources of mass

current density, in the gravitational analog of Ampere’s law for weak gravity. Ciufolini et al.

have recently measured, to within ±20%, a value of µG which agrees with Eq. (32), in the

first observation of the Earth’s Lense-Thirring field by means of laser-ranging measurements

of the orbits of two satellites [22]. From Eq. (32), I find that the impedance of free space is

[18]

ZG =
EG

HG
=

√

µG

εG
= µGc =

16πG

c
= 1.12 × 10−17 m2

s · kg
, (33)

where the fact has been used that both electromagnetic and gravitational plane waves prop-

agate at the same speed

c =
1√
εGµG

=
1√
ε0µ0

= 3.00 × 108 m

s
. (34)
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Therefore, the gravitoelectric permittivity εG of free space is

εG =
1

16πG
= 2.98 × 108 kg2

N · m2
. (35)

Newton’s constant G now enters explicitly through the expression for the impedance of

free space ZG, into the problem of the interaction of radiation and matter. Note that ZG is

an extremely small quantity. Nevertheless, it is also important to note that it is not strictly

zero. Since nondissipative quantum fluids, such as superfluids and superconductors, can

in principle have strictly zero losses, they can behave like “short circuits” for gravitational

radiation. Thus we expect that quantum fluids, in contrast to classical fluids, can behave

like perfect mirrors for gravitational radiation. That ZG is so small explains why it is so

difficult to couple classical matter to gravity waves. It is therefore natural to consider using

nondissipative quantum matter instead for achieving an efficient coupling.

By analogy with the electromagnetic case, the physical meaning of the “impedance of

free space” ZG is that when a gravitational plane wave impinges on a large, but thin,

viscous fluid film at normal incidence, due to this film’s dissipative losses, the wave can be

substantially absorbed and converted into heat, if the dissipation per square element of this

film is comparable to ZG. Again in this case, we say that the gravitational plane wave has

been approximately “impedance-matched” into the film. If, however, the dissipation of the

thin film is much lower than ZG, as is the case for nondissipative quantum fluids, then the

wave will be reflected by the film. In this case, we say that the wave has been “shorted

out” by the superconducting or superfluid film, and that therefore the film should reflect

gravitational radiation like a mirror. By contrast, if the dissipation of the film is much

larger than ZG, as is the case for classical matter, then the film is essentially transparent to

the wave, and there will be essentially perfect transmission.

The same boundary value problem holds for the Maxwell-like equations coupled to a thin

viscous fluid film with a dissipation per square element of ZG/2, and yields the same unique

solution that this is the condition for the maximum possible fractional absorption (and

the consequent conversion into heat) of the wave energy by the film, which is 50%, along

with 25% of the wave energy being transmitted, and the remaining 25% being reflected (see

Appendix A). Under such circumstances, we again say that the film has been “optimally

impedance-matched” to the film. Again, this result is valid no matter how thin the “thin”

film is.
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When the superconductor is viewed as a transducer, the conversion from electromagnetic

to gravitational wave energy, and vice versa, can be viewed as an effective dissipation

mechanism, where instead of being converted into heat, one form of wave energy is converted

into the other form, whenever impedance matching is achieved within a thin layer inside

the superconductor. As we shall see, this can occur naturally when the electromagnetic

wave impedance is exponentially reduced in extreme type II superconductors as the wave

penetrates into the superconductor, so that a layer is automatically reached in its interior

where the electromagnetic wave impedance is reduced to a level comparable to ZG. Under

such circumstances, we should expect efficient conversion from one form of wave energy to

the other.

V. MAXWELL-LIKE EQUATIONS FOR GRAVITY WAVES

For obtaining the impedance of free space Z0 for electromagnetic plane waves, we recall

that one starts from Maxwell’s equations

∇ · D = +ρe (36)

∇× E = −∂B
∂t

(37)

∇ ·B = 0 (38)

∇× H = + je +
∂D

∂t
, (39)

where ρe is the electrical free charge density (here, the charge density of Cooper pairs), and

je is the electrical current density (due to Cooper pairs), D is the displacement field, E is

the electric field, B is the magnetic induction field, and H is the magnetic field intensity.

The constitutive relations (assuming an isotropic medium) are

D = κeε0E (40)

B = κmµ0H (41)

je = σeE, (42)

where κe is the dielectric constant of the medium, κm is its relative permeability, and σe is

its electrical conductivity. We then convert Maxwell’s equations into wave equations for

free space in the usual way, and conclude that the speed of electromagnetic waves in free

19



space is c = (ε0µ0)
−1/2, and that the impedance of free space is Z0 = (µ0/ε0)

1/2. The

impedance-matching problem of a plane wave impinging on a thin, resistive film is solved by

using standard boundary conditions in conjunction with the constitutive relation je = σeE.

Similarly, for weak gravity and slow matter, Maxwell-like equations have been derived

from the linearized form of Einstein’s field equations [21][23][24][25]. The gravitoelectric

field EG, which is identical to the local acceleration due to gravity g, is analogous to the

electric field E, and the gravitomagnetic field BG, which is identical to the Lense-Thirring

field, is analogous to the magnetic field B; they are related to the vector potential h in the

radiation gauge as follows:

g = −∂h
∂t

and BG= ∇× h , (43)

which correspond to the electromagnetic relations in the radiation gauge

E = −∂A
∂t

and B = ∇×A . (44)

The physical meaning of g is that it is the three-acceleration of a local, freely-falling test

particle induced by the gravitational radiation, as seen by an observer in a local inertial

frame located at the center of mass of the superconductor. The local three-acceleration

g is the local time derivative of the local three-velocity −h of this test particle, which is

a member of a system of noninteracting, locally freely-falling, classical test particles (e.g.,

interstellar dust) with a velocity field vtest(x, y, z, t) = −h(x, y, z, t) as viewed by an observer

in the center-of-mass inertial frame (see Eq. (43a)). Similarly, the physical meaning of the

gravitomagnetic field BG is that it is the local angular velocity of an inertial frame centered

on the same test particle, with respect to the same observer’s inertial frame, which is centered

on the freely-falling center-of-mass of the superconductor. Thus BG is the Lense-Thirring

field induced by gravitational radiation.

The Maxwell-like equations for weak gravitational fields (upon setting the PPN

(“Parametrized Post-Newton”) parameters to be those of general relativity) are [23]

∇ · DG = −ρG (45)

∇× g = −∂BG

∂t
(46)

∇ · BG = 0 (47)

∇×HG= − jG +
∂DG

∂t
(48)
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where ρG is the density of local rest mass in the local rest frame of the matter, and jG is

the local rest-mass current density in this frame (in the case of classical matter, jG = ρGv,

where v is the coordinate three-velocity of the local rest mass; in the quantum case, see Eq.

(64)). Here HG is the gravitomagnetic field intensity, and DG is the gravitodisplacement

field.

Since the forms of these equations are identical to those of Maxwell’s equations, the same

boundary conditions follow from them, and therefore the same solutions for electromagnetic

problems carry over formally to the gravitational ones. These include the solution for the

optimal impedance-matching problem for a thin, dissipative film (see Appendix A).

The constitutive relations (assuming an isotropic medium) analogous to those in

Maxwell’s theory are

DG = 4κGEεGg (49)

BG = κGMµGHG (50)

jG = −σGg (51)

where εG is the gravitoelectric permittivity of free space given by Eq. (35), µG is the

gravitomagnetic permeability of free space given by Eq. (32), κGE is the gravitoelectric

dielectric constant of a medium, κGM is its gravitomagnetic relative permeability, and σG

is the gravitational analog of the electrical conductivity of the medium, whose magnitude

is inversely proportional to its viscosity. It is natural to choose to define the constitutive

relation, Eq. (51), with a minus sign, so that for dissipative media, σG is always a positive

quantity. The factor of 4 on the right hand side of Eq. (49) implies that Newton’s law of

universal gravitation emerges from Einstein’s theory of GR in the correspondence principle

limit.

The phenomenological parameters κGE , κGM , and σG must be determined by experiment.

Since there exist no negative masses which can give rise to a gravitational analog of the

polarization of the medium, we expect that at low frequencies, κGE → 1. However, because

of the possibility of large Meissner-like effects such as in superconductors, κGM need not

approach unity at low frequencies, but can approach zero instead. The gravitodiamagnetic

susceptibility calculated from Eq. (30) should lead to a value of κGM close to zero. Also, note

that κGM can be spatially inhomogeneous, such as near the surface of a superconductor.

Again, converting the Maxwell-like equations for weak gravity into a wave equation for
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free space in the standard way, we conclude that the speed of GR waves in free space

is c = (εGµG)−1/2, which is identical in GR to the vacuum speed of light, and that the

impedance of free space for GR waves is ZG = (µG/εG)1/2, whose numerical value is given

by Eq. (33).

It should be stressed here that although the above Maxwell-like equations look formally

identical to Maxwell’s, there is an elementary physical difference between gravity and elec-

tricity, which must not be overlooked. In electrostatics, the existence of both signs of

charges means that both repulsive and attractive forces are possible, whereas in gravity,

only positive signs of masses, and only attractive gravitational forces between masses, are

observed. One consequence of this experimental fact is that whereas it is possible to con-

struct Faraday cages that completely screen out electrical forces, and hence electromagnetic

radiation fields, it is impossible to construct gravitational analogs of such Faraday cages

that screen out gravitoelectric forces, such as Earth’s gravity.

However, the gravitomagnetic force can be either repulsive or attractive in sign, unlike

the gravitoelectric force. For example, the gravitomagnetic force between two parallel

current-carrying pipes changes sign, when the direction of the current flow is reversed in

one of the pipes, according to the Ampere-like law Eq. (48). Hence both signs of this

kind of gravitational force are possible. One consequence of this is that gravitomagnetic

forces can cancel out, so that, unlike gravitoelectric fields, gravitomagnetic fields can in

principle be screened out of the interiors of material bodies. A dramatic example of this

is the complete screening out of the Lense-Thirring field by superconductors in a Meissner-

like effect, i.e., the complete expulsion of the gravitomagnetic field from the interior of

these bodies, which is predicted by the Ginzburg-Landau theory given below. Therefore

the expulsion of gravitational radiation fields by superconductors can also occur, and thus

mirrors for this kind of radiation, although counterintuitive, are not impossible.

VI. POYNTING-LIKE VECTOR AND THE POWER FLOW OF GRAVITA-

TIONAL RADIATION

In analogy with classical electrodynamics, having obtained the impedance of free space

ZG, we are now in a position to calculate the time-averaged power flow in a gravitational

plane through a gravitational analog of Poynting’s theorem in the weak-gravity limit. The
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local time-averaged intensity of a gravitational plane wave is given by the time-averaged

Poynting-like vector

S = EG×HG . (52)

For a plane wave propagating in the vacuum, the local relationship between the magnitudes

of the EG and HG fields is given by

|EG| = ZG |HG| . (53)

From Eq.(43a), it follows that the local time-averaged intensity, i.e., the power per unit area,

of a harmonic plane wave of angular frequency ω is given by

∣

∣

∣S
∣

∣

∣ =
1

2ZG
|EG|2 =

ω2

2ZG
|h|2 =

c3ω2

32πG
|h0i|2 . (54)

For a Gaussian-Laguerre mode of a quadrupolar gravity-wave beam propagating at 10 GHz

with an intensity of a milliwatt per square centimeter, the velocity amplitude |h| is typically

|h| ≃ 2 × 10−20 m/s, (55)

or the dimensionless strain parameter |h0i| = |h| /c is typically

|h0i| ≃ 8 × 10−31 , (56)

which is around ten orders of magnitude smaller than the typical strain amplitudes ob-

servable in the earlier versions of LIGO. At first sight, it would seem extremely difficult

to detect such tiny amplitudes. However, if the natural impedance matching process in

dissipationless, extreme type II superconductors to be discussed below can be achieved in

practice, then both the generation and the detection of such small strain amplitudes should

not be impossible.

To give an estimate of the size of the magnetic field amplitudes which correspond to

the above gravitational wave amplitudes, one uses energy conservation in a situation in

which the powers in the EM and GR waves become comparable to each other in the natural

impedance-matching process described below, where, in the special case of perfect power

conversion (i.e., perfect impedance matching) from EM to GR radiation,

ω2

2Z0

|A|2 =
ω2

2ZG

|h|2 , (57)
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from which it follows that

|A|
|h| =

|B|
|BG|

=
|B|
|ΩG|

=
(

Z0

ZG

)1/2

, (58)

where the ratio is given by the square-root of the impedances of free space (Z0/ZG)1/2 instead

of the mass-to-charge ratio 2m2/e2 ratio implied by Eq. (16). Thus for the above numbers

|B| ≃ 5 × 10−3 Tesla . (59)

VII. GINZBURG-LANDAU EQUATION COUPLED TO BOTH ELECTROMAG-

NETIC AND GRAVITATIONAL RADIATION

A superconductor in the presence of the electromagnetic field A(t) alone is well described

by the Ginzburg-Landau (G-L) equation for the complex order parameter ψ, which in the

adiabatic limit is given by [26]

1

2m2eff

(

h̄

i
∇− e2A(t)

)2

ψ + β|ψ|2ψ = −αψ. (60)

When A is time-independent, this equation has the same form as the time-independent

Schrödinger equation for a particle (i.e., a Cooper pair) with mass m2eff and a charge e2

with an energy eigenvalue −α, except that there is an extra nonlinear term whose coefficient

is given by the coefficient β, which arises at a microscopic level from the Coulomb interaction

between Cooper pairs [26]. The values of these two phenomenological parameters α and

β must be determined by experiment. There are two important length scales associated

with the two parameters α and β of this equation, which can be obtained by a dimensional

analysis of Eq. (60). The first is the coherence length

ξ =

√

√

√

√

h̄2

2m2eff |α|
, (61)

which is the length scale on which the condensate charge density e2|ψ|2 vanishes, as one

approaches the surface of the superconductor from its interior, and hence the length scale

on which the electric field E(t) is screened inside the superconductor. The second is the

London penetration depth

λL =

√

√

√

√

h̄2

2m2effβ|ψ|2
→
√

√

√

√

ε0m2effc2

e22|ψ0|2
, (62)
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which is the length scale on which an externally applied magnetic field B(t) = ∇× A(t)

vanishes due to the Meissner effect, as one penetrates into the interior of the supercon-

ductor away from its surface. Here |ψ0|2 is the pair condensate density deep inside the

superconductor, where it approaches a constant.

The G-L equation represents a mean field theory of the superconductor at the macro-

scopic level, which can be derived from the underlying microscopic BCS theory [27]. The

meaning of the complex order parameter ψ(x, y, z) is that it is the Cooper pair condensate

wavefunction. Since ψ(x, y, z) is defined as a complex field defined over ordinary (x, y, z)

space, it is difficult to discern at this level of description the underlying quantum entangle-

ment present in the BCS wavefunction, which is a many-body wavefunction defined over the

configuration space of the many-electron system. Nevertheless, quantum entanglement, and

hence instantaneous EPR correlations-at-a-distance, shows up indirectly through the non-

linear term β|ψ|2ψ, and is ultimately what is responsible for the Meissner effect. The G-L

theory is being used here because it is more convenient than the BCS theory for calculating

the response of the superconductor to electromagnetic, and also to gravitational, radiation.

I would like to propose that the Ginzburg-Landau equation should be generalized to

include gravitational radiation fields h(t), whose frequencies lie well below the BCS gap

frequency, by using the minimal-coupling rule, Eq. (18), to the following equation:

1

2m2eff

(

h̄

i
∇− e2A(t) −m2h(t)

)2

ψ + β|ψ|2ψ = −αψ. (63)

Again, the ultimate justification for this equation must come from experiment. With

this equation, one can predict what happens at the interface between the vacuum and the

superconductor, when both kinds of radiation are impinging on this surface at an arbitrary

angle of incidence (see Figure 2). Since there are still only the two parameters α and β

in this equation, there will again be only the same two length scales ξ and λL that we had

before adding the gravitational radiation term h(t). Since there are no other length scales in

this problem, one would expect that the gravitational radiation fields should vanish on the

same length scales as the electromagnetic radiation fields as one penetrates deeply into the

interior of the superconductor. Thus one expects there to exist a Meissner-like expulsion of

the gravitational radiation fields from the interior of the superconductor.

Both B(t) and BG(t) fields must vanish into the interior of the superconductor, since

both A(t) and h(t) fields must vanish in the interior. Otherwise, the single-valuedness of
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ψ would be violated. Suppose that A(t) did not vanish deep inside the superconducting

slab, which is topologically singly connected. Then Yang’s nonintegrable phase factor

exp ((ie2/h̄)
∮

A(t) · dl), which is a gauge-independent quantity, would also not vanish [28],

which would lead to a violation of the single-valuedness of ψ. Similarly, suppose that h(t)

did not vanish. Then the nonintegrable phase factor exp ((im2/h̄)
∮

h(t) · dl), which is a

gauge-independent quantity, would also not vanish, so that again there would be a violation

of the single-valuedness of ψ (see Figure 1).

The A(t) and h(t) fields are coupled strongly to each other through the e2A·h interaction

Hamiltonian. Since the electromagnetic interaction is very much stronger than the gravita-

tional one, the exponential decay of A(t) on the scale of the London penetration depth λL

should also govern the exponential decay of the h(t) field. Thus both A(t) and h(t) fields

decay exponentially with the same length scale λL into the interior of the superconductor.

This implies that both EM and GR radiation fields will also be expelled from the interior,

so that a flat surface of this superconductor should behave like a plane mirror for both EM

and GR radiation.

The Cooper pair current density j, which acts as the source in Ampere’s law in both the

Maxwell and the Maxwell-like equations, can be obtained in a manner similar to that for

the Schrödinger equation

j =
h̄

2im2eff
(ψ∗∇ψ − ψ∇ψ∗) − e2

m2eff
|ψ|2A− m2

m2eff
|ψ|2h . (64)

Note thar j is nonlinear in ψ, but linear in A and h. Near the surface of the superconductor,

the gradient terms dominate, but far into the interior, the A and the h terms dominate.

We shall now use j for calculating the sources for both Maxwell’s equations for the electro-

magnetic fields, and also for the Maxwell-like equations for the gravitational fields. The

electrical current density, the electrical free charge density, the rest-mass current density,

and the rest mass density, are, respectively,

je = e2j , ρe = e2|ψ|2 , jG = m2j , ρG = m2|ψ|2 . (65)

I have not yet solved the generalized Ginzburg-Landau equation, Eq. (63), coupled to

both the Maxwell and Maxwell-like equations through these currents and densities. These

coupled equations are nonlinear in ψ, but are linear in A and h for weak radiation fields.

However, from dimensional considerations, I can make the following remarks. The electric
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field E(t) should be screened out exponentially towards the interior of the superconductor

on a length scale set by the coherence length ξ, since the charge density ρe = e2|ψ|2 vanishes

exponentially on this length scale near the surface of the superconductor. Similarly, the

magnetic field B(t) should vanish exponentially towards the interior of the superconductor,

but on a different length scale set by the London penetration depth λL. Both fields vanish

exponentially, but on different length scales.

At first sight, it would seem that similar considerations would apply to the gravitational

fields g(t) and BG(t). However, since there exists only one sign of mass for gravity, the

gravitoelectric field g(t) cannot be screened out. Nevertheless, the gravitomagnetic field

BG(t) can be, indeed must be, screened by the quantum-mechanical currents j, in order to

preserve the single-valuedness of ψ. The quantum-current source terms responsible for the

screening out of the BG(t) field in Meissner-like effects are not coupled to spacetime by means

of Newton’s constant G through the right-hand side of the Ampere-like law, Eq. (48), but

are coupled directly without the mediation of G through the gravitomagnetic constitutive

relation, Eq. (50), and through the Faraday-like law, Eq. (46), whose right-hand side does

not contain G. For the reasons given above, BG(t) must decay exponentially on the same

scale of length as the gauge field A(t) and the magnetic field B(t), namely the London

penetration depth λL.

The exponential decay into the interior of the superconductor of both EM and GR waves

on the scale of λL means that a flat superconducting surface should behave like a plane

mirror for both electromagnetic and gravitational radiation. However, the behavior of the

superconductor as an efficient mirror is no guarantee that it should also be an efficient

transducer from one type of radiation to the other. For efficient power conversion, a

good transducer impedance-matching process from one kind of radiation to the other is also

required.

VIII. NATURAL IMPEDANCE MATCHING IN EXTREME TYPE II SUPER-

CONDUCTORS

Impedance matching in a natural transduction process between EM and GR waves could

happen near the surface of type II superconductors, where the electric field decays more

quickly than the magnetic field into the interior of the superconductor, since ξ < λL. For

27



extreme type II superconductors, where ξ << λL, the electric field is screened out much more

quickly on the scale of the coherence length ξ, than the magnetic field, which is screened

much more slowly on the scale of the penetration depth λL. The EM wave impedance for

extreme type II superconductors should therefore decay on the scale of the coherence length

ξ much more quickly than the GR wave impedance, which should decay much more slowly

on the scale of the penetration depth λL. The high-temperature superconductor YBCO is

an example of an extreme type II superconductor, for which ξ is less than λL by three orders

of magnitude [29].

The wave impedance Z = E/H of an EM plane wave depends exponentially as a function

of z, the distance from the surface into the interior of the superconductor, as follows:

Z(z) =
E(z)

H(z)
= Z0 exp(−z/ξ + z/λL). (66)

The GR wave impedance ZG, however, behaves very differently, because of the absence of

the screening of the gravitoelectric field, so that EG(z) should be constant independent of z

near the surface, and therefore

ZG(z) =
EG(z)

HG(z)
= ZG exp(+z/λL). (67)

Thus the z-dependence of the ratio of the two kinds of impedances should obey the

exponential-decay law
Z(z)

ZG(z)
=
Z0

ZG

exp(−z/ξ). (68)

We must at this point convert the two impedances Z0 and ZG to the same units for compar-

ison. To do so, we express Z0 in the natural units of the quantum of resistance R0 = h/e2,

where e is the electron charge. Likewise, we express ZG in the corresponding natural units

of the quantum of dissipation RG = h/m2, where m is the electron mass. Thus we get the

dimensionless ratio

Z(z)/R0

ZG(z)/RG
=

Z0/R0

ZG/RG
exp(−z/ξ) =

e2/4πε0

4Gm2
exp(−z/ξ). (69)

Let us define the “depth of natural impedance-matching” z0 as the depth where this dimen-

sionless ratio is unity, and thus natural impedance matching occurs. Then

z0 = ξ ln

(

e2/4πε0

4Gm2

)

≈ 97ξ. (70)
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This result is a robust one, in the sense that the logarithm is very insensitive to changes

in numerical factors of the order of unity in its argument. From this, we conclude that it

is necessary penetrate into the superconductor a distance of z0, which is around a hundred

coherence lengths ξ, for the natural impedance matching process to occur. When this

happens, transducer impedance matching occurs automatically, and we expect that the

conversion from electromagnetic to gravitational radiation, and vice versa, to be an efficient

one. For example, the London penetration depth of around 6000 Å in the case of YBCO

is very large compared with 97ξ ≃400 Å in this material, so that the electromagnetic field

energy has not yet decayed by much at this natural impedance-matching plane z = z0,

although it is mainly magnetic in character at this point. Therefore the transducer power-

conversion efficiency could be of the order of unity, provided that there is no appreciable

parasitic dissipation of the EM radiation fields in the superconductor before this point.

The Fresnel-like boundary value problem for plane waves incident on the surface of the

superconductor at arbitrary incidence angles and arbitrary polarizations (see Figure 2) needs

to be solved in detail before these conclusions can be confirmed.

IX. RESULTS OF A FIRST EXPERIMENT AND FUTURE PROSPECTS

However, based on the above crude dimensional and physical arguments, the prospects

for a simple Hertz-like experiment testing these ideas appeared promising enough that I

have performed a first attempt at this experiment with Walt Fitelson at liquid nitrogen

temperature. The schematic of this experiment is shown in Figure 3. Details will be

presented elsewhere.

Unfortunately, we did not detect any observable signal inside the second Faraday cage,

down to a limit of more than 70 dB below the microwave power source of around −10 dBm

at 12 GHz. (We used a commercial satellite microwave receiver at 12 GHz with a noise

figure of 0.6 dB to make these measurements; the Faraday cages were good enough to block

any direct electromagnetic coupling by more than 70 dB). We checked for the presence of

the Meissner effect in the samples in situ by observing a levitation effect upon a permanent

magnet by these samples at liquid nitrogen temperature.

Note, however, that since the transition temperature of YBCO is 90 K, there may have

been a substantial ohmic dissipation of the microwaves due to the remaining normal electrons
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at our operating temperature of 77 K, so that the EM wave was absorbed before it could

reach the impedance-matching depth at z0. It may therefore be necessary to cool the

superconductor down very low temperatures before the normal electron component freezes

out sufficiently to achieve such impedance matching. The exponential decrease of the normal

electron population at very low tempertures due to the Boltzmann factor, and thereby an

exponential “freezing out” of the ohmic dissipation of the superconductor, may then allow

this impedance matching process to take place, if no other parasitic dissipative processes

remain at these very low temperatures. Assuming that the impedance-matching argument

given in Eq. (69) is correct, and assuming that in the normal state, the surface resistance

of YBCO is on the order of h/e2 = 26 kilohms in its normal state, one needs a Boltzmann

factor of the order of e−100 in order to freeze out the dissipation due to the normal electrons

down to an impedence level comparable to ZG. This would imply that temperatures around

a Kelvin should suffice.

However, there exist unexplained residual microwave and far-infrared losses in YBCO and

other high Tc superconductors, which are independent of temperature and have a frequency-

squared dependence [30]. It may therefore be necessary to cool the superconductor down

extremely low temperatures, such as millikelvins, before the normal electron component

freezes out sufficiently to achieve such impedance matching, but more research needs first

to be done to understand the mechanism for these microwave residual losses before they can

be eliminated. An improved Hertz-like experiment using extreme type II superconductors

with extremely low losses, perhaps at millikelvin temperatures, is a much more difficult, but

worthwhile, experiment to perform.

Such an improved experiment, if successful, would allow us to communicate through

the Earth and its oceans, which, like all classical matter, are transparent to GR waves.

Furthermore, it would allow us to directly observe for the first time the CMB (Cosmic

Microwave Background) in GR radiation, which would tell us much about the very early

Universe.
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XI. APPENDIX A: OPTIMAL IMPEDANCE MATCHING OF A GRAVITA-

TIONAL PLANE WAVE INTO A THIN, DISSIPATIVE FILM

Let a gravitational plane wave given by Eq. (25) be normally incident onto a thin, dissi-

pative (i.e., viscous) fluid film. Let the thickness d of this film be arbitrarily thin compared

to the gravitational analog of the skin depth (2/κGMµGσGω)1/2, and to the wavelength λ.

The incident fields calculated using Eqs. (43) (here I shall use the notation EG instead of g

for the gravitoelectric field) are

E
(i)
G = −1

2
(x,−y, 0)ωh+ sin(kz − ωt) (71)

H
(i)
G = − 1

2ZG
(y, x, 0)ωh+ sin(kz − ωt). (72)

Let ρ be the amplitude reflection coefficient for the gravitoelectric field; the reflected fields

from the film are then

E
(r)
G = −ρ1

2
(x,−y, 0)ωh+ sin(kz − ωt) (73)

H
(r)
G = +ρ

1

2ZG
(y, x, 0)ωh+ sin(kz − ωt). (74)

Similarly the transmitted fields on the far side of the film are

E
(t)
G = −τ 1

2
(x,−y, 0)ωh+ sin(kz − ωt) (75)

H
(t)
G = −τ 1

2ZG

(y, x, 0)ωh+ sin(kz − ωt), (76)
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where τ is the amplitude tranmission coefficient. The Faraday-like law, Eq. (46), and the

Ampere-like law, Eq. (48), when applied to the tangential components of the gravitoelectric

and gravitomagnetic fields parallel to two appropriately chosen infinitesimal rectangular

loops which straddle the thin film, lead to two boundary conditions

E
(i)
G + E

(r)
G = E

(t)
G and H

(i)
G + H

(r)
G = H

(t)
G , (77)

which yield the following two algebraic relations:

1 + ρ− τ = 0 (78)

1 − ρ− τ = (ZGσGd) τ ≡ ζτ (79)

where we have used the constitutive relation, Eq. (51),

jG = −σGEG

to determine the current enclosed by the infinitesimal rectangular loop in the case of the

Ampere-like law, and where we have defined the positive, dimensionless quantity ζ ≡ ZGσGd.

The solutions are

τ =
2

ζ + 2
and ρ = − ζ

ζ + 2
. (80)

Using the conservation of energy, we can calculate the absorptivity A, i.e., the fraction of

power absorbed from the incident gravitational wave and converted into heat

A = 1 − |τ |2 − |ρ|2 =
4ζ

(ζ + 2)2
. (81)

To find the condition for maximum absorption, we calculate the derivative dA/dζ and set it

equal to zero. The unique solution for maximum absorptivity occurs at

ζ = 2, where A =
1

2
and |τ |2 =

1

4
and |ρ|2 =

1

4
. (82)

Thus the optimal impedance-matching condition into the thin, dissipative film, i.e., when

there exists the maximum rate of conversion of gravitational wave energy into heat, occurs

when the dissipation in the fluid film is ZG/2 per square element. At this optimum condition,

50% of the gravitational wave energy will be converted into heat, 25% will be transmitted,

and 25% will be reflected. This is true independent of the thickness d of the film, when
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the film is very thin. This solution is formally identical to that of the optimal impedance-

matching problem of an electromagnetic plane wave into a thin ohmic film [19].
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FIG. 1: A side-view snapshot of a monochromatic gravitational plane wave inside a thick supercon-

ducting slab, propagating to the right with a wave vector k along the z axis, which induces tidal

motions along the x axis resulting in the velocity field −h of test particles, as seen by an observer

sitting in an inertial frame centered on the center-of-mass (c.m.) of the superconductor. After half

a wavelength of propagation, these tidal motions reverse sign. Hence there exists nonvanishing

circulations around the circuits C1 and C2, i.e., fluxes of the gravitomagnetic (or Lense-Thirring)

field inside C1 and C2. These fluxes are directly proportional to the quantities given by Eqs. (7)

and (13), and are gauge-invariant. For small circuits, they are also directly proportional to the

nonvanishing Riemann curvature tensor component R0x0z. The propagation depicted here of a

GR wave penetrating deeply into the interior of a thick slab of superconductor (which is thick

compared to the wavelength λ) would violate the single-valuedness of the wavefunction. However,

the existence of a Meissner-like effect, in which all the radiation fields of the GR wave, including

its Lense-Thirring fields, are totally expelled from the superconductor (apart from a thin surface

layer of the order of the London penetration depth), would prevent such a violation.
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FIG. 2: Superconductor as an impedance-matched transducer between electromagnetic (EM) and

gravitational (GR) radiation. (a) An EM plane wave is converted upon reflection into a GR

plane wave. (b) The reciprocal (or time-reversed) process in which a GR plane wave is converted

upon reflection into an EM plane wave. Both EM and GR waves possess the same quadrupolar

polarization pattern.
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FIG. 3: Schematic of a simple Hertz-like experiment, in which gravitational radiation at 12 GHz

could be emitted and received using two superconductors. The “Microwave Source” generated,

by means of a T-shaped quadrupole antenna, quadrupolar-polarized electromagnetic radiation

at 12 GHz (“EM wave”), which impinged on Superconductor A (a 1 inch diameter, 1/4 inch

thick piece of YBCO), which was placed inside a dielectric Dewar (a stack of styrofoam cups

containing liquid nitrogen), and would be converted upon reflection into gravitational radiation

(“GR wave”). The GR wave, but not the EM wave, could pass through the “Faraday Cages,” i.e.,

normal metal cans which were lined on the inside with Eccosorb microwave foam absorbers. In

the far field of Superconductor A, Superconductor B (also a 1 inch diameter, 1/4 inch thick piece

of YBCO in another stack of styrofoam cups containing liquid nitrogen) would reconvert upon

reflection the GR wave back into an EM wave at 12 GHz, which could then be detected by the

“Microwave Detector,” which was a sensitive receiver used for microwave satellite communications,

again coupled by another T-shaped quadrupole antenna to free space. The GR wave, and hence

the signal at the microwave detector, should disappear once either superconductor was warmed up

above its transition temperature (90 K), i.e., after the liquid nitrogen boiled away.
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