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1 Problem

An infinitely long wire with linear charge density −λ lies along the z axis. An insulating
cylindrical shell of radius a and moment of inertia I per unit length is concentric with the
wire, and can rotate freely about the z axis. The areal charge density on the cylinder is
σ = λ/2πa and is uniformly distributed.

The cylinder is immersed in an external magnetic field Bexẑ, and is initially at rest.
Starting at t = 0 the external magnetic field is slowly reduced to zero over a time T � a/c,

where c is the speed of light. What is the final angular velocity ω of the cylinder?

2 Solution

This problem is a version of the Feynman disk paradox [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
that is particularly easy to analyze. However, it avoids a subtle point related to the return
flux of the external magnetic field, as discussed in sec. 2.4. This problem is based on earlier
discussions by McKenna [14] and by Romer [3].
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2.1 Solution Via Conservation of Angular Momentum

The initial angular momentum Li (per unit length) of the system is entirely due to the
electromagnetic field,

Li,field =
∫

r × p dArea = 2π
∫ ∞

0
r × E × B

4πc
rdr, (1)

recalling that the field momentum density is the Poynting vector S = cE×B/4π (in Gaussian
units) divided by c2, where c is the speed of light.

In the present problem, an electric field exists only for r < a, since the charge density σ
on the cylinder has been chosen to cancel the field from the charged wire for r > a. From
Gauss’ law we obtain

E = −2λ

r
r̂ (r < a), (2)

and hence the field momentum density in a cylindrical coordinate system (r, φ, z) is

p =
λBex

2πcr
φ̂ (r < a). (3)

The initial angular momentum is therefore

Li,field = 2π
λBex

2πc

∫ a

0

r × φ̂

r
rdr =

λa2Bex

2c
ẑ. (4)

The angular momentum when the external magnetic field is zero is due to the rotation of
the cylinder at angular velocity ω. There is now the mechanical angular momentum Iω as
well as the field angular momentum due to the solenoidal magnetic field inside the rotating,
charged cylinder. The azimuthal current (per unit length) is

jφ =
Q

T
= 2πaσ

ω

2π
=

λω

2π
. (5)

The resulting final magnetic field is along the z axis, with strength

Bf =
4πjφ

c
=

2λω

c
(r < a), (6)

independent of radius for r < a according to Ampere’s law. Since this field is in the same
sense as the original field, we can immediately use eq. (4) to find the final field angular
momentum:

Lf,field =
λa2Bf

2c
ẑ =

λ2a2ω

c2
ẑ. (7)

The total angular momentum in the final state is therefore

Lf = Lf,mechanical + Lf,field =

(
I +

λ2a2

c2

)
ωẑ. (8)

Since there is no frictional torque in this problem (and we ignore radiation), angular
momentum is conserved. Hence,

ω =
λa2Bex

2cI(1 + λ2a2/c2I)
≈ λa2Bex

2cI

(
1 − λ2a2

c2I

)
. (9)

The presence of c2 in the denominator of the last term of eq. (9) indicates the presence of
relativistic effects in this problem.

2



2.2 Solution Via Faraday’s Law

As the magnetic field drops, its time derivative Ḃ results in an induced electric field in the
azimuthal direction. According to Faraday’s law, we have

Eφ(r) = −rḂz

2c
. (10)

This field acts on the charged cylindrical shell to produce an azimuthal torque (per unit
length) of

Nφ = aEφ(a)2πaσ = −λa2Ḃz

2c
=

dLmechanical

dt
= I

dω

dt
. (11)

We integrate to find the final angular velocity:

ω =
∫ ∞

0

dω

dt
dt = −λa2

2cI

∫ ∞

0
Ḃzdt =

λa2(Bex −Bf )

2cI
, (12)

Again, we must note that the final magnetic field is not zero, but is given by eq. (6). With
this, eq. (12) becomes

ω =
λa2(Bex − 2λω/c)

2cI
, (13)

which again leads to eq. (9).

2.3 Another Relativistic Correction

[This and the following section were written April, 2002.]
In addition to the above accounting of angular momentum, there is a small amount

of initial angular momentum associated with the motion of the conduction current that
produces the field Bex. Furthermore, in the final state the cylinder of radius a is rotating

angular velocity ω, so its moment of inertia increases by the factor γ = 1/
√

1 − a2ω2/c2 due
to the relativistic increase of mass.

These small effects are related to the so-called hidden mechanical momentum associated
with electrical currents [15, 16].

To characterize the initial mechanical angular momentum, we suppose the magnetic field
Bex is produced by a long cylinder of radius b > a, which must therefore carry azimuthal
current (per unit length along the z axis)

Iex =
c

4π
Bex. (14)

This current is due to an areal number density ne of conduction electrons that we take to
have velocity ve. Then, the current Iex is also related by

Iex = −eneve, (15)

writing e > 0 as the magnitude of the charge of the electron. Hence,

neve = − c

4π

Bex

e
. (16)
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The initial mechanical angular momentum (per unit length) associated with conduction
electrons is

Li,mech = 2πbneγemeveb ẑ = −γe

mec

2e
b2Bex ẑ, (17)

where the total number of conduction electrons per unit length is 2πbne, me is the rest mass

of the electron, and γe = 1/
√

1 − v2
e/c

2 ≈ 1. Combining this with eq. (4), the total initial
angular momentum is

Li =
λa2Bex

2c

(
1 − γe

mec
2

λe

b2

a2

)
ẑ =

λa2Bex

2c

(
1 − γe

e

λre

b2

a2

)
ẑ, (18)

where re = e2/mec
2 is the classical electron radius. The last term in eq. (18) is not necessarily

small, since e/re corresponds to ≈ 1013 electrons/cm.
Reviewing the argument of sec. 2.2, we see that in eq. (11) the derivative dω/dt should

really be dγω/dt, with the moment of inertia I being calculated using the rest mass of the
cylinder. However, eq. (6) for the final magnetic field remains the same, so eq. (13) becomes

γω =
λa2(Bex − 2λω/c)

2cI
, (19)

Expanding γ as approximately 1 + a2ω2/2c2, we find

ω ≈ λa2Bex

2cI

(
1 − λ2a2

c2I
− λ2a6B2

ex

2c4I2

)
. (20)

2.4 A Subtle Point

This example, and near equivalents [14, 3, 6], are crafted so as to avoid a complication
associated with the return flux of the magnetic field.

To see the difficulty, suppose instead that the linear charge density on the central wire
were λ0, while that on the cylinder of radius a is still called λ. Then, the initial field angular
momentum would be

Li,field = −Bex

2c
[λ0b

2 + λ(b2 − a2)]ẑ =
Bex

2c
[λa2 − (λ + λ0)b

2]ẑ. (21)

where b is the radius of the solenoid that provides the external field. Here, we make the usual
(but as we will see, unwarranted) assumption that the field of a long solenoid is essentially
zero outside the solenoid.

The final magnetic field is still given by eq. (6), so the final field angular momentum
would be

Lf,field =
λω

c2
[λa2 − (λ + λ0)b

2]ẑ. (22)

The total final angular momentum would be

Lf =

(
I +

λ

c2
[λa2 − (λ + λ0)b

2]

)
ωẑ. (23)
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Equating (21) and (23) the final angular velocity would be

ω =
Bex[λa2 − (λ + λ0)b

2]

2c{I + [λa2 − (λ + λ0)b2]/c2} . (24)

However, the argument in sec. 2.2 based on Faraday’s law is exactly the same as before,
which again implies that the final angular velocity is given by eq. (9).

The argument based on Faraday’s law seems the more robust, so I conclude that eq. (9)
is correct for any value of the charge density λ0 on the central wire.

The field angular momentum calculations must be in error. Real solenoids have only
finite length, and the magnetic field is not quite zero outside the solenoid since all of the
magnetic flux inside the solenoid must be returned on paths outside the solenoid. Hence,
the field angular momentum calculations (21) and (22) are missing pieces that are hard to
calculate directly, but which must be Bzb

2(λ + λ0)ẑ/2c, yielding exactly the same result for
the field angular momentum as if λ0 = −λ.

While this resolution of the Feynman disk paradox is ultimately satisfactory, we see that
a model based on an infinite solenoid does not in general permit explicit agreement between
a torque analysis and a field angular momentum analysis. It is perhaps more reassuring to
consider examples in which the source of the magnetic field has only a finite extent so that
an analysis in spherical coordinates is possible [1, 13].
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