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Abstract
The Proca equation with negative mass-square is studied in a refractive and
absorptive spacetime. The generation of superluminal radiation fields by
subluminal currents is discussed. The possibility of time-symmetric wave
propagation is analysed in the context of the Wheeler–Feynman absorber
theory; it is shown how advanced modes of the Proca field can be turned
into retarded ones in a permeable spacetime capable of producing an absorber
field. A microscopic oscillator model for the permeability is suggested.
Tachyonic Liénard–Wiechert potentials are studied and strictly causal retarded
wave solutions are obtained. Energy transfer by superluminal radiation is
discussed, and explicit formulae for the spectral energy density and intensity are
derived. Superluminal radiation fields generated by classical damped oscillators
carrying tachyonic charge are investigated, including the tachyonic analogue
to Thomson and Rayleigh cross sections. The Maxwell equations for negative
mass-square are derived, their non-local generalization to frequency-dependent
permeabilities, as well as the Poynting theorem for superluminal radiation in
an absorptive spacetime.

PACS numbers: 9880, 0350K, 1110L, 4225B

1. Introduction

The traditional way of introducing superluminal particles (tachyons) is to start with the
Lagrangian

L = −mtc
2
√
ηαβẋαẋβ + eAαẋ

α, (1.1)

where ηαβ = diag(−c2, 1, 1, 1), mt > 0, which differs from the Lagrangian of a classical
subluminal particle just by a minus sign under the root [1–12]. The superluminal particle is
coupled by minimal substitution to the electromagnetic field as indicated, if it carries electric
charge e. In this paper a very different approach to superluminal signals is investigated, a
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Proca equation with negative mass-square, in contrast to the prevailing view of tachyons as
electrically charged point particles (1.1). The superluminal Proca field is coupled to a current of
subluminal massive particles [13,14]. The Lagrangians for the tachyon field and a subluminal
classical particle coupled to this field read

LProca = − 1
4FαβF

αβ + 1
2 (mtc/h̄)

2AαA
α + c−1Aαj

α, (1.2)

L = −mc2
√

−ηαβẋαẋβ + qAαẋ
α, (1.3)

respectively, where mt > 0 is the mass of the tachyon field Aα . (The mass term in (1.2)
is added with a positive sign, so that m2

t > 0 is the negative mass-square of the tachyon
field.) The subluminal particle of mass m as defined by (1.3) is supposed to carry tachyonic
charge q, by which it couples to the tachyon potential via a current j 0 = ρ = qδ(x − x(t)),
j = qvδ(x−x(t)). Evidently, the Proca Lagrangian is designed in analogy to electrodynamics,
but is otherwise unrelated to electromagnetic fields, and the real vector potential Aα is itself
a measurable quantity, as the mass term breaks the gauge invariance. In this way tachyons
emerge as an extension of the photon concept, a sort of photon with negative mass-square (see
the review [15] on electrodynamics with a photon rest mass). The tachyon field does not carry
any kind of charge, the tachyonic charge q is a property of subluminal particles (contrary to
(1.1)), as is electric charge. In the geometrical optics limit of this field theory, one can describe
superluminal rays by the Lagrangian (1.1) with the interaction term dropped.

The theory of superluminal motion presented here is causal and non-relativistic. Cosmic
space is generated by the galaxy grid, which provides a distinguished reference frame
manifested locally by the Planckian microwave background. The state of absolute rest can
be defined with respect to the galaxy grid, and uniform motion and rest become easily
distinguishable states. Whether an observer is at rest or in uniform motion with respect
to the microwave background, this can unambiguously be decided by measuring the dipole
anisotropy of the background temperature caused by a Doppler shift. If tachyons are defined
with respect to this universal rest frame, a causality problem does not arise, since the cosmic
time order of events is unambiguously defined by the comoving galaxy grid. All uniformly
moving observers, irrespective of their location in the universe, can relate their proper time
to cosmic time, by determining their motion relative to the background radiation, and arrive
in this way at the same conclusion on causal connections. To figure out the causality of an
experiment involving tachyons, one has to connect the laboratory to the rest of the universe
and to determine its motion relative to the galaxy background. The solar barycentre is moving
with some 370 km s−1 relative to the microwave radiation, fast enough to even neglect the
relative motions of the Earth in a first approximation [16]. However, the background radiation
is just a practical tool to determine the observer’s velocity in the galaxy grid, a photon gas
pervading space. If there is an absolute cosmic space as defined by the galaxy grid and the
microwave radiation, we are again permitted to contemplate the substance of space itself, i.e.
the ether [17–21]. The galaxy grid is anchored in the ether and wave propagation, classical or
quantum, takes place in this permeable spacetime, the vacuum is just a geometric idealization.

There are two, essentially non-overlapping methods of introducing permeability into the
Maxwell and Proca equations. Firstly, by means of a permeability tensor, gP

µν , so that Fµν

in (1.2) is replaced by Hµν := gP−1µαgP−1νβFαβ . The electric and magnetic permeabilities
are then composed from the components of gP

µν , cf [18, 21–23]. In the simplest case, one
obtains as material equations the well known proportionalities between the field strengths and
inductions. The second possibility, considered in this paper, are inductions depending on the
preceding time evolution of the field strengths. In Fourier space, this results in frequency-
dependent permeabilities, and in real space the material equations become linear integral
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equations with regard to time, with the permeabilities as kernels (cf section 4). Frequency-
dependent permeabilities always result in nonlinear dispersion relations, i.e. in a nonlinear
dependence of the wavevector on the frequency. Thus, in the case of electromagnetic fields,
one cannot assume a frequency-dependent permeability for spacetime, as this would lead to
a broadening of spectral lines [24]. Unlike in electrodynamics, there does not exist a proper
retarded Green function for tachyons, the only Green function supported outside the lightcone
is time-symmetric [14,25], which suggests invoking the ether as an absorber, to turn advanced
modes of time-symmetric fields into retarded ones, quite similarly to the Wheeler–Feynman
theory [26]. This is the reason for considering frequency-dependent permeabilities for the
Proca field. In the case of tachyons, the dispersion relation is already nonlinear due to the
mass-square, and frequency-dependent permeabilities are permissible, as long as they do not
affect electromagnetic fields.

I conclude this introduction with an outline of the underlying spacetime concept and
explain how it relates to relativity principles and causality. Maxwell’s equations are time-
symmetric, so that for every causal retarded solution there exists an acausal counterpart,
obtained by applying the advanced Green function to the respective charge and current
distribution. However, causality is easily preserved just by ignoring the advanced Green
function, in fact, the causality principle is usually invoked to justify that. We adopt the
commonly accepted causality: every effect has a cause, the cause precedes the effect and
the distinction of cause and effect is unambiguous. Within the same causality, Wheeler and
Feynman suggested a different way of explaining the apparent non-existence of advanced
electromagnetic radiation [26]. They assumed an absorber, a collective response of the
cosmic electric charges to the advanced component of the time-symmetric (half-retarded, half-
advanced) Green function. Instead of appealing to causality, they tried to explain it in terms
of a cosmic absorber that turns advanced modes into retarded ones. The absorber generates
the second half of the retarded Green function and wipes out the advanced component of the
initial time-symmetric one.

As mentioned, in electrodynamics advanced wave modes can be discarded on the grounds
of the causality principle alone, without considering a cosmic absorber in local radiation
problems. The notion of advanced and retarded is relativistically invariant for (sub-)luminal
wave fields, and so advanced solutions can be consistently ignored in a relativistic setting.
Hence, in electrodynamics, one can either eliminate advanced solutions by invoking the
causality principle, or try to explain the lack of advanced radiation by means of a cosmic
absorber. If opting for the latter, the causality principle emerges from the fact that local physical
systems can only within limits be thought of as being detached from the rest of the universe. In
effect, however, the Wheeler–Feynman theory does not really alter electrodynamics, apart
from putting it into a cosmological perspective, it leads to the same results as vacuum
electrodynamics.

In electromagnetic theory, there is no real necessity to consider an absorber, but this
changes for superluminal wave propagation. The advanced and retarded components of
tachyonic wave fields are no longer invariant, because Lorentz boosts can change the time
order of events connected by superluminal signals, that is, of events with a spacelike separation
[5–9]. Therefore, one cannot define a retarded or advanced superluminal Green function, and
a wave field retarded in one rest frame may appear advanced in another. If we assume the
relativity principle, causality cannot be achieved simply by discarding advanced solutions,
because there is no relativistically invariant way to even distinguish between retarded and
advanced. So we are left with the second option, an absorber. We will show that in the rest
frame of the absorber superluminal radiation is strictly retarded, by the conversion of advanced
modes described above, starting with the time-symmetric Green function. In an expanding
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spacetime, the absorber frame can be identified with the comoving Robertson–Walker frame,
but initially we will consider a Minkowskian universe, and identify the absorber frame with
the static galaxy grid.

In the absorber frame there are no advanced modes, but retarded modes may appear
advanced in the proper time of observers moving in the galaxy grid. Likewise, an outgoing
wave train in the absorber frame can appear as a superposition of outgoing and incoming waves
in the observer’s rest frame. This happens when the cosmic time order of the absorber frame
is inverted by the Lorentz boost (cf [16,25] for examples and a discussion of tachyonic energy
in the geometrical optics limit). Every observer can compare his proper time with cosmic
time and come to unambiguous conclusions concerning causality, emission and absorption. In
the absorber frame tachyonic wave propagation is always retarded, and it serves as reference
frame for all observers.

The cause precedes the effect in cosmic time. In the case of superluminal signal transfer,
this distinguishes cosmic time from the proper time of observers moving in the galaxy grid and
turns the absorber frame into an absolute spacetime. This is in striking contrast to subluminal
and electromagnetic wave propagation, where the comoving galaxy frame is a mere matter of
convenience when dealing with the galaxy recession and all that goes with it [24]. However,
otherwise cosmic time in electromagnetic theory is not preferred to any other (e.g. locally
geodesic) time coordinate, as the time order in timelike connections is preserved and so is
retardation. In the context of tachyonic wave propagation, the comoving absorber frame is not
just more useful than any other frame for cosmological reasoning, it constitutes the absolute
cosmic spacetime—the universal frame of reference for all observers moving in the galaxy
grid.

The causality principle and the relativity principle are mutually inconsistent if events are
connected by superluminal signals, as Lorentz boosts can change the time order of events
with a spacelike connection. A relativity principle based on Lorentz transformations in locally
geodesic neighbourhoods and imposed on superluminal motion unavoidably conflicts with
causality [8, 9, 16]. Causality suggests considering superluminal signals in the context of an
absolute spacetime, and the cosmic absorber just provides that. I also note that relativity theory
is a theory of subluminal motion, and no inferences about the existence of superluminal signals
can be drawn from it. Apart from causality, the absorber also supplies the medium for wave
propagation, sought for by the electricians of the 18th and 19th centuries [17]. We will define
the ether microscopically and quite quantitatively by oscillating tachyonic charges responsive
to the Proca field, uniformly distributed over space. These charges convert the advanced
tachyonic modes into retarded ones, essentially in the same way as the electric charges in the
Wheeler–Feynman theory do.

In section 2 we sketch the Proca equation in Minkowski space, introduce the field strengths
and the Maxwell equations for negative mass-square, the time-symmetric Green function,
as well as time-symmetric wave fields generated by subluminal currents. We show that
time-symmetric superluminal fields can be decomposed into retarded and advanced modes
independently satisfying the field equations, and discuss the energy density of transverse
and longitudinal tachyon fields as well as the radiant power of their sources. In section 3
we assemble the tachyonic Liénard–Wiechert potentials, i.e. we calculate the asymptotic
superluminal radiation fields of classical subluminal point particles. The tachyonic radiation
of oscillating charges is investigated (spectral density, intensity, cross sections) and compared
to electromagnetic radiation.

In section 4 we study the Proca equation with negative mass-square in a permeable
spacetime with homogeneous and isotropic, though frequency-dependent and absorptive
permeabilities. We derive the material equations in analogy with electrodynamics, and study
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the geometrical optics limit as well as the Poynting theorem, that is, the energy balance for
transversal and longitudinal tachyon radiation in a refractive and absorptive spacetime. A
classical oscillator model for the ether is introduced.

In section 5 we discuss the Wheeler–Feynman theory in the described context, for a
time-symmetric tachyonic Proca field propagating in the permeable spacetime. We derive the
superluminal absorber field generated by the oscillators of the ether, and show how retarded
tachyon fields arise from subluminal currents. In section 6 we present our conclusions, and in
the appendix we list a complete set of singular functions for wave propagation with negative
mass-square.

2. Superluminal radiation fields

The Proca equation [27] with negative mass-square,

Fµν
,ν − m2

t A
µ = c−1jµ, (2.1)

(mt > 0 in our notation) can equivalently be written as

(� + m2
t )Aµ = −c−1jµ, Aµ

,µ = 0, (2.2)

with the d’Alembertian � := ηµν∂µ∂ν , ηµν = diag(−c2, 1, 1, 1). The Lorentz condition is
a consequence of (2.1) and current conservation. mt has the dimension of an inverse length,
and is meant as a shortcut for mtc/h̄, cf (1.2). (mt/me ≈ 1

238 , estimated from Lamb shifts in
hydrogenic systems [13, 14].) Tachyonic E and B fields are related to the vector potential by

Ei = c−1Fi0 = c−1(∇A0 − ∂A/∂t), Bk = 1
2ε

kijFij = rot A. (2.3)

The field equations (2.1) or (2.2) decompose into Maxwell’s equations,

div B = 0, rot E + c−1∂B/∂t = 0,

div E = ρ − c−1m2
t A0, rot B − c−1∂E/∂t = c−1j + m2

t A,
(2.4)

where we have identified jµ = (ρ, j). The vector potential is completely determined by the
current and the E and B fields, thanks to the tachyon mass. The classical energy density and
the Poynting vector are readily found as

ρE = 1
2 (E

2 + B2) − (m2
t /2)(c−2A0A0 + A2), (2.5)

S = cE × B + m2
t A0A, div S + ∂ρE/∂t = 0. (2.6)

The inversion of the wave equation (2.2) is effected by

Aα(x) =
∫
R4

G(x − x ′)jα(x ′) dx ′, (� + m2
t )G(t,x) = −c−1δ(t)δ(x); (2.7)

the Lorentz condition is evidently satisfied by this ansatz. In the case of photons or subluminal
particles (m2

t � 0 in our notation), one would choose for G the retarded Green function,
supported on the forward lightcone. One expects a classical Green function for tachyons to
be supported outside the lightcone (at least as long as we do not consider curvature effects),
as tachyons cannot move below the speed of light. The complete solution of (2.7) is obtained
by analytic continuation, m → ±im, of the subluminal Green functions (retarded, advanced,
Feynman and Dyson propagators), cf the appendix. The only linear combination of these
continuations vanishing inside the cone is

Gsym(t,x) = 1

4π
δ(r2 − c2t2) − mt

8π
θ(r2 − c2t2)

J1(mt

√
r2 − c2t2)√

r2 − c2t2
. (2.8)
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The limit mt → 0 is smooth, J1(z) ∼ z/2. The distribution (2.8) admits a very handy Fourier
transform,∫ +∞

−∞
Gsym(t,x) eiωtdt = 1

4πc

1

r
cos(k(ω)r), k :=

√
ω2/c2 + m2

t , (2.9)

Gsym(t,x) = 1

4π2cr

∫ ∞

0
dω e−εk(ω) cos(ωt) cos (k(ω)r). (2.10)

(k(ω) > 0.) In (2.10) we have inserted an ε-regularizer, chosen in such a way that theω-integral
is solvable in closed form, via a standard representation of Bessel functions [28],∫ ∞

0
dω cos(ωt) exp (−(ε − ir)k(ω)) = −icmtrλ

−1/2
ε K1(mtλ

1/2
ε ), (2.11)

with λε := c2t2 + (ε− ir)2. Equality in (2.9)–(2.11) is meant distributionally, we have already
dropped terms not contributing in the limit ε → 0. The identity of (2.10) with (2.8) is easily
seen via (2.11); we extract the pole part of K1(z) = z−1 + O(z log z), and then apply analytic
continuation, cf (A.4), as well as the identity ∓π iδ(x) = (x ± iε)−1 − Px−1. Though there
does not exist a proper retarded Green function outside the lightcone, it is still possible to
generate retarded wave fields by convolutions with the current, cf (5.13)–(5.18).

Next, we represent the spatial component of the vector potential as

A(x, t) = 1

2π

∫ ∞

0
(Â(x, ω)e−iωt + c.c.) dω, Â(x, ω) =

∫ +∞

−∞
A(x, t) eiωtdt, (2.12)

so that Â∗(x, ω) = Â(x,−ω), and analogous relations hold for the time component, the
charge and current densities, and the E and B fields. If we consider monochromatic waves,
we will define A = 2 Re(Âe−iωt ); this convention, twice the real part, is used throughout this
paper. The Fourier amplitude Â(x, ω) can be split into Â = eiα(a1 + ia2), with orthogonal
real vectors a1,2; in the case of linear polarization, Â is a real vector up to a phase factor. We
write Â2 := Â · Â and |Â|2 := Â · Â∗ for complex 3-vectors; unit vector normalization will
only be applied to real vectors. Fourier modes with regard to time will always be defined as in
(2.12), for all fields, and denoted by a hat.

The Maxwell equations in Fourier space are obtained by substituting ∂/∂t → −iω into
(2.4), and by replacing the fields by their Fourier components Â(x, ω), Ê(x, ω), etc; this will be
discussed in greater detail in section 4, when we consider frequency-dependent permeabilities.
Lorentz condition and current conservation read in Fourier space as

iωÂ0(x, ω) = −c2 div Â(x, ω), iωρ̂(x, ω) = ∇ · ĵ(x, ω). (2.13)

We find, via (2.7) and (2.9), Â(x, ω) = Â+ + Â−, with

Â±(x, ω) := 1

8πc

∫
dx′ ĵ(x′, ω)

exp(±ik(ω)|x − x′|)
|x − x′| ; (2.14)

the time components Â±
0 (x, ω) follow from (2.14) by the substitution ĵ(x′, ω) → −c2ρ̂(x′, ω),

or from (2.13). (ĵ and ρ̂ are the Fourier transforms of j and ρ as defined in (2.12).)
Equation (2.14) holds only for positive frequencies, otherwise we have to replace k(ω) by
sign(ω)k(ω) or by k = ωn0/c, with n0 :=

√
1 + (mtc/ω)2; we will return to that in (4.4) and

(5.2). The retarded and advanced wave fields A
ret/adv
µ = 2A+/−

µ are exact solutions of the field
equations (2.1) or (2.2), because (- + k2)(r−1 sin(kr)) ≡ 0.

By expanding |x − x′| = r − n · x′ + O(1/r), with n := x/r , we obtain

Âret/adv(x, ω) ∼ 1

4πc

e±ikr

r
Ĵ±(x, ω), Ĵ± :=

∫
dx′ ĵ(x′, ω) exp(∓ikn · x′). (2.15)
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The asymptotic transversal and longitudinal components are found if we replace ĵ in (2.15)
by ĵT(x′,x) := ĵ(x′) − n(n · ĵ(x′)) or ĵL(x′,x) := n(n · ĵ(x′)), respectively.

In the following we will only consider retarded fields, writing Ĵ for Ĵ+ and Â for Âret;
in section 5 we will return to advanced solutions. We obtain the components of the retarded
vector potential as

ÂT,L(x, ω) ∼ 1

4πc

eikr

r
ĴT,L(x, ω), ĴT := Ĵ − n(n · Ĵ), ĴL := n(n · Ĵ).

(2.16)

When differentiating (2.16) with respect to x, it is sufficient to take only the r dependence of
eikr into account. We so find, cf (2.3), (2.12) and (2.13),

ÊT(x, ω) ∼ ic−1ωÂT, B̂T ∼ ik(ω)n × ÂT, ÂT
0 = O(1/r2), (2.17)

ÊL ∼ −i
m2

t c

ω
ÂL, B̂L ∼ O(1/r2), ÂL

0 ∼ −c2 k(ω)

ω
n · ÂL, (2.18)

with ÂT,L(x, ω) in (2.16).
The energy density in (2.5) is positive for transversal modes and negative for longitudinal

ones. Accordingly, we define the energy–momentum tensor for longitudinal modes with
opposite sign. The fields ET,L(x, t), etc relate to their Fourier components (2.17) and (2.18)
as defined in (2.12), and we find in leading asymptotic order the energy densities and flux
vectors as

ρT
E (x, t) ∼ 1

2 (E
T2 + BT2 − m2

t A
T2), ST ∼ cET × BT, (2.19)

ρL
E ∼ 1

2m
2
t (A

L2
0 + AL2) − 1

2EL2, SL ∼ −m2
t A

L
0 AL. (2.20)

In the following we will give a quantitative discussion of the energy concept for classical
superluminal wave propagation, which is also the main topic of sections 3 and 4. At first we
discuss the radiant energy of a tachyonic charge. The time-integrated flux, based on (2.17)–
(2.20), is ∫ +∞

−∞
ST dt ∼ n

π

∫ ∞

0
ωk(ω)|ÂT|2 dω,

∫ +∞

−∞
SL dt ∼ m2

t c
2 n

π

∫ ∞

0

k(ω)

ω
|ÂL|2 dω.

(2.21)

The energy flux per unit time through the surface element r2 d. (sufficiently distant from the
support of the current centred at the coordinate origin) is dI = S ·nr2 d.. The energy density
can be extracted from (2.21),∫ +∞

−∞
ST,L · n dt =

∫ ∞

0
dÊT,L(ω),

dÊT(ω) := 1

π
ωk(ω)|ÂT|2dω, dÊL(ω) := 1

π

m2
t c

2

ω
k(ω)|ÂL|2dω,

(2.22)

so that the spectral density of the total radiated energy is found to be

dET,L(ω) := lim
r→∞

∫
|x|=r

dÊT,L(ω) r2 d.. (2.23)

These formulae are quite general, but some restrictions do apply. The current has to be localized
around the coordinate origin, uniformly in time (which is assumed in the approximation made
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in (2.15)) and the Fourier transforms ÂT,L(x, ω) should not be excessively singular, so that they
can be squared. However, in (2.15)–(2.23) there is not yet a dipole approximation involved,
so there is no restriction on the wavelength.

We study this energy concept for monochromatic fields, AT,L(x, t) = ÂT,L(x, ω)e−iωt +
c.c., with ÂT,L as defined in (2.16). The energy density and the flux of a single retarded mode
is calculated via (2.17)–(2.20). Time-averaged over a period of 2π/ω,

〈
ρT

E

〉 ∼ 2
ω2

c2
|ÂT|2, 〈

ρL
E

〉 ∼ 2m2
t |ÂL|2, 〈

ST,L
〉 ∼ c2 k(ω)

ω

〈
ρ

T,L
E

〉
n. (2.24)

The dipole approximation amounts to the substitution ĴT,L → ĴT,L
d in (2.16),

ĴT,L
d :=

∫
dx′ ĵT,L(x′,x, ω) = −iωd̂T,L(x, ω), d̂(ω) :=

∫
xρ̂(x, ω) dx, (2.25)

with the usual projections d̂T := d̂ − n(n · d̂) and d̂L := n(n · d̂). In this approximation, the
energy transversally and longitudinally radiated per unit time reads∫ 〈

ST · n
〉
r2 d. ∼ 1

3π

ω3k(ω)

c2
|d̂(ω)|2,

∫ 〈
SL · n

〉
r2 d. ∼ 1

6π
m2

t ωk(ω)|d̂(ω)|2,
(2.26)

respectively. An explicit discussion of the spectral energy densities in dipole approximation
will be given in the next section.

3. Tachyonic Liénard–Wiechert potentials

We consider the trajectory of a subluminal particle x0(t), v = ẋ0, carrying tachyonic charge
q, so that j 0 = ρ = qδ(x − x0(t)), j = qvδ(x − x0(t)), and

(ρ̂, ĵ)(x, ω) = q

∫ +∞

−∞
(1, v(t))δ(x − x0(t)) eiωtdt . (3.1)

The time-symmetric potential generated by this current reads, cf (2.7),

(A0,A)(x, t) = q

∫ +∞

−∞
(−c2, v(t ′))Gsym

(
x − x0(t

′), t − t ′
)

dt ′. (3.2)

The asymptotic retarded and advanced potentials are thus given by (2.15), with

Ĵ±(x, ω) = q

∫ +∞

−∞
dt ′ v(t ′) exp

[
i
(
ωt ′ ∓ k(ω)n · x0(t

′)
)]
, (3.3)

where n = x/r . We will only consider retarded fields, writing Ĵ for Ĵ+. The transversal
and longitudinal components ĴT,L are defined by the projections vT := v − n(n · v) and
vL := n(n · v), respectively, substituted for v into (3.3). We will focus on the dipole
approximation, which means to drop the n · x0(t

′)-term in (3.3), so that, cf (2.16),

ĴT,L(x, ω) ∼ qv̂T,L, ÂT,L(x, ω) ∼ q

4πc

eikr

r
v̂T,L(x, ω),

v̂(ω) :=
∫ +∞

−∞
v(t) eiωtdt, v̂T := v̂ − n(n · v̂), v̂L := n(n · v̂);

(3.4)
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the Fourier transforms of the other fields are then given by (2.17) and (2.18), and their real-
space expressions are obtained via (2.12). The spectral energy densities are readily assembled
from (2.22) and (2.23),

dET(ω) = q2

6π2c2
ωk(ω)

∣∣v̂(ω)∣∣2 dω, dEL(ω) = 1

2

m2
t c

2

ω2
dET(ω), (3.5)

which relate to the dipole d(t) := qr(t) via qv̂(ω) = −iωd̂(ω).
We consider a monochromatic wave, Ê(ω̃)e−iω̃t + c.c., ω̃ > 0, and a damped oscillator

coupled to this mode, r = r̂ + r̂∗,

r̂′′ + γ0r̂
′ + ω2

0r̂ = q0

m0
Êe−iω̃t , r̂ = 1

ω2
0 − ω̃2 − iγ0ω̃

q0

m0
Êe−iω̃t , (3.6)

where ω0 is the free oscillator frequency, γ0 the positive damping constant, m0 the mass and q0

the tachyonic charge of the oscillator. We assume for simplicity Ê(ω̃) to be real (longitudinal
or linear transversal polarization), and neglect the spatial variation of Ê(ω̃), which means that
the oscillator size is supposed to be much smaller than the wavelength of the tachyon radiation.
(There is a maximal wavelength for tachyon radiation, the Compton wavelength, cf the end of
this section.) The transversal and longitudinal components ÊT,L(ω̃) are defined like v̂T,L in
(3.4). The Fourier transform of the velocity is readily calculated,

v̂(ω) = −2π i
q0

m0

(
ω̃δ(ω − ω̃)

ω2
0 − ω̃2 − iγ0ω̃

− ω̃δ(ω + ω̃)

ω2
0 − ω̃2 + iγ0ω̃

)
Ê. (3.7)

As both ω and ω̃ are positive, the second term in (3.7) does not contribute in the Fourier
transform (2.12) and will be dropped. We so find from (3.4),

AT,L(x, t) ∼ −i(aT,L − aT,L∗),

aT,L(r, t) := qq0

4π

1

m0c

1

r

ω̃ exp (i(k(ω̃)r − ω̃t))

ω2
0 − ω̃2 − iγ0ω̃

ÊT,L,
(3.8)

and the other fields read according to (2.17),

ET(x, t) ∼ c−1ω̃(aT + aT∗), BT ∼ k(ω̃)n × (aT + aT∗), AT
0 = O(1/r2),

EL ∼ −m2
t c

ω̃
(aL + aL∗), BL ∼ O(1/r2), AL

0 ∼ ic2 k(ω̃)

ω̃
n · (aL − aL∗).

(3.9)

The components of the flux vector, cf (2.19) and (2.20), time-averaged over a period of 2π/ω̃,
are readily compiled,〈

ST
〉 ∼ 2ω̃k(ω̃)n

∣∣aT
∣∣2 , 〈

SL
〉 ∼ 2m2

t c
2ω̃−1k(ω̃)n

∣∣aL
∣∣2 , (3.10)

and give the intensity dIT,L = 〈
ST,L

〉 · nr2 d. of the transversal and longitudinal radiation,

dIT = 2
q2q2

0

(4π)2

Ê2

m2
0c

2

ω̃3k(ω̃) sin2 θ d.

(ω2
0 − ω̃2)2 + (γ0ω̃)2

,
dIL

dIT
= m2

t c
2

ω̃2
cot2 θ, (3.11)

with d. = sin θ dθ dϕ. To obtain the cross sections (Thomson, Rayleigh), we divide
the intensity by the flux of the incoming plane wave, dσ T,L = dIT,L/ 〈|S|〉, which reads
〈|S|〉 = 2c2ω̃−1k(ω̃)|Ê|2 if Ê is transversal, and 〈|S|〉 = 2m−2

t ω̃k(ω̃)|Ê|2 in the case of a
longitudinally polarized Ê, cf (4.23)–(4.27).
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To exemplify the spectral densities (3.5), we replace in the oscillator equation (3.6) the
monochromatic field by a pulse E = (2π)−1

∫∞
0 E(ω̃, t) dω̃. Substituting into (3.5) the

Fourier-transformed oscillator velocity,

v̂(ω) = −iω

ω2
0 − ω2 − iγ0ω

q0

m0
Ê(ω), (3.12)

we obtain the spectral densities of the radiated energy,

dET = 8

3

q2q2
0

(4π)2

|Ê(ω)|2
m2

0c
2

ω3k(ω) dω

(ω2
0 − ω2)2 + (γ0ω)2

, dEL = m2
t c

2

2ω2
dET. (3.13)

Evaluating the integral of (3.13) at the resonance by steepest descent, we find for small linewidth
the total transversally and longitudinally radiated energies ET,L = ∫∞

0 dET,L(ω) as

ET ∼ 4π

3

q2q2
0

(4π)2

k(ω0)ω0

γ0m
2
0c

2
|Ê(ω0)|2, EL

ET
∼ m2

t c
2

2ω2
0

. (3.14)

In this oscillator example, we have used two different charges, q and q0. The space dependence
of the field in (3.6) was neglected by appealing to a small oscillator size. Thus Ê may be electric
or tachyonic, and q0 the electric or tachyonic charge of the oscillator. In the above formulae we
considered tachyon radiation, so that q and k(ω) are the tachyonic charge of the oscillator and
the tachyonic wavevector of the emitted radiation. Comparing the spectral energy densities
of the tachyonic and electromagnetic radiation (of an oscillator carrying both electric and
tachyonic charge), we find

dET,tach

dEem
= q2

e2

ck(ω)

ω
,

dEL,tach

dEem
= 1

2

q2

e2
m2

t c
3 k(ω)

ω3
. (3.15)

A similar reasoning applies to the cross sections calculated above. It must be kept in mind,
however, that these calculations are all done in dipole approximation, and spatial averaging
effects will lower the right-hand sides of (3.15). In [14] we demonstrated that the maximal
wavelength for tachyon radiation is about 1 Å, so that relation (3.15) can only be regarded
as an order of magnitude estimate for atomic oscillators, the more so as it is classical. (We
estimated the ratio of tachyonic and electric fine structure constants as q2/e2 ≈ 1.4 × 10−11,
and the tachyon mass as mt ≈ me/238 ≈ 2.15 keV c−2. )

4. Superluminal wave propagation in a permeable spacetime

We will study tachyonic Proca fields in a spacetime with frequency-dependent permeabilities.
The formalism is kept close to electrodynamics [29,30], which justifies brevity. Several parts
of this section, in particular the discussion of energy, are based on [29]. The Fourier coefficients
of the inductions and field strengths are supposed to relate in the usual way as

D̂(x, ω) = ε̂(ω)Ê(x, ω), B̂(x, ω) = µ̂(ω)Ĥ(x, ω). (4.1)

In real space, electric and magnetic inductions are denoted by D(x, t) and H(x, t), and the
dielectric and magnetic permeabilities are ε(t) and µ(t), respectively; κ and χ denote the
dielectric and magnetic susceptibilities, and P and M are the polarization and magnetization
vectors, so that in Fourier space P̂ = κ̂Ê, κ̂ := ε̂ − 1 and M̂ = χ̂Ĥ , χ̂ := µ̂ − 1. We
use the terminology and notation customary in electrodynamics; this is very suggestive and
no confusion can arise, as we do not deal with electromagnetic fields. The tachyonic Lorentz
force acting on a subluminal particle is composed of the field strengths E and B, cf (1.3). All
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quantities in (4.1) are complex Fourier coefficients, their real-space expressions are defined as
in (2.12) for the vector potential. The material relations (4.1) are not the most general ones;
even if we stick to linearity, one may still assume D̂m = ε̂mnÊn in the case of anisotropy and
inhomogeneity, and more importantly, D̂ = ε̂Ê + µ̂0B̂, B̂ = µ̂Ĥ + ε̂0D̂ is quite possible, as
the condition a/λ � 1 (where a is the size of the oscillators of the ether and λ is the wavelength
of the tachyon radiation) may not hold, cf the end of section 3, but we do not consider these
mild generalizations here, to save notation.

As in the massless case, the Maxwell equations in a permeable spacetime are obtained
by replacing in the inhomogeneous equations in (2.4) the field strengths by inductions,
(E,B) → (D,H). Thus we find in Fourier space,

div B̂ = 0, rot Ê − iωc−1B̂ = 0,

div D̂ = ρ̂ − c−1m2
t â0, rot Ĥ + iωc−1D̂ = c−1ĵ + m2

t â,
(4.2)

â(ω)µ̂(ω) := Â(ω), â0(ω) := ε̂(ω)Â0(ω). (4.3)

The Lorentz condition reads c2 div â = −iωâ0. All fields, but not the permeabilities, depend
on the space coordinates as in (4.1).

In the following we will study wave propagation, and drop charge and current densities
in (4.2). Applying the rotor to the rotor equations in (4.2), we find(
- + k2(ω)

)
Ê = 0, k(ω) := ωn/c, n :=

√
ε̂µ̂ + (mtc/ω)2, (4.4)

and the same for B̂ and the inductions. The refractive index n(ω) is in general complex, and
we assume Re n(ω) > 0; there is no wave motion if the real part is zero. To obtain a reasonable
geometrical optics limit, it is crucial that all fields admit the same dispersion relation. This is
achieved by the ε̂ and µ̂−1 scaling (4.3) of the vector potential; there is no other linear scaling
possible to this effect. The material relations (4.3), complementing (4.1), are also strongly
suggested by the positivity of energy, cf (4.17) and (4.19).

We consider Ê(x, ω) = E0(x, ω) exp(iψ(x, ω)), with weakly varying E0(x, ω), so
that spatial derivatives can be neglected, and find from (4.4) the reduced eikonal equation
(∇ψ)2 = k2(ω). The eikonal is ψ(x, ω) − ωt , and ψ(x, ω) is assumed to be real, which
means k2(ω) > 0. (Absorption is beyond the geometrical optics limit.) The wavevector is
thus k = ∇ψ = k0c

−1ωn(ω), with a real unit vector k0 and a positive refractive index. The
phase and group velocity read as vph = ω/k and

1

vgr
= dk

dω
= 1

2cn

(
d(ωε̂)

dω
µ̂ +

d(ωµ̂)

dω
ε̂

)
, (4.5)

the latter reduces in the case of frequency-independent permeabilities to dω/dk = cn/(ε̂µ̂).
Relations (4.1) amount to the usual convolutions in real space,

D(t) = E(t) +
∫ +∞

−∞
κ(t ′)E(t − t ′) dt ′,

B(t) = H(t) +
∫ +∞

−∞
χ(t ′)H(t − t ′) dt ′,

(4.6)

so that ε(t) = δ(t) + κ(t), µ(t) = δ(t) + χ(t), with the Dirac δ-function. In real space, the
Maxwell equations have likewise a very familiar form,

div B = 0, rot E + c−1∂B/∂t = 0,

div D = ρ − c−1m2
t a0, rot H − c−1∂D/∂t = c−1j + m2

t a,
(4.7)
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with the Lorentz condition ∂a0/∂t = c2 div a. The material equations (4.3) are equivalent to

a0(t) = A0(t) +
∫ +∞

−∞
κ(t ′)A0(t − t ′) dt ′,

A(t) = a(t) +
∫ +∞

−∞
χ(t ′)a(t − t ′) dt ′.

(4.8)

These integral equations as well as (4.6) can be iteratively inverted by a standard procedure. The
response of the medium cannot happen prior to its exposure to the field, which means that κ(t)
and χ(t) are required to vanish identically for negative t . Thus the lower integration boundary
in (4.6) and (4.8) can be replaced by zero, provided there are no distributional singularities at
t = 0 in the integrands. It should be stressed that all equations in this section are non-covariant,
as the permeabilities ε(t) and µ(t) are defined in a special reference frame, the rest frame of the
ether. The ether defines an absolute space, and therefore relativistic invariance is not required,
cf section 1.

We turn to energy and define the Poynting vector as S = cE ×H +m2
t A0a, cf (2.6). The

Maxwell equations (4.7) and the material relations (4.1) and (4.3) result in

div S + E · ∂D

∂t
+ H · ∂B

∂t
− m2

t

(
1

c2
A0

∂a0

∂t
+ a · ∂A

∂t

)
= −j · E. (4.9)

If ε and µ are constant and j = 0, we may write, cf (2.5) and (2.6),

∂ρE

∂t
+ div S = 0, ρE = 1

2 (E · D + H · B) − 1
2m

2
t

(
c−2A0a0 + a · A

)
. (4.10)

A positive-definite energy density can be extracted from (4.9) by time averaging. To this
end, we consider frequency-dependent permeabilities and a wave train E(t,x) = Ẽ + Ẽ∗,
Ẽ := E0(t,x)e−iω0t , where E0 is a slowly varying function of time as compared with the
variation of the exponential, so that the average of E2 over a period of 2π/ω0 is

〈
E2
〉 = 2E0·E∗

0 .
Defining D = D̃ + D̃∗, we find

∂D̃

∂t
= −i

2π

∫ +∞

−∞
ωε̂(ω)Ê(ω)e−iωt dω, Ê(ω) =

∫ +∞

−∞
E0(t,x) ei(ω−ω0)t dt . (4.11)

By expanding ωε̂(ω) around ω0 and interchanging integrations, we obtain

∂D̃

∂t
= e−iω0t

(
−iω0ε̂(ω0)E0(t,x) +

∂E0

∂t

d(ω0ε̂(ω0))

dω0
+ · · ·

)
. (4.12)

In (4.11) and (4.12) we may replace (E,D, ε̂) by (H,B, µ̂), as well as by (A0, a0, ε̂) and
(a,A, µ̂). The time averaging of (4.9) is effected by means of〈
E · ∂D

∂t

〉
= Ẽ∗ · ∂D̃

∂t
+ Ẽ · ∂D̃∗

∂t
∼ 2ω0 Im ε̂(ω0)|Ẽ|2 + Re

d(ω0ε̂(ω0))

dω0

∂

∂t
|Ẽ|2, (4.13)

and by identical equations for (H,B, µ̂), etc. Identifying the averaged energy density and the
Poynting vector as

〈ρE〉 ∼ Re
d(ωε̂)

dω

(
Ẽ · Ẽ∗ − m2

t c
−2Ã0Ã

∗
0

)
+ Re

d(ωµ̂)

dω

(
H̃ · H̃∗ − m2

t ã · ã∗), (4.14)

〈S〉 ∼ cẼ × H̃∗ + cẼ∗ × H̃ + m2
t (Ã

∗
0ã + Ã0ã

∗), (4.15)
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we can write the averaged conservation law (4.9) (j = 0) as

− div 〈S〉 ∼ ∂〈ρE〉
∂t

+ 2ω0
(
(Ẽ · Ẽ∗ − m2

t c
−2Ã0Ã

∗
0) Im ε̂ + (H̃ · H̃∗ − m2

t ã · ã∗) Im µ̂
)
.

(4.16)

In (4.14)–(4.16) we may substitute Ẽ · Ẽ∗ = 1
2

〈
E2
〉
, Ẽ × H̃∗ + Ẽ∗ × H̃ = 〈E × H〉, etc.

The density (4.14) is positive for transversal modes and negative for longitudinal ones, which
suggests to define the flux vector as well as the energy density for longitudinal modes with
opposite sign. We so find, analogously to (2.19) and (2.20),〈

ρT
E

〉 ∼ 1

2
Re

d(ωε̂)

dω

〈
ET2

〉
+

1

2
Re

d(ωµ̂)

dω

(〈
HT2

〉− m2
t

〈
aT2

〉)
,

〈
ρL

E

〉 ∼ m2
t

2
Re

d(ωµ̂)

dω

〈
aL2

〉
+

1

2
Re

d(ωε̂)

dω

(
m2

t c
−2
〈
AL2

0

〉− 〈
EL2

〉)
,

(4.17)

〈
ST
〉 ∼ c

〈
ET × HT

〉
,

〈
SL
〉 ∼ −m2

t

〈
AL

0 aL
〉
. (4.18)

The energy balance thus reads

∂
〈
ρ

T,L
E

〉
/∂t + div

〈
ST,L

〉 = −〈IT,L
dis

〉
,〈

IT
dis

〉 ∼ ω Im ε̂(ω)
〈
ET2

〉
+ ω Im µ̂(ω)

(〈
HT2

〉− m2
t

〈
aT2

〉)
,〈

IL
dis

〉 ∼ ω Im µ̂(ω)m2
t

〈
aL2

〉
+ ω Im ε̂(ω)

(
m2

t c
−2
〈
AL2

0

〉− 〈
EL2

〉)
,

(4.19)

where
〈
I

T,L
dis

〉
is the energy per unit time dissipated into the ether. This energy is positive, which

requires the positivity of the imaginary components of the permeabilities. The real parts of
the derivatives in (4.17) have to be positive for the same reason.

We apply this energy concept to damped plane waves, Â(x, ω) = Ã(ω) eik·x, Ê(x, ω) =
Ẽ(ω) eik·x, etc, where k := k0c

−1ωn(ω), with a real unit vector k0 and a complex refractive
index n(ω) defined in (4.4). As above, the real fields are E(x, t) = Êe−iωt + Ê∗eiωt , etc. As
Re n(ω) > 0, the retarded propagation is in the direction of k0, also for negative ω. In the
Maxwell equations (4.2) we put current and charge density to zero, so that

k · B̂ = 0, k × Ê − ωc−1B̂ = 0, (4.20)

k · Ê = ic−1m2
t Â0, k × B̂ + ωc−1ε̂(ω)µ̂(ω)Ê = −im2

t Â, (4.21)

with the Lorentz condition ωc−2â0 + k · â = 0. Clearly, k2 = k2(ω), cf (4.4), which is in
general complex. In (4.4) we write n =: nRe + inIm, nRe > 0,

nRe = 1√
2

√√
α2 + β2 + α, nIm = sign(β)√

2

√√
α2 + β2 − α,

α := Re(ε̂µ̂) + (mtc/ω)
2, β := Im(ε̂µ̂).

(4.22)

A retarded damped (rather than amplified) wave requires a positive absorptive coefficient nIm,
so that Im(ε̂µ̂) � 0, a third positivity condition on the permeabilities, see after (4.19).

Transversality means

ÂT(ω) · k = 0, ÂT
0 = 0, ÊT = i(ω/c)ÂT, B̂T = ik × ÂT, (4.23)

and the transversal energy density and flux are readily obtained as

〈
ρT

E

〉 = ω2

c2
|ÂT|2

(
Re

d(ωε̂)

dω
+ Re

d(ωµ̂)

dω

1∣∣µ̂∣∣2
(

|n|2 − m2
t c

2

ω2

))
,

〈
ST
〉 = 2

ω2

c
|ÂT|2 Re(n/µ̂)k0,

(4.24)



4408 R Tomaschitz

with |n|2 =
√
α2 + β2, cf (4.22). In a similar manner, for longitudinal modes,

|k|2 ÂL = (ÂL · k)k, ÂL
0 = − c2

ε̂µ̂ω
(ÂL · k), ÊL = −i

m2
t c

ε̂µ̂ω
ÂL, (4.25)

and B̂L = 0, so that the energy and the flux read

〈
ρL

E

〉 = m2
t

∣∣âL
∣∣2 (Re

d(ωε̂)

dω

1∣∣ε̂∣∣2
(

|n|2 − m2
t c

2

ω2

)
+ Re

d(ωµ̂)

dω

)
,

〈
SL
〉 = 2m2

t c Re(n/ε̂)
∣∣âL

∣∣2 k0.

(4.26)

In (4.24) and (4.26) we may finally substitute the averaged wave fields

|ÂT|2 = 1

2

〈
AT2

〉 = 1

2

c2

ω2

〈
ET2

〉
,

∣∣âL
∣∣2 = 1

2

〈
aL2

〉 = 1

2

ω2

m4
t c

2

〈
DL2

〉
. (4.27)

In the absence of damping, for real permeabilities, we obtain the familiar identity
〈
ST,L

〉 =
k0
〈
ρ

T,L
E

〉
dω/dk, which just means that the energy propagates with group velocity.

As a first guess on the microscopic structure of the ether, we consider a classical oscillator
model, which gives µ̂ = 1 and

ε̂(ω) = 1 +
N0q

2
0

m0
g(ω) = 1 − N0q

2
0

m0

1

ω2

(
1 − iγ0

ω
+ · · ·

)
, (4.28)

g(ω) := (ω2
0 − ω2 − iγ0ω)

−1, γ0 > 0. (4.29)

As in (3.6), ω0 is the oscillator frequency, γ0 the damping constant, m0 the mass and q0 the
tachyonic charge of the uniformly distributed oscillators constituting the ether. The Drude
formula (4.28) follows from (3.6), as N0 dipoles q0r̂ per unit volume generate the polarization
P̂ e−iωt = N0q0r̂ = (ε̂ − 1)Êe−iωt . If ω0 = 0, we write ε̂ = 1 + iσ(ω)/ω, with the
conductivity σ(ω) := (N0q

2
0/m0)(γ0 − iω)−1, so that ε̂ ∼ iσ(0)/ω, for ω → 0, and thus

nRe ∼ mtc/ω and nIm ∼ σ(0)/(2mtc), which is very different from the massless case,
nRe ∼ nIm ∼ √

σ(0)/(2ω). For finite ω0, the dielectric susceptibility κ(t), cf (4.6), is readily
obtained by Fourier transforming ε̂(ω) − 1,

κ(t) = N0q
2
0

2πm0

∫ +∞

−∞
g(ω)e−iωt dω = N0q

2
0

m0

e−γ0t/2

2iω0
(eiω0t − e−iω0t )θ(t). (4.30)

A further term iγ(3)ω3 is sometimes added to the denominators in (3.6) and g(ω) in (4.29),
corresponding to a self-interaction (Abraham–Lorentz) γ(3)r̂

′′′ on the left-hand side of the
oscillator equation in (3.6), cf [30–32], but this classical radiation damping is known to be
causality violating due to pre-acceleration. We will return to (4.28) in the next section, when
we discuss the absorber theory.

5. Time-symmetric wave propagation in the ether

The wave propagation discussed in sections 2 and 3 also applies to the permeable, absorbing
spacetime introduced in section 4. The only change needed is to replace in the Fourier
components of the fields the positive k(ω) defined in (2.9) by ωn(ω)/c in (4.4). This holds,
in particular, for the modes (2.14)–(2.18), the Green function (2.10), the current (3.3) and the
vector potential in (3.4). In the first part of this section we sketch, using a heuristic argument
taken over from [26] with some minor modifications, how advanced modes generated by
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the time-symmetric Green function (2.10) (defined with k(ω) in (4.4)) can be converted into
retarded ones by the oscillators of the ether. In (5.13)–(5.18) we will show how retarded waves
can be generated by a subluminal current, without reference to the microscopic structure of
the ether. This is less intuitive, but it demonstrates quite explicitly causal superluminal wave
propagation in the ether without approximations. We will give the heuristic arguments for
transversal waves only; the formal derivation starting from (5.12) is valid for longitudinal
modes as well.

According to (3.4) and (2.17), the transversal retarded field of the subluminal source is
given by

Êret(x, ω) ∼ q

4πc2

iω

r
exp

(
i
n(ω)ω

c
r

) (
v̂(ω) − (e · v̂(ω))e

)
, (5.1)

with e := x/r and n(ω) =
√
ε̂µ̂ + (mtc/ω)2 as in (4.4). We assume v̂(ω) as real; elliptically

polarized modes can be handled by superposition. This field acts on the oscillators of the ether
as in (3.6). The permeabilities entering in n(ω) are µ̂ = 1 and ε̂(ω) defined in (4.28), so that

n(ω) − n0(ω) = 1

2
N0

q2
0

m0

g(ω)

n0(ω)
+ O(N2

0 q
4
0/m

2
0), (5.2)

where n0(ω) is defined with ε̂ = µ̂ = 1, see after (2.14), N0 is the number density, q0 and
m0 are the tachyonic charge and the mass of the subluminal oscillators, and g(ω) is defined in
(4.29). The velocity of an oscillator at xk , driven by the retarded field (5.1), is according to
(3.12),

v̂k(ω) = −iωg(ω)(q0/m0)Ê
ret(xk, ω). (5.3)

The absorber theory does not really depend on the numerical values of the constants in
(5.2), even not on the shape of g(ω) as long as we assume relation (5.3). It will become evident
in the subsequent derivation that the electric permeability merely serves as a regularizer of an
otherwise divergent integral. To that end a positive imaginary component of g(ω) is required,
that is, a positive absorptive coefficient resulting in exponential decay of the retarded wave
fields. To get rid of the exponential damping in the final result, we regard N0q

2
0g(ω)/m0

in (5.2) as ε-small, with an arbitrary real and positive imaginary part, so that (5.1) is only
infinitesimally damped.

The retarded field (5.1) is assumed to be composed of a time-symmetric initial field and
an absorber field, both acausal and thus non-observable, as they contain advanced components
which, however, cancel if added. To assemble the absorber field, we start with the advanced
component of the tachyon field generated by the oscillator (xk, v̂k), cf (2.15) and (5.1), that is

Êadv
k (x, ω) ∼ q0

8πc2

iω

|x − xk| exp
(
−i

ω

c
n0(ω) |x − xk|

)
(v̂k − (ẽk · v̂k)ẽk), (5.4)

with ẽk := (x − xk)/ |x − xk|. (Advanced components of the oscillator fields are not
affected by the permeability generated by the oscillators themselves.) We put |x − xk| =
rk − r cos(x,xk) + O(1/rk), cos(x,xk) := x0 · x0

k (real unit vectors are denoted by a zero
superscript in this section), as well as ẽk ≈ −ek . Hence, via (5.1) and (5.3),

Êadv
k (x, ω) ∼ i

2(4πc2)2

qq2
0

m0

ω3g(ω)

r2
k

exp
(
ic−1ω (n(ω) − n0(ω)) rk

)
× exp

(
ic−1ωn0(ω)r cos(x,xk)

)
(v̂ − (ek · v̂)ek). (5.5)
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We consider the projection of Êadv
k (x, ω) onto the velocity, (Êadv

k · v̂0)v̂0, which amounts to
replacing in (5.5) (v̂ − (ek · v̂)ek) by v̂ sin2(ek · v̂0) and we sum over all oscillators, so that
the total advanced response generated by the absorber is given by

(Êabs(x, ω) · v̂0)v̂0 ∼ N0v̂
0
∫

(Êadv
k · v̂0)r2

k drk d.(x0
k), (5.6)

integrated over the whole 3-space. The radial integral is trivial, and we obtain

(Êabs · v̂0)v̂0 ∼ −qω2

(4π)2c3

N0q
2
0

m0

g(ω)

2 (n(ω) − n0(ω))
A(ω,x, v̂0)v̂(ω), (5.7)

A(ω,x, v̂0) :=
∫

d.(x0
k) exp

(
i
ωn0(ω)

c
r cos(x,xk)

)
sin2(v̂0,xk). (5.8)

The solid angle element d. = sin θ dθ dϕ refers to the polar coordinates of xk = (rk, θ, ϕ),
the polar axis is chosen in the direction of x. We write θ = (x,xk) and χ := (v̂0,xk),
so that sin2 χ = (

v̂0 − x0
k(v̂

0 · x0
k)
)2

. The polar angles of v̂0 are denoted by (θ ′, ϕ′), so
that cos θ ′ = x0 · v̂0. We write sin2 χ = 2

3 (1 − P2(cosχ)) and use the addition theorem
P2(cosχ) = P2(cos θ)P2(cos θ ′) + · · ·, the omitted terms depend on factors einϕ which drop
out in the ϕ-integration in (5.8). The θ -integration is standard and we find for the angular
integral (5.8)

A ∼ 2πc sin2 θ ′

iωn0r
(exp(iωn0r/c) − exp(−iωn0r/c)). (5.9)

Making use of (5.2), we may write (5.7) as

(Êabs(x, ω) · v̂0)v̂0 ∼ iωq

8πc2

1

r
(eiωn0r/c − e−iωn0r/c) sin2(x, v̂0)v̂. (5.10)

This is the advanced absorber field generated by the oscillators of the ether as a response to
the retarded field (5.1) of the source, more precisely, as a response to the time-symmetric field
of the source, which, when added to the advanced absorber field, results in the retarded field
(5.1). This retarded field then triggers, self-consistently, the advanced absorber field. For
comparison, the velocity component of (5.1) reads as

(Êret(x, ω) · v̂0)v̂0 ∼ iωq

4πc2

1

r
eiωn0r/c sin2(x, v̂0)v̂, (5.11)

where we have dropped the infinitesimal damping factor, that is, replaced n(ω) by n0(ω). The
advanced field Êadv of the source is likewise given by (5.11), but with a minus sign in the
exponential, cf (2.14). This suggests the relation

Êabs = 1
2 (Ê

ret − Êadv). (5.12)

Clearly, this derivation of (5.12) holds only asymptotically and for the velocity projection, and
should be regarded as a first guess, an indication that an absorber field and thus an absorber
exists and that (5.12) holds as an identity, also for the vector potential. If so, we may write the
retarded field as Êret = Êsym + Êabs, with the initial time-symmetric Êsym := 1

2 (Ê
ret + Êadv)

generated by the Green function (2.10) (with k(ω) in (4.4)) via (2.7). Here and in the following
the superscripts ret, adv and sym refer to the respective fields of the source; the advanced
absorber field is denoted by abs, as in (5.10).

The above derivation of the absorber field is approximate and one would like to make
sure that there is no causality violation at all, no observable advanced component, not even a
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tiny one, even at short length scales. Though there is no proper retarded Green function for
superluminal wave motion, strictly retarded wave propagation is quite easy to derive directly
from the field equations (2.2) or (4.2), without explicit reference to the microscopic oscillators.
First, we consider ε̂(ω) = µ̂(ω) = 1, i.e. the dispersion relation in (2.9) and the wave
equation (2.2). Exact retarded and advanced wave solutions have already been obtained in
(2.14), Aret/adv

µ = 2A±
µ , Fourier transformed according to (2.12). The field A

sym
µ = A+

µ + A−
µ

is generated by the convolution (2.7) of the time-symmetric Green function (2.8) with the
current. We now show that the absorber field Aabs

µ = A+
µ − A−

µ , evidently a solution of the
homogeneous wave equation (2.2), can likewise be obtained by convolutions with the current,
the key distribution being

Dabs(t,x) := 1

4π2cr

∫ ∞

0
dω cos(ωt) sin (k(ω)r) = −-2(t → ct,m → mt), (5.13)

with positive k(ω) as defined in (2.9). This singular solution -2 of the homogeneous wave
equation (2.2) is calculated in (A.6). The integral in (5.13) can either be defined by an
ε-regularizer, as done in (2.10), or, in this case more conveniently, by differentiation of
the discontinuous integral

∫∞
0 dω k−1(ω) cos(ωt) cos (k(ω)r), cf [28]. The absorber field is

obtained as

Aabs
µ (x) =

∫
R4

Dabs(x − x ′)j abs
µ (x ′) dx ′, (5.14)

j abs
µ (t,x) := 1

π

∫ +∞

−∞
jµ(t − t ′,x)P

1

t ′
dt ′ = i

2π

∫ ∞

−∞
dω sign(ω)ĵµ(x, ω)e

−iωt , (5.15)

where jµ is of course the current in the wave equation (2.2), and ĵ µ is its Fourier transform
according to (2.12). (The ε-regularization of the principal value indicated after (2.11)
can be used here.) Equation (5.14) is most easily derived in Fourier space, by means of
(2.14). Retarded and advanced fields can be separated in a clear-cut way according to
Aret,adv

µ = A
sym
µ ± Aabs

µ , where A
sym
µ is defined by (2.10) and (2.7), and Aabs

µ by the solution
(5.13)–(5.15) of the homogeneous wave equation (2.2).

To comprehend the meaning of (5.13)–(5.15), we symbolically rearrange the integrations
in (5.14) and (5.15), so that Aabs

µ = ∫
PDabs(x − x ′)jµ(x ′) dx ′, with PDabs(t) :=

π−1
∫
Dabs(t − t ′)P t ′−1 dt ′. This convolution reminds one of the subluminal equation

1
2 (G

ret −Gadv) of the homogeneous wave equation (with positive mass-square) antisymmetric
in time. PDabs as defined by the successive integrations (5.15) and (5.14) is a substitute for
the exponentially diverging Pauli–Jordan function, cf (A.1), and the superluminal analogue to
the retarded Green function is, symbolically, Gsym + PDabs.

As for retarded and advanced modes in a refractive and absorptive spacetime, we write in
Fourier space, by means of (2.14) and still with ε̂ = µ̂ = 1,

Âsym
µ (x, ω) = 1

4πc

∫
R3

ĵµ(x
′, ω)

cos(sign(ω)k(ω)|x − x′|)
|x − x′| dx′, (5.16)

Âabs
µ (x, ω) = 1

4πc

∫
R3

ĵµ(x
′, ω)

i sin(sign(ω)k(ω)|x − x′|)
|x − x′| dx′, (5.17)

Âret,adv
µ (x, ω) = Âsym

µ ± Âabs
µ . (5.18)

The Fourier transforms are defined in (2.12), and ĵµ = (−c2ρ̂, ĵ), cf (2.14). k(ω) is positive as
in (2.9). Equations (5.16)–(5.18) remain valid for frequency-dependent complex permeabilities
if we replace sign(ω) k(ω) by ωn(ω)/c, cf (4.4). In the Fourier integral in (5.13), k(ω)
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is likewise replaced by ωn(ω)/c. (The real-space expressions in the appendix have to be
modified accordingly.) Equations (5.14) and (5.15) remain unaltered. It is easy to check that
the wave fields (5.18) with the mentioned replacement satisfy the Maxwell equations (4.2),
with field strengths and inductions as defined in (2.3), (4.1) and (4.3).

6. Conclusion

We have studied superluminal wave propagation in the ether, a permeable spacetime, and
investigated the generation of retarded superluminal modes from subluminal currents. To this
end the ether is considered as absorber whose microscopic oscillators carry tachyonic charge
and change the advanced components of time-symmetric tachyon fields into retarded ones.
Wheeler and Feynman designed the absorber theory for electrodynamics, and they assumed
the absorber field to be generated by the collection of charged particles in the universe. At
first sight this seems absurd, if one imagines that one-half of the force acting between two
nearby charges should stem from the ions of distant galaxies. Clearly, the absorber theory
strongly reminds one of the Mach principle, of the attempt to explain the inertial force in
Newton’s equations as a gravitational reaction of the universe. Both theories have never
been satisfactorily incorporated into the contemporary physical world view, based on local
interactions and the relativity principle. In fact, one may regard it precisely as the strength
of Newton’s and Maxwell’s equations and their quantum refinements, that it is not necessary
to take the universe into account when describing a physical process, a few local interactions
will do. Yet, such local descriptions also have their limits, depending on arbitrary input
parameters such as particle masses and coupling constants. And so one may ask whether one
can understand these constants better, e.g. their dimensionless ratios, if these laws are put into
a cosmological context [21, 33, 34], and the Mach principle as well as the Wheeler–Feynman
theory aim in this direction, even though locally one can do without them.

As for relativity theory, a cosmic absorber is conceptually remote from the relativistic
interpretation of Lorentz transformations, indigenous to locally geodesic coordinate frames,
to the void of Minkowski space. It seems to me more promising to deal with the Mach
principle and the absorber theory in an absolute space conception, a permeable ether with an
absolute cosmic time provided by the comoving galaxy frame. This is the natural setting for
superluminal wave propagation, as the causality of events connected by superluminal signals
is then unambiguously defined by the cosmic time order.

For electromagnetic and tachyonic wave propagation alike, the only observable fields are
retarded, because all other fields considered in section 5 are acausal, containing advanced
components. Nevertheless, a similar mechanism as outlined in the phenomenological
derivation of the absorber field can turn time-symmetric modes into completely advanced ones.
This is not surprising, as the field equations admit retarded and advanced solutions on an equal
footing, cf (5.18). Entropy arguments and the cosmic space expansion have been suggested
to break this time symmetry and to justify retarded rather than advanced solutions [26, 35].
Clearly, the cosmic time evolution and the global 3-space structure should be incorporated, in
particular the cosmic time scaling of N0q

2
0/m0 in (5.2); some preliminary studies of the Proca

equation in hyperbolic Robertson–Walker cosmologies can be found in [36]. There is also
no doubt that statistical averaging is involved when relating the macroscopic permeabilities
to the oscillators of the ether. However, it is a little overdone to invoke thermodynamics
and space expansion to discard advanced solutions, as causality already takes care of that.
The formal possibility of advanced solutions need not be a matter of concern. After all, it is
easy to define acausal initial or terminal conditions for Newton’s equations, or to define rays
which correspond in the geometrical optics limit to advanced wave fields; the formal existence
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of acausal solutions in no way limits the usefulness of causal, retarded wave propagation.
Causality is not a physical principle and is in no need of thermodynamic or cosmological
explanations, it is just the other way round. However, apparently there are also other views
in this regard, and electromagnetic advanced fields have been searched for on the grounds
that the absorber field in an expanding spacetime could possibly only incompletely cancel the
advanced modes of the initial time-symmetric field [37].
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Appendix. Green functions for negative mass-square

The inversion problem (2.7) for negative mass-square can readily be solved by analytic
continuation, m → ±im, m > 0, of the real-space Green functions for positive mass-square
listed in [38]. We use the same notation as in this reference: D(m) for the Pauli–Jordan
function, Dret/adv(m) for retarded and advanced Green functions, and Dc/a(m) for Feynman
and Dyson propagators, respectively, and we put h̄ = c = 1. The analytic continuation of
D(m) is

D(im) = 1

2π
ε(t)δ(r2 − t2) +

m

4π
ε(t)θ(t2 − r2)

I1(m
√
t2 − r2)√

t2 − r2
, (A.1)

and D(im) = D(−im), so that retarded and advanced Green functions admit the continuations
Dret(im) = θ(t)D(im) and Dadv(im) = −θ(−t)D(im). These distributions solve

(� + m2)D(im) = 0, (� + m2)Dret/adv(im) = −δ(t)δ(x), (A.2)

with � = −∂2/∂t2 + -. The continuation of the time-symmetric Green function Dsym =
1
2 (D

ret + Dadv) is accordingly

Dsym(im) = 1

4π
δ(r2 − t2) +

m

8π

θ(t2 − r2)√
t2 − r2

I1(m
√
t2 − r2), (A.3)

and we find the identities Dret/adv(im) = 2θ(±t)Dsym(im) and D(im) = 2ε(τ )Dsym(im). The
mass m on the right-hand side of (A.1) and (A.3) is the tachyon mass; the natural units are
restored by substituting m → mtc/h̄ and t → ct into (A.1), (A.3) and (A.6) below. The
continuation to imaginary mass was effected by J1(±ix) = ±iI1(x) and

N1(±ix) = −I1(x) ± 2

π
iK1(x), K1(±ix) = −π

2
(J1(x) ∓ iN1(x)), (A.4)

where x > 0, cf [28]. The analytic continuations of Feynman and Dyson propagators read

Dc(±im) = Dsym(im) + 1
2 (±-1 − i-2),

Da(±im) = Dsym(im) − 1
2 (±-1 − i-2),

(A.5)
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-1 := m

4π
θ(t2 − r2)

I1(m
√
t2 − r2)√

t2 − r2
+

m

4π
θ(r2 − t2)

J1(m
√
r2 − t2)√

r2 − t2
,

-2 := m

2π2
θ(t2 − r2)

K1(m
√
t2 − r2)√

t2 − r2
+

m

4π
θ(r2 − t2)

N1(m
√
r2 − t2)√

r2 − t2
.

(A.6)

Clearly, Da(±im) = Dc(∓im), and (� + m2)-1,2 = 0, and

-1 = 2Dsym(im) − Dc(−im) − Da(im), -2 = i
(
Dc(−im) − Da(im)

)
. (A.7)

The complete solution of (� + m2)G = −δ is

G = αDret(im) + (1 − α)Dadv(im) + c1-1 + c2-2, (A.8)

with arbitrary complex constants α and c1,2. The only solution not supported inside the
lightcone is the real part of Dc(−im), i.e. α = −c1 = 1

2 , c2 = 0, used in (2.8):

Gsym = Dsym(im) − 1
2-1 = 1

2

(
Dc(−im) + Da(im)

)
. (A.9)

Clearly, Gsym, rather than Dsym(im), is the tachyonic analogue to the subluminal Dsym(m)

supported on the interior lightcone and symmetric with respect to time inversions. In particular,
there is no tachyonic analogue to Dret(m) and Dadv(m), i.e. a propagator supported on the
exterior of the lightcone and vanishing for t < 0 or t > 0, respectively. This is no surprise,
as Dret(m) and Dadv(m) are defined on two disconnected components, whereas the exterior of
the cone is connected, and Lorentz transformations do not preserve the time order of events
with spacelike connection. The only singularity of Gsym stems from the δ-function; J1(z)/z is
regular and decays at infinity. Singular functions not containing the diverging I1(z) are linear
combinations of Dc(−im) and Da(im). The only homogeneous solution not exponentially
diverging is -2 in (A.6), supported in and outside the cone, which is used in section 5, together
with Gsym, to generate retarded wave fields, cf (5.13).

Remark. The inverting kernel of the Proca equation (2.1) is Gαβ(t,x) := (ηαβ +
m−2

t ∂α∂β)G(t,x), to be used instead of the scalar Green function in the case of a non-
conserved current. For instance, the current is not conserved if the tachyonic charge depends
on cosmic time. Clearly, Gβ

α,β = −c−1m−2
t δ,α , cf (2.7). We consider the bivector

Gαα′(x, x ′) := (ηαα′ − m−2
t ∂α∂α′)G(x − x ′), and define FG

αα′β(x, x
′) := Gβα′,α − Gαα′,β ,

which is a second-rank skew tensor with respect to x, and a vector with respect to x ′. (Primed
indices refer to the primed variable.) We find

FG
αα′

β
,β − m2

t Gαα′ = c−1δ(x − x ′)ηαα′ , (A.10)

so that Aα = ∫
Gαα′(x − x ′)jα′

(x ′) dx ′ solves the field equations (2.1) according to

Fα
β
,β − m2

t Aα =
∫ (

FG
αα′

,β
,β − m2

t Gαα′
)
jα′

(x ′) dx ′ = c−1jα. (A.11)

Replacing Gjα by Gαα′jα′
in (2.7), we obtain (� + m2

t )Aα = −c−1(jα + m−2
t jβ

,β,α). The
scalar Green function inverts the four Klein–Gordon equations in (2.2). If jβ

,β = 0, the vector
potential defined in (2.7) also satisfies the Lorentz condition (easy to see via Gauss theorem),
so that we need not use the cumbersome bivector Gαα′ in the calculations of this paper.
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