
INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 27 (2006) 521–529 doi:10.1088/0143-0807/27/3/006
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Abstract
For some physics students, the concept of a particle travelling faster than the
speed of light holds endless fascination, and Čerenkov radiation is a visible
consequence of a charged particle travelling through a medium at locally
superluminal velocities. The Heaviside–Feynman equations for calculating
the magnetic and electric fields of a moving charge have been known for many
decades, but it is only recently that the computing power to plot the fields of such
a particle has become readily available for student use. This paper investigates
and illustrates the calculation of Maxwell’s D field in homogeneous isotropic
media for arbitrary, including superluminal, constant velocity, and uses the
results as a basis for discussing energy transfer in the electromagnetic field.

M This article features online multimedia enhancements

1. Introduction

For any medium, the speed of light is also the speed of propagation of electromagnetic waves
within that medium—after all, light is simply an electromagnetic wave. But what is the
relationship between an electromagnetic wave and the electromagnetic field of a particle?

In answer to this, we consider the field of a stationary charge in free space. The field of
the charge q extends to infinity and at distance r is simply given by

E = 1

4πε0

q

r2
r̂. (1)

If, however, we consider the field to be made up of an imaginary flux originating at the particle
itself and travelling radially outwards with velocity c, we see that the flux present at distance
r at time t will have originated at the particle at a time

t ′ = t − r

c
. (2)
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When the particle is stationary, it is unnecessary to make this distinction as the point from
which the field was emitted is the same as the point currently occupied by the particle. When
the particle is in motion, however, it becomes necessary to identify both when and where the
particle may have been located so as to give rise to the field at a particular point.

Let the particle follow an arbitrary path x(t). We may write the four-dimensional
coordinates of any point on this path in the form (x(t), t). We now wish to determine
the field at point (x′, t ′), which may or may not lie upon the path. In order for the field to have
propagated here at speed c, it must have originated at a coordinate (x, t) such that

|x′ − x| = c(t ′ − t). (3)

A value of (x(t), t) satisfying (3) is referred to as the retarded position of the particle generating
the field at (x′, t ′). For certain trajectories, such as superluminal motion, there may be multiple
retarded positions contributing to the field at a given location. These are combined using the
principle of linear superposition.

So how do we determine the fields arising from the particle at the retarded position?
The particle is in motion, and may even be accelerating. Obviously the Coulomb field is not
appropriate; the moving particle constitutes a current as well as an electric charge. Writing
R = x′ − x and R = |R|, the equation for the relevant magnetic field

B = µ0q

4π

[(
ẋ × R̂

κ2R2

)
ret

+
1

c(R)ret

∂

∂t

(
ẋ × R̂

κ

)
ret

]

κ = 1 − ẋ · R̂

c

(4)

is attributed to Heaviside [1, p 436], and the explicit equation for the electric field

E = 1

4πε0

[(
R̂

R2

)
ret

+
(R)ret

c

∂

∂t

(
R̂

R2

)
ret

+
∂2

c2∂t2

(
R̂

)
ret

]
, (5)

although also originally developed by Heaviside [1, p 437], is usually attributed to Feynman
[2, p II-21-1]. They are related by

B = R̂ × E. (6)

The corresponding scalar and vector potentials are known as the Liénard–Wiechert potentials

φ(x′, t) =
[

1

4πε

q

R · (1 − ẋ/c)

]
ret

(7)

A(x′, t) =
[

1

4πε

qẋ/c

R · (1 − ẋ/c)

]
ret

. (8)

Derivations of the above expressions may be found in advanced electromagnetics textbooks
such as Jackson [3].

Now let us extend our considerations to media other than vacuum. In material media,
the values of ε, µ and refractive index n will generally differ from those in vacuum, and the
medium may also be anisotropic. Furthermore, when a charge is in relativistic motion the
medium will appear to contract along the direction of travel, with consequences for ε and µ.
Thus even a medium which is isotropic at rest will appear anisotropic to a moving charge.

Our calculations shall be performed in the rest frame of an isotropic medium. However,
by working with Maxwell’s D and H fields we take an approach more readily extensible to
the cases of moving and anisotropic media.



Visualization of Čerenkov radiation and the fields of a moving charge 523

Because

D = εE (9)

and

B = µH, (10)

ε and µ are eliminated from our equations and only the value of the refractive index affects
our results. This alters the speed of propagation of field modulations within the medium,

c′ = c

n
, (11)

and thus affects the solutions for the retarded positions. The equations for the D and H fields
then become

D = 1

4π

[(
R̂

R2

)
ret

+
(R)ret

c

∂

∂t

(
R̂

R2

)
ret

+
∂2

c2∂t2
(R̂)ret

]
(12)

H = q

4π

[(
ẋ × R̂

κ2R2

)
ret

+
1

c(R)ret

∂

∂t

(
ẋ × R̂

κ

)
ret

]

κ = 1 − ẋ · R̂

c′ .

(13)

Note that the c associated with each ∂
∂t

is unchanged as it arises not from the field propagation
time, but as a constant relating our units of measurement in temporal and spatial dimensions.
This is unaffected by a change of material medium.

2. Calculation of retarded coordinates

Consider a particle travelling in a straight line parallel to the y-axis at constant velocity v. We
choose our coordinate system such that the direction of travel is along the x-axis and wish to
calculate the D field magnitudes in the xy plane. If the particle is at y coordinate y0 at time
t0 then its equation of motion is given by

y = y0 + v(t − t0). (14)

Suppose we wish to calculate the D field at spatial coordinate (x ′, y ′, 0) at time t ′.
We denote particle coordinates with unprimed characters and field coordinates with primed
characters. As can be seen from figure 1, the following relationships hold:

(t ′ − t) = R

c′ = Rn

c
(15)

R2 = x ′2 + (y ′ − y)2. (16)

Combining (14), (15) and (16), and choosing c = 1 and t0 = 0 for clarity, we obtain a quadratic
in y:

y2(n2v2 − 1) + y(2y0 + 2t ′v − 2y ′n2v2) + (x ′2n2v2 + y ′2n2v2 − t ′2v2 − y2
0 − 2t ′y0v) = 0.

(17)

In accordance with convention we discard solutions corresponding to advance potentials
(t > t ′), using (14) to identify the time t corresponding to a given source solution y. For
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Figure 1. Particle travelling through a homogeneous medium.
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Figure 2. Field of a charged particle in a homogeneous medium; n = 2, v = 0.45c.

subluminal particles in a single medium, one of the solutions will be advanced and the other
retarded. For superluminal particles, solutions will either be both advanced, both retarded, or
both imaginary, indicating that the field has not yet reached this region.

Having identified the spacetime coordinates of our retarded source(s), we can now
calculate the field at (x ′, y ′, 0, t ′) using (12). When this process is repeated for multiple
sets of coordinates (x ′, y ′, 0, t ′), a plot of the field may be built up. Figures 2–4 demonstrate
the results which may be obtained.
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Figure 3. Field of a charged particle in a homogeneous medium; n = 1, v = 0.9c.

Figure 4. Field of a charged particle in a homogeneous medium; n = 2, v = 0.9c.

3. Results

To represent the field of the particle, we have plotted contours of equal D field magnitude.
This should not be confused with the plotting of electric or magnetic field lines. The reader
may be familiar with the representation of a Coulomb field undergoing a Lorentz boost shown
in figure 5. Why, then, is the field plotted in figures 2 and 3 not similarly symmetrical?
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Figure 5. Field line representation of a Coulomb field undergoing a Lorentz boost. The particle
is travelling left-to-right so regions marked ‘a’ lie ahead of the moving particle with respect to the
direction of motion, and those marked ‘b’ lie behind it.

Figure 6. Formation of a shock cone from repeated emission of spherical wavefronts.

When the charge is placed in motion, it constitutes a finite current element and will
therefore generate a magnetic field. The charge is moving, and hence distances to this current
element will vary with time. As they do, the magnetic field will also vary with time, inducing
a further electric field. This field is opposed to the existing compressed Coulomb field in the
regions marked ‘a’ in figure 5, and complements it in the regions marked ‘b’, giving rise to
the observed distortion in the field contours. The magnitude of this distortion is dependent on
electromagnetic induction in accordance with Maxwell’s equations, and hence depends on the
speed of the particle relative to the speed of light in vacuo. Hence less distortion is noted in
figure 2 than in figure 3, despite the particle’s speed being 0.9 times the speed of light in the
local medium in each case.

In figure 4, the particle is now travelling superluminally and as a result continually
overtakes the leading edge of its propagating field. Because of this, a shock front is built up.
It is this which is perceived as the Čerenkov radiation (see section 4). An analogy which is
often employed to illustrate this phenomenon is to imagine that as it travels, the particle emits
repeated pulses of electromagnetic radiation, expanding in shells as shown in figure 6. While
a useful aid to visualization, this analogy breaks down when applied to subluminal particles
and regions lying within the Čerenkov cone. A more complete explanation could be developed
in which the field constitutes the emission of virtual photons in analogy with quantum field
theory, but lies outside the scope of this paper.

It is also interesting to see how these results relate to the time-reversal symmetry of
the Maxwell equations. Essentially, time reversal interchanges the advanced and retarded
potentials, and hence appropriately reverses the direction of the Čerenkov cone, as would be
expected if the direction of motion of the charge were reversed. This can be contrasted with
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Figure 7. ‘D’ field of a superluminal particle (see also figure 4).

the Lorentz-contracted field lines of figure 5, which are intrinsically symmetric, and for which
time reversal simply reverses the direction of travel of the particle, leaving the field lines
unchanged.

4. Discussion

4.1. Electromagnetic radiation

As is clearly shown in figure 7, the shock cone constitutes a narrow region of comparatively
powerful electric and magnetic fields, giving rise to local concentrations in field energy. These
regions of concentrated field propagate outward with time. Of course, a freely propagating
energy-carrying wave in the electric and magnetic fields is what we know as electromagnetic
radiation, in this case visible light.

In allowing the particle to continue to pursue a constant velocity trajectory in our
calculations, we have neglected the effects of this radiative energy loss.

4.2. Freedom to propagate

What constitutes a freely propagating electromagnetic wave? In the above section, we
identified the field surge of the Čerenkov cone with electromagnetic radiation. But the method
used to generate these images makes no allowance for free packets of fields propagating
through space—the fields involved all originate directly from the moving charge. Is it therefore
appropriate to think of this wave as free in the same sense as we think of photons being free?

The answer is yes. Although in particulate models photons are considered as independent
entities, and likewise in classical electromagnetics we often consider sourceless, freely
propagating plane waves, in practice there exists a charge at the end of every photon or
electromagnetic wave, of whose retarded fields it is in fact an extension. This charge may
be accelerating, jumping between atomic orbitals, or travelling through an optically dense
medium as seen here. Our ‘free wave’ is indeed free, in that its nature and behaviour are
unaffected by any subsequent actions of the originating charge: that modulation in the local
electromagnetic field will continue to propagate out indefinitely at the local speed of light,
even if the originating particle is subsequently somehow destroyed.
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Figure 8. Supersonic gas flow over a stationary cone at Mach 4, visualized using the background
oriented schlieren technique.

4.3. Acoustic shockwaves

As we have seen in section 3, Čerenkov radiation arises due to the formation of a shockwave in
a particle’s electric and magnetic fields. The analogous problem in acoustics is the formation
of shockwaves due to supersonic gas flows over material bodies, which continues to be of
great importance in aeronautical engineering. In 1886 the first photographs of the bow shock
of a supersonic projectile were created by the collaboration of Mach, Salcher and Riegler [4],
utilizing a technique derived by Toepler in 1864, known as the schlieren method. Related
techniques continue to be in use to this day (figure 8).

Once again, the shock cone may be considered to be built up by superposition of
consecutive spherical wavefronts emitted by the source as it travels (figure 6). In this case,
the wavefronts are pressure waves within the surrounding medium. Diagrams showing the
construction of the shock cone in this manner were first published by Christian Doppler in
1842 [5], though it is after Mach that the cone is usually named, in recognition of his later
experimental work.

Introduction of factors such as viscosity and turbulent flow leads to additional behaviour
not discussed in this paper, and causes the study of fluid dynamics and acoustic shockwaves
to be a complex and fascinating field.

5. Supplementary material

The electronic version of this paper (stacks.iop.org/EJP/27/521) is accompanied by the
MATLAB program Cherenkov.m, which was used to generate the plots accompanying this
paper. Usage instructions may be viewed by typing ‘help Cherenkov.m’.

http://stacks.iop.org/EJP/27/521
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6. Conclusion

This paper has aimed at illustrating the behaviours of the fields of a moving charge in an
optically dense medium, including Čerenkov radiation. These behaviours are readily simulated
on a modern desktop computer, and demonstrate how the radiation of the Čerenkov cone arises
naturally from the fields of a superluminal charge. The concept of a ‘free’ photon is discussed,
in relation to its origin in the retarded field of an electric charge. It is explained how the
existence of the photon arises as a result of the motion of the charge, but that the subsequent
behaviours of the charge and the photon, or field wave packet, are independent. Finally,
an analogy is drawn between the formation of the Čerenkov cone and the formation of the
bow shock of a supersonic projectile, a topic of vital importance and ongoing research in
aeronautical engineering.

It is hoped that this exhibition of the interesting phenomenon of Čerenkov radiation may
stimulate the student to further self-guided learning, whether by developing upon the theme
of this paper (for example, by simulating the fields of a particle pursuing an arbitrary path, or
adjacent to a medium of differing refractive index) or by investigating other specific radiative
phenomena. For example, the Heaviside–Feynman equations may be used to calculate the
fields of an accelerating charge as found within a radiating dipole antenna, or a synchrotron.
An advanced student pursuing an interest in astrophysics may wish to investigate the radiative
consequences of a straight particle path in curved spacetime. There are many more interesting
possibilities to explore.
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