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Abstract. Solitons in space–time capable of transporting time-like observers at

superluminal speeds have long been tied to violations of the weak, strong, and dominant

energy conditions of general relativity. The negative-energy sources required for these

solitons must be created through energy-intensive uncertainty principle processes as

no such classical source is known in particle physics. This paper overcomes this barrier

by constructing a class of soliton solutions that are capable of superluminal motion

and sourced by purely positive energy densities. The solitons are also shown to be

capable of being sourced from the stress-energy of a conducting plasma and classical

electromagnetic fields. This is the first example of hyper-fast solitons resulting from

known and familiar sources, reopening the discussion of superluminal mechanisms

rooted in conventional physics.

1. Introduction

Hyper-fast solitons within modern theories of gravity have been a topic of energetic

speculation in recent decades [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

One of the most prominent critiques of compact mechanisms of superluminal motion

within general relativity is that the geometry must largely be sourced from a form of

negative energy density, though there are no such known macroscopic sources in particle

physics. Other concerns include difficulties associated with constructing a soliton

from a nearly flat space–time up to the superluminal phase, where the transported

central observers become surrounded by a horizon, and the equal difficulties of evolving

from the superluminal phase back the flat space–time. Challenges associated with

creating horizons also include communication between inside and outside observers

through the soliton shell, bombardment of the inside observers by Hawking radiation,

and stress-energy buildup on the leading horizon. Further, creating a self-sustaining

Alcubierre-type superluminal soliton [1] of 100 m radius would need an immense

amount of (magnitude) energy, in excess of the scale that is in the visible universe,

Etot ∼ −6 × 1062vs/c kg mass equivalent [3], though some progress has been made in

ar
X

iv
:2

00
6.

07
12

5v
2 

 [
gr

-q
c]

  1
0 

A
ug

 2
02

0



Breaking the Warp Barrier 2

this area, reducing the required energy to ∼ −1030vs/c kg mass equivalent [7, 16], and

even down to the kilogram and gram scale [19].

This paper addresses the first critique by constructing a new class of hyper-fast

soliton solutions within general relativity that are sourced purely from positive energy

densities, thus removing the need for exotic negative-energy-density sources. This is

made possible through considering hyperbolic relations between components of the

space–time metric’s shift vector, which depart from the elliptic or linear relations that

limited solitons in the previous literature to require negative energies. Further, the

stress-energy sourcing these solutions fits the form of a classical electronic plasma,

placing superluminal phenomena into the purview of known physics. The remainder

of the paper is structured as follows: Section 2 presents the geometry of these novel

solitons using the ADM formalism [20] and produces the components of the Einstein

equation relevant for the class of solutions; Section 3 introduces the conditions of the

hyperbolically-related shift vectors and the rules for constructing a class of solutions with

everywhere-positive energy density and conventional energy-momentum conditions and

demonstrates these qualities for a family of solutions; Section 4 solves the dynamical

component of the geometry via the Einstein equation trace and derives requirements

for a potential sourcing plasma; and Section 5 discusses the consequences of discovering

a superluminal mechanism driven by known sources and potential avenues for future

study.

2. Solitons in General Relativity

The space–times considered here are decomposed in the “3+1” (ADM) formalism using

a similar convention to that presented in [21], or [22], specifically following the latter’s

sign protocol. The line element of the space–time is cast in the form

ds2 = −
(
N2 −N iNi

)
dt2 − 2Nidx

idt+ hijdx
idxj, (1)

where the time coordinate t stratifies space–time into space-like hypersurfaces, the space

metric components hij evaluated at t provide the intrinsic geometry of that hypersurface,

and the similarly-evaluated shift vector components N i at t provide the coordinate three-

velocity of the hypersurface’s normal. The time-like unit normal one-form is therefore

proportional to the coordinate time element n∗ = Ndt, and the unit normal vector n to

the hypersurface has components

nν =

(
1

N
,
N i

N

)
. (2)

Einstein summation notation is used throughout this paper, with Greek indices running

over space–time components and Latin indices over space components. The lowering

of Latin indices is performed using the hypersurface metric h unless otherwise stated.

Natural units G = c = 1 are used. Lastly, the lapse function N is set to unity.
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Central to the computation of the Einstein tensor is the hypersurface extrinsic

curvature, which can be written as the negative covariant derivative of the normal

vector field n, or in terms of coordinate derivatives as

Kij = −1

2

(
∂thij +Nk∂khij + ∂iN

khkj + ∂jN
khki

)
. (3)

The solutions considered here will have hypersurfaces parameterized by flat metrics

under Cartesian coordinates hij = δij, reducing the extrinsic curvature expression to

the symmetric combination of shift vector derivatives. The trivial form of N and h

imply that the Eulerian observers, time-like observers whose motion in space–time is

normal to the hypersurfaces with four-velocity n, are in free fall.

Resolving the behavior of solitons within general relativity begins with a check of

the weak energy condition and the momentum conditions. The weak energy condition

is given by the projection of the Einstein equation onto the hypersurface normal

Gµνnµnν =

(
Rµν − 1

2
gµνR

)
nµnν = 8πT µνnµnν , (4)

where the projected stress-energy is to be called the local Eulerian energy density

T µνnµnν = N2T 00 = E. (5)

The geometric side of the energy constraint equation is divisible into the intrinsic

hypersurface curvature (3)R, and the extrinsic curvature’s trace K = Ki
i and its

quadratic hypersurface scalar Ki
jK

j
i

8πE =
1

2

(
(3)R−Ki

jK
j
i +K2

)
. (6)

The contribution of the hypersurface intrinsic curvature vanishes as the space metric h

is flat. The purely geometric portion of the energy condition may then be expanded in

terms of the shift vector components

K2 −Ki
jK

j
i = 2∂xNx∂yNy + 2∂xNx∂zNz + 2∂zNz∂yNy

− 1

2
(∂xNy + ∂yNx)

2 − 1

2
(∂xNz + ∂zNx)

2 − 1

2
(∂zNy + ∂yNz)

2 . (7)

Note that the last three elements of the above expression are negative definite, while

the first three are of indeterminant type. These first three terms have the potential

to provide the energy function with an island of configurations that satisfy the weak

energy condition. The first task of this work will be to show there exist non-flat compact

moving configurations that have everywhere non-negative energy.

The momentum conditions are implemented here by comparing the mixed

projection local Eulerian momentum density,

Ji = −nαTαi = NT 0
i , (8)
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to the mixed projection of the Einstein tensor, resulting for the considered geometries

in the three conditions

8πJi = ∂jK
j
i − ∂iK. (9)

Both the energy and momentum conditions must be satisfied everywhere and will provide

a sense for the stress-energy sources needed to construct the soliton geometries.

The dynamics of the geometry are in general set by the remaining six free

components of the Einstein equation. Several of these degrees have already been made

moot by the choice of a flat h and constant lapse function N . The conditions for positive

energy solutions introduced in the next section will reduce the number of dynamical

geometric degrees of freedom to one, meaning that only a single component of the

dynamical portion of the Einstein equation is needed. The trace condition is a natural

choice, given by

8πT µµ = −R, (10)

where the space–time Ricci scalar decomposes in this class of space–times to

R = K2 +Ki
jK

j
i + 2LnK, (11)

where Ln() is the Lie derivative in the direction of the normal unit vector field.

3. Constructing Positive-Energy Solutions Using a Hyperbolic Shift Vector

Potential

The class of geometries studied here will be characterized by a shift vector potential

function, a real-valued function φ with spatial gradient relating the shift vector

components

Ni = ∂iφ. (12)

The soliton potentials considered here will be set to a steady state, moving with constant

velocity and allowing the potential to be parameterized by displacement from its moving

center φ(x− xs(t), y − ys(t), z − zs(t)), where ẋs(t) = vx, ẏs(t) = vy, and żs(t) = vz are

the constant velocity components of the soliton.

The potential condition alone is insufficient to produce a positive definite function

of Eqn. 7, and so a relation between all the shift vector components is added. The

most common relations explored in the literature are linear and elliptic. Specifically,

the linear relation (Nx = Ny = 0) of Ref. [1] produced the renowned toroid of negative

energy density about the soliton bubble of Nz, here displayed in Cartesian coordinates,

EAlc =
−1

32π

(
(∂xNz)

2 + (∂yNz)
2) . (13)

The expansionless (K = −1/2(∂xNx + ∂yNy + ∂zNz) = 0) elliptic relation of Ref. [11]

restricted the energy form to the negative definite square of the extrinsic curvature

ENat =
−1

16π
Ki
jK

j
i . (14)
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Parabolic and hyperbolic relations remained to be explored.

The hyperbolic relation is examined here. Specifically, the potential function will

be taken to satisfy a linear wave equation over the spatial coordinates

∂2
xφ+ ∂2

yφ−
2

v2
h

∂2
zφ = ρ, (15)

where vh/
√

2 is the dimensionless wave front ‘speed’ on the hypersurface, and ρ is the

source function. The positive z-axis is singled out as it will be the principal direction of

travel for the soliton. Therefore, the remainder of this paper will consider only motion

along the z direction, setting vx = vy = 0. The geometric side of the energy condition

can then be rewritten as

K2−Ki
jK

j
i = 2∂2

xφ∂
2
yφ+2∂2

zφ

(
2

v2
h

∂2
zφ+ ρ

)
−2 (∂y∂xφ)2−2 (∂z∂xφ)2−2 (∂y∂zφ)2 . (16)

It is still not altogether clear what the sign of the energy function is, so two

simplifications are applied for the purpose of demonstration. Assuming that ρ and

φ are both parameterized in the (x, y) coordinates by the l1 norm s = |x| + |y|, the

energy further can be further simplified to a two-coordinate form, here using (z, x),

E =
1

16π

(
2∂2

zφ

(
ρ+

2

v2
h

∂2
zφ

)
− 4 (∂z∂xφ)2

)
. (17)

The Green’s function representation of the potential, holding that the potential’s initial

condition at z → −∞ is null, takes the form

φ =

∫
dx′dz′

1

4vh
Θ

(
z − z′ − |∆x|

vh

)
ρ(z′, |x′|+ |y|), (18)

where Θ() is the Heaviside function and ∆x = x − x′. The shift vectors can then be

found in the Green’s form

Nz =
1

4vh

∫
dx′ρ

(
z − |∆x|

vh
, |x′|+ |y|

)
, (19)

Nx = − 1

4v2
h

∫
dx′ sign (∆x) ρ

(
z − |∆x|

vh
, |x′|+ |y|

)
, (20)

where sign () is the sign function. One can see that the shift vector components

are proportional to integrals of source over the ‘past’ wave cone. Given the Green’s

expressions, it can be straightforwardly computed that |∂2
zφ| ≥ vh|∂z∂xφ|, implying that

the energy condition satisfies the inequality

E ≥ 2ρ× ∂2
zφ

= ρ× 1

2vh

∫
dx′∂rρ(r, |x′|+ |y|)|r=z−|∆x|/vh , (21)

from which rules may be formed to ensure the energy density is everywhere non-negative.

For instance, the energy function will be non-negative for configurations such that the
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local source density and the z-component source density gradient integrated along the

intersecting ‘past’ wave trajectories are of the same sign.

Consider the pentagonal configuration of sources in Fig. 1, illustrated via bi-lateral

s-projection onto the (x, 0, z) plane of a hypersurface, as a demonstration of one such

compact positive energy configuration with net motion vz = vs. The configuration is

such that the spatial wave fronts traveling from the left-most beams create a broad

region of high and level Nz at the center, terminating on the right-most pair of beams of

opposing density, with the remaining sources organized to terminate the stray branches

of the wave cone, Fig. 2. The net hyperbolic source of the soliton is zero. The individual

sources are formed as rhomboids in the 2D projection such that the boundary lines

are angled to be between the trajectories of the hyperbolic wavefront cone and the z-

constant plane for the purpose of satisfying the “non-negative energy rule” above. The

perpendicular components of the shift vector are seen to vanish in the central region,

while the parallel component over the same region is also very level but non-zero. The

placid region at the soliton center is nearly tidal-force-free, where Eulerian observers

move along essentially straight lines at vrel = Nz(0)− vo relative to the soliton. This is

in contrast to the volatile boundary where there exist domains in which the shift vector

can be much greater in size and divergent in direction. The net shift vector of the soliton

is found to be zero.

The relation between the soliton velocity is assigned to be consistent with the shift

vector of the soliton’s central region (vs = Nz(0, 0)) as Eulerian observers in the central

region will then travel along time-like curves with proper time rate matching those far

from the soliton, dτ = dt. In this case, the logistics of soliton travel for observers in the

central region reflect those in [1].

The energy density of the soliton is seen to be positive definite in Fig. 3. Each

rhomboid source ρrhom is constructed individually to have everywhere positive energy

density and to have positive energy density in the presence of other sources of ρrhom of

the same size and orientation. One can therefore piece together many other solutions

from these elements of hyperbolic source. The total energy requirements of the positive-

energy solitons closely follow that of Ref. [3] as applied to the Alcubierre solution

Etot =

∫
E
√
−gd3x. (22)

For solitons where the radial extent of the central region R is much larger than the

thickness of the energy-density laden boundary shell w (w � R), the energy is estimated

to be

Etot ∼ Cv2
s

R2

w
(23)

where C is a form factor typically of order unity. The required energy for a positive-

energy soliton with central regions radius R = 100 m and average source thickness along

the z-axis w = 1 m approaches a mass equivalent of Etot ∼ (few)× 10−1M�vs, which is

of the same magnitude as the estimate of Ref. [3] for an Alcubierre solution of the same

dimensions, but without the uncertainties associated with where one might source the
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Figure 1. Projection of the source ρ of shift vector potential φ along (x, 0, z).

Propagation direction of the soliton is along the z-axis. Charge within each chord

perpendicular to the long axis of the sources are calibrated to give a level surface in

the central region. Shape and charge profile of each rhomboid source are identical.

Total integrated charge of the system is 0.

energy. The estimate for the Alcubierre solution sourced by naturally occurring Casimir

forces is much higher, ∼ −6 × 1062vs kg, which requires one to reduce the boundary

thickness to a few hundred Planck lengths. However, no such naturality conditions are

known to restrict the stress-energy driving the positive energy solutions. Further, many

soliton solutions have been made since Ref. [1] that drastically improved on the overall

negative energy requirements [7, 10, 19, 16, 17]. Several of these approaches may provide

significant savings in energy for the positive-energy soliton.

The hypersurface volume expansion, calculated here from the extrinsic curvature

trace θ = K, can be found in Fig. 4. The volume expansion of the positive-energy soliton

is complex, containing expansions and contractions on all sides of the central region.

The solution of [1] possesses only one negative expansion lobe at the leading edge of

its soliton and one positive expansion lobe at the trailing edge. The largest values of

θ for the positive-energy soliton coincide with the sources of stress-energy density, in

contrast to the solution of Ref. [1] where the energy density and expansion factor are

maximally separated on the soliton boundary. Further, the largest positive and negative

lobes of θ on the positive-energy soliton are seen to correlate to the negative and positive

hyperbolic sources respectively. Both solutions have net expansion of 0.

The momentum conditions under the hyperbolic shift vector potential are seen to
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Figure 2. Projection of the shift vector components Nz (left) and Nx (right) along

(x, 0, z). Propagation direction of the soliton is from left to right along the z-axis. The

multi-compartment structure is a distinct departure from the single top-hat soliton

fond in [1] and [11]. Total integrated shift in each direction is 0.

vanish

Ji = 0, (24)

implying a trivial net energy–momentum relation relative to free-falling Eulerian

observers. Sources with multiple species can can satisfy zero net momentum flux while

each variety is non-static. The multi-species stress-energy source of choice in this paper is

an electric plasma consisting of a massive fluid and electromagnetic fields, the conditions

of which are investigated further in the next section.

4. Soliton-Plasma Dynamics

This section describes the conditions needed for an electrically conducting plasma to act

as source for the positive-energy soliton. The dynamics of the hyperbolic potential φ, or

equivalently the hyperbolic source ρ, can be set by the Einstein equation trace, Eqn. 10.

The Ricci scalar of Eqn. 11 under the conditions of the previous section becomes

R = −16πE + 2θ2 + 16π ((Nz − vs) ∂zK + 2Nx∂xK) . (25)

The stress-energy of the plasma plus electromagnetic fields is of the form

T µν = (ρm + p)uµuν + pgµν + F µαF νβgαβ −
1

4
gµνFαβFαβ, (26)
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Figure 3. Projection of the local energy density of Eqn. 17 along (x, 0, z). Propagation

direction of the soliton is from left to right along the z-axis. The energy density is

dominated by those regions containing hyperbolic source ρ, but also extends weakly

to the boundaries of the wavefronts. The energy density is everywhere positive and

therefore satisfies the weak energy condition.

where ρm is the plasma mass density, p is the plasma pressure, uα are the components

of the plasma velocity field, and F µν are the components of the anti-symmetric field

strength tensor. The trace condition then becomes

−16πE + 2θ2 + 16π ((Nz − vs) Jz + 2NxJx) = 8π (ρm − 3p) , (27)

which on the stress-energy side involves only the massive fluid as the electromagnetic

stress-energy is trace-less. Further, note that the energy and momentum conditions

involve the plasma, the electromagnetic fields, as well as the shift vector

E = (ρm + p)
(
u0
)2 − p+

1

2

(
1 + 2NiN

i
)
EiEi −

1

2

(
NiE

i
)2

+
1

2
BiB

i − 1

2
εijkN

iEjBk,

(28)

Ji = (ρm + p)uiu
0 − pNi + εijkE

jBk − Ei
(
EjN

j
)

− 1

2
Ni

((
1−NkN

k
)
ElE

l +
(
NkE

k
)2 −BkB

k + εljkN
lEjBk

)
, (29)

where Ei are the components of the electric field three-vector and Bi are the components

of the magnetic field pseudo-three-vector. The trace equation is used here to investigate

the response of the fluid’s mass and pressure density as the soliton velocity has already

been set. In their trace combination, ρm − 3p can take on both positive and negative
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Figure 4. Projection of the local volume expansion factor θ along (x, 0, z).

Propagation direction of the soliton is from left to right along the z-axis. Positive and

negative expansion factor are largely associated with negative and positive hyperbolic

sources respectively. Non-zero expansion factor also exist in the spaces in-between

hyperbolic sources along the hyperbolic wavefronts. Total integrated expansion factor

is 0.

values, limited by the fluid equation of state. The solitons considered here, where the

velocity matches the central shift vector (vs = Nz(0, 0)) has trace that is consistent with

a fluid with equation of state p ≤ ρ, Fig. 5, which is within the physically accepted

range [23].

In addition to supporting the energy, momentum, and trace conditions for steady-

state motion, the plasma must satisfy its own conditions. These include the Maxwell

equations for the electric and magnetic fields, the conservation and dynamical equations

for the massive component of the plasma, the pressure equation of state, and the

additional relations between the massive and electric current densities. These conditions

are of sufficient number to determine all the plasma’s degrees, meaning that the

geometric conditions cannot in general be used to dictate the state of media without over-

constraining it, as there is only one geometric field and multiple independent geometric

conditions. In addition to the energy and momentum conditions discussed above, causal

contact is often used as a pre-condition for relativistic plasmas, and is frequently checked

using the dominant energy condition. The dominant energy condition is respected by

the sub-luminal solitons so long as the magnitude of the shift vector is less than unity

in all domains (NiN
i < 1). For higher speeds, the soliton begins to form horizons

between its domains and the external vacuum. To further identify a solution of the
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Figure 5. Projection of the Einstein tensor trace from Eqn. 27 along (x, 0, z).

Propagation of the soliton is taken to be uniform with speed consistent with shift

vector in the central region, vs = Nz(0, 0).

more than dozen degrees of freedom of the plasma that satisfy the example soliton, and

to investigate the horizon problems endemic to this and all other known superluminal

solitons, would require computation beyond the scope of this paper. What can be said

here is that the conditions of the plasma are consistent with the soliton geometry. It is

now a matter of finding the right configuration.

5. Conclusions

This paper has demonstrated that there exist superluminal solitons in general

relativity satisfying both the weak energy condition and the momentum conditions for

conventional sources of stress-energy. This is the first known solution of its kind, as

previous superluminal solitons have required large amounts of negative energy. The

positive-energy geometries presented here distinguish themselves from the literature in

that they obey a hyperbolic relation among their shift vector components in the form

of a wave equation on the associated space-like hypersurface, whereas only linear or

elliptic relations had been previously considered. The solitons were further constructed

to contain a central region with minimal tidal forces, where proper time coincides with

asymptotic coordinate time, and any Eulerian observer within the central region would

remain stationary with respect to the soliton. The transport logistics of the presented

positive-energy solitons are similar to the solitons of the Alcubierre solution.

Beyond being the first positive energy solutions of their kind, the presented solitons
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appear to be a counter example to claims in the literature that superluminal space–

times must violate the weak energy condition [6, 13]. To contrast the present positive-

energy soliton and the previous proofs, one must realize that the pre-conditions of

these proofs are restricted to geometries with a single fastest causal path. No known

generalizations of the proofs exist to extensive superluminal mechanisms. Previous

superluminal solitons such as the Alcubierre and Natário solutions can be made to

fit this condition as their structures permit a point-like limit of the interior, where

the fastest causal path would settle. The example positive-energy, in contrast, must

have non-trivial extent. Similar point-like limits of the positive energy solitons would

collapse the geometry to the Minkowski vacuum, an expected outcome as the shift vector

components are seen to integrate to zero. The positive energy soliton therefore appears

to circumvent the criteria of [6] and [13].

The energy and momentum conditions of the presented positive-energy geometries

were found to conform to a plasma with no net momentum flux. The trace of the

Einstein equation, the single dynamical conditions that determines the hyperbolic shift

vector potential, was used to determine the limits on the plasma equation of state

in lieu of having already set the steady-state velocity of the soliton. The geometric

conditions on the plasma are deferential to the plasma’s own dynamical equations,

which include equations of motion and constitutive relations for both the massive fluid

and the electromagnetic fields. The total energy requirements of the positive-energy

solitons appear to be of the same order as the original Alcubierre soliton under the

same shell-thickness-to-diameter conditions, with the energy for a soliton of modest

radius R = 100 m and shell thickness w = 1 m requiring Etot ∼ (few) × 10−1M�vs/c.

This energy, though still immense, is intriguing as there have been many advances in

reducing the required energy of the negative-energy solitons that may be equally effective

for this new class of solutions. The next challenge is to bring the energy requirements

of the positive-energy soliton to the human technological scale.

Once the energy requirement is lowered, the space–time signatures of positive-

energy solitons may be studied in a laboratory setting using existing or novel methods.

For instance, previous interferometric searches for hyperfast solitons could be recast

to search for the much larger signal of a positive-energy-efficient soliton [17, 24]. The

highly magnetized energetic and diffuse atmospheric plasma of magnetars may also be

a natural place to look for signatures of positive-energy soliton geometries even prior to

advances in energy reduction.

For theory, it is an appealing proposition to incorporate the degrees and dynamics

of the plasma into the geometric computation. One could self-consistently simulate

the creation, propagation, and dismantlement phases of a soliton at both sub- and

superluminal speeds. Other directions include further optimizations of the solutions over

the energy requirements and other trade-offs, the broadening of the soliton geometry

to incorporate a “payload” in the soliton’s central region, and studying the challenges

of horizon formation when transitioning to superluminal speeds. However, developing

models and configurations of the plasma alongside the geometry would in general require
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a large-scale numerical effort. Fortunately, in the era of gravitational-wave astronomy

and high-precision cosmology, there exist a number of numerical relativity codes that are

increasingly capable of describing massive fluids and gauge fields in relativistic space–

time.
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