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Abstract

We present a new axially symmetric monochromatic free-space solution to the Klein-Gordon

equation propagating with a superluminal group velocity and show that it gives rise to an imaginary

part of the causal propagator outside the light cone. We address the question about causality of the

spacelike paths and argue that the signal with a well-defined wavefront formed by the superluminal

modes would propagate in vacuum with the light speed.
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A long-standing question of objects or waves traveling faster than the light speed in

vacuum c has received a renewed interest in the past decade. In particular, it was shown

experimentally that light pulses can propagate with abnormally large group velocities greater

than c although an interpretation of the observations still remains a matter for debate

and controversies (recent highlights on the problem as well as all important references on

this subject can be found in a special issue of the IEEE Journal of Selected Topics in

Quantum Electronics [1]). In this context, it is necessary to emphasize that superliminal

group velocities at any case do not contradict the causality principle in the special theory of

relativity because, in contrast to a widespread opinion, group velocity, like phase velocity,

is not synonymous with a signal speed (see, for instance, overviews of the problem by

Vainshtein [2] and recently by Chiao and Milonni [3] and Büttiker and Washburn [4]). A

real signal should start from zero at some instant and hence should have a well-defined

wavefront. Its arrival at a given point can occur only when the point is reached by the front.

Because it is associated with infinite frequencies, the asymptotic behavior of a group velocity

defines the front spreading. It means that group velocity at finite frequencies is no longer a

meaningful concept and there are no restrictions on its value which can be even infinite [5, 6].

What is important is only the high-frequency asymptote that, of course, cannot propagate

faster than c, an upper bound to the signal velocity.

Below we are concerned to cylindrically symmetrical free-space solutions of the Klein-

Gordon (KG) equation with sub- and superluminal group velocities v. The former ones

belong to a class of localized diffraction-free modes that have been found for a homogeneous

wave equation [7] and studied in a number of papers (see Ref. 8 and references therein). The

discussion of the latter solutions as well as their relation to the causal Green function, up

to our knowledge, has not been done yet.

The KG equation follows from the well-known relation between energy E, momentum p,

and particle rest mass m

E2 = c2(p2 +m2c2) (1)

through the operator transformation E → ih̄∂/∂t and p → −ih̄∇. The particle velocity

is defined as a first derivative v = ∂E/∂p. Comparing with the basic formula of the rela-

tivistic mechanics E = mc2/
√
1− v2/c2, Eq. (1) contains well-known additional solutions

for negative-energy states that were understood as antimatter (within the classical theory it

should be interpreted as a negative rest mass). What we want to emphasize here is that this
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equation is also valid for a relativistic particle with v > c. This statement, of course, cannot

be regarded as a proof of the existence of tachyons, the faster-than-light objects, but only

as a hint that the corresponding wave equation may contain modes with a superluminal v.

Another hint comes from the physics of a free relativistic particle. A causal propagator for

the KG equation is known to be manifestly nonvanishing outside the light cone [9] and, as it

was stated in Ref. 10, the path-integral formulation of relativistic quantum mechanics does

include the contribution of spacelike trajectories. What we do not agree with the authors

of the paper [10] is that this behavior is acausal, i.e., backward in time in some Lorentz

frames. Below we shall find a dispersion law for superluminal solutions and show that in

any case a signal velocity formed by the modes and defined as that of a wavefront cannot

exceed the light speed in vacuum. Moreover, we shall demonstrate that an expression for a

causal propagator outside the light cone does follow directly from the dispersion law with

superluminal velocities.

Let us look for superluminal modes within a class of axially (ϕ invariant) symmetric

monochromatic solutions of the KG equation propagating in the z direction ψ(r, t) =

φ(ρ) exp(ik
z
z − iωt), where ρ =

√
x2 + y2, ω is the angular frequency, and kz is the ax-

ial wavenumber. For φ(ρ) we obtain the following equation

[∆ρ + ((ω/c)2 − k2z − (mc/h̄)2)]φ(ρ) = 0 (2)

with a two-dimensional Laplace operator ∆ρ = ∂2/∂x2+∂2/∂y2 in the plane perpendicular to

the z-axis. The usually used solutions of Eq. (2) are plane waves proportional to exp(ikxx+

ikyy), another ones are Bessel functions whose form depends on the sign of the expression

in brackets. If it is positive, i.e.,

(ω/c)2 − k2z − (mc/h̄)2 = Q2 > 0, (3)

then J0(Qρ), the Bessel function of the first kind and zero order, is a solution of Eq. (2),

and

ψ(ρ, z, t) = J0(Qρ) exp(ikzz − iωt). (4)

This axially symmetric mode for a wave equation (m = 0) was found and realized exper-

imentally by Durnin et al. [7] and is known now as a Bessel beam [8]. Its group velocity

vz = ∂ω/∂kz is always less than c but the relating wave packet would propagate with the
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light speed in vacuum (as it was shown by detailed calculations in Ref. 8 and follows from

the asymptotic behavior of vz).

Another possibility, i.e.,

(ω/c)2 − k2z − (mc/h̄)2 = −q2 < 0, (5)

has not been discussed yet. The corresponding solution of Eq. (2) is a familiar modified

Bessel function of the first kind and zero order K0(qρ) and the whole solution to the KG

equation looks as

ψ(ρ, z, t) = K0(qρ) exp(ikzz − iωt). (6)

Together with the relation kz(ω) = ±
√

(ω/c)2 + q2 − (mc/h̄)2, Eq. (6) is the main result

of the Letter. It is evident that the relating group velocity vz exceeds the value of c for all

available kz. But for great ω it asymptotically goes to c and it means that the signal formed

by these modes will propagate with the light speed in vacuum never destroying the causality

principle.

Following the paper [11], we can now construct fundamental solutions of the KG equation

(Green functions) for timelike and spacelike paths in the Minkowski 4D space. Eq. (4) with

the dispersion law (3) yields [11] a real part of the causal Feynman propagator ∆c [9] valid

inside the light cone

c

2π

∫
∞

0

QdQJ0(Qρ)

∫
dkz

sinω(kz)|t|
ω(kz)

exp(ikzz)

=
1

2π

∫
∞

0

QdQJ0(Qρ)J0(τ
√
Q2 + (mc/h̄)2) = Re∆c(λ),

where τ =
√
c2t2 − z2 is the 2D timelike interval and λ =

√
c2t2 − r2 is the 4D timelike

interval. From the solution (6) with the dispersion relation (5) we obtain (see Ref. 11 for

details) the Green function outside the light cone

1

2πc

∫
∞

mc/h̄

qdqK0(qρ)

∫
dω

sin kz(ω)|z|
kz(ω)

exp(−iωt)

=
1

2π

∫
∞

mc/h̄

qdqK0(qρ)J0(τ̃
√
q2 − (mc/h̄)2) =

mc

2πh̄λ̃
K1(mcλ̃/h̄),

where τ̃ =
√
z2 − c2t2 is the 2D spacelike interval, λ̃ =

√
r2 − c2t2 is the 4D spacelike

interval, K1 is the modified Bessel function of the first order. The latter result is just an

imaginary part of the causal Feynman propagator ∆c [9] for spacelike paths. In the limit

h̄→ 0 it vanishes for all classically forbidden trajectories.
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Resuming, we worked out a novel solution to the free-space Klein- Gordon equation

propagating with a superluminal group velocity outside the light cone. We have rejected

any conclusions [10] about acausality of the spacelike paths and argued that a signal carried

by a wave packet belonging to this class of modes propagates with the light speed in vacuum

c. In our opinion, there are no objections to possible realizations of such solutions in nature.

If they do exist, their thermodynamical properties would be very exotic due to the unusual

spectrum (5).
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