simpler, and understandable components illustrates the
scientific method in a way traditional instruction does
not achieve.

(3) When quantitative reasoning or numerical calculations
are required, students do not perceive this as mathemati-
cal drudgery, because they can see its application to
some real physical phenomenon.

(4) The basic conceptual ideas important to an introductory
non-calculus based physics course are not neglected us-
ing this approach. Students just encounter them in a
slightly unorthodox sequence.

The disadvantages are:

(1) Teaching using the “top-down” approach is very diffi-
cult for physicists, requiring a great deal of self restraint
to avoid presenting some background theory before car-
rying out an experiment or demonstration.

(2) The preparation of suitable lecture demonstrations is
very time consuming, and instructors must usually pre-
pare much supplementary written material.

(3) Some compromise in the breadth of material covered
must be made to accommodate the demonstration-based
approach of the course.

V. CONCLUSIONS

The “top-down” approach provides an alternative strategy
for teaching introductory science literacy physics courses.
The philosophy of reversing the traditional sequence of in-
struction, and working backwards from the complex to the
simple seems to provide a framework for effective teaching
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of fundamental physical concepts, whilst still remaining in-
teresting for students. Physics is above all, a subject based on
observation, and our main point is to make the observations
of our students provide the starting point of the lectures.
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The quest to find faster-than-light particles has intrigued physicists for decades, though it has yet to
turn up any real candidates. Even if a superluminal universe does exist, we have no way to reach it
given that we must go through the speed of light, which to the best of our knowledge is impossible.
In this paper, I show that by making speed complex, we can go around the speed of light in a manner
analogous to the way a car faced with an infinitely tall road block might leave the road to go around
that barrier. The treatment is a mathematical device; no known physical interpretation exists for the
imaginary part of a complex speed. However, it can provide an entertaining problem in special
relativity, one that may encourage students to think about the connections between equations and the
physical universe. © 1996 American Association of Physics Teachers.

1. INTRODUCTION

When I was teaching physics, I found that special relativ-
ity in particular provoked the interest of my students because
it involved wonderfully strange effects that could be dis-
cussed without graduate level math.! They found it both fas-
cinating and frustrating that the speed of light is a barrier
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which prevents anything in our subluminal (slower-than-
light) universe from reaching superluminal (faster-than-light)
speeds. Here I show that if we make speed a complex num-
ber, we can go around the speed of light the way a car faced
with an insurmountable road block might leave the road to
go around that barrier. In our present day understanding of
the universe, no known physical interpretation exists for
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imaginary speed. However, the problem provides a useful
exercise in special relativity, one that illustrates the value of
learning how to interpret the results of equations in physical
terms.

Section II gives an overview of the physics that students
need in order to follow the discussions in this paper. Section
III presents the extension of special relativity to complex
speeds. Section IV gives a problem (relativistic ““absorp-
tion””) which illustrates how comparisons between different
areas of physics have the potential to yield new insights.

I1. SUPERLUMINAL PHYSICS

Although prerelativistic theorists considered the possibil-
ity of superluminal particles as early as the late 1800s, the
paper that introduced many of the current ideas about the
subject is the classrc article by Bilaniuk, Deshpande, and
Sudarshan on “meta” relativity.” Feinberg gave a quantum
field theory of noninteracting superluminal particles and in-
troduced the word tachyon, from the Greek word tachys
meaning “swift.”> Two words have been suggested for
slower than light particles: “‘bradyon” from the Greek word
for “slow,” and “tardyon” from the obvious derivation.**
Because of the similarity between the words tachyon and
tardyon I will use bradyon for subluminal particles. Follow-
ing Bilaniuk and Sudarshan I will use “luxon” for particles
with luminal speed.*

Some scientists have hypothesized superluminal reference
frames, relative to which tachyons behave like bradyons.5~
Fjelstad and his students show how perplex number theory
provrdes insight into the differences among the various
theories'® (a perplex number satisfies z=x+hy, where |A|
=-—1). Others discuss the EPR paradox, which raises the
question of whether or not distant particles can communicate
at superluminal speeds.'’ Bibliographies of the literature on
superluminal physics have been comprled and review ar-
ticles have presented the subject in a manner suitable for
undergraduates.*> Results have been reported for various
tachyon searches, though so far none of the projects has pro-
duced definitive evidence for superluminal particles.'?

A. Properties

Special relativity predicts that no object can go from sub-
luminal to superluminal speeds because to do so it would
have to pass through the speed of light, where mass (and thus
energy) becomes infinite relative to any slower observer.
Time dilation also becomes infinite, which means slower ob-
servers would see time stop for the object; even if the tran-
sition from subluminal to superluminal speed somehow be-
came possible, it would take an infinite amount of time for
an observer to record it. Space contraction goes to zero at
light speed; an observer measures the length of the object in
the direction of travel as contracted to zero when it passes
the observation point.'* Although contraction to zero length
does not necessarily forbid the transition, it is an odd enough
prediction that even if the other two problems did not exist, it
would still warrant questioning the likelihood of such a pro-
cess. The theory does allow for massless particles, like pho-
tons, that travel at light speed, but if such 5partrcles ever slow
down (or speed up), they cease to exist.

However, despite Ernstem s conviction that superluminal
travel was 1mp0551b1e relativity does not rule out its exist-
ence. By assuming relativistic theory is valid in a superlumr-
nal universe, we can determine the behavior of tachyons -2
Light speed is still an impassable barrier, but now it is the
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slowest possible speed. This suggests three classes of ob-
jects: bradyons (class I particles) that travel at subluminal
speeds; luxons (class II) that have no mass and travel at light
speed; and tachyons (class III) that travel at superluminal
speeds.

Significant differences exist between the behavior that
special relativity predicts for tachyonic and bradyonic ob-
jects. Suppose we are traveling with a group of space ships
that can go at any speed u as long as |u|<c, where c is the
speed of light. Two observers are keeping track of us, one in
reference frame S and the other in §’. The two frames share
a common x axis, and S’ moves at speed v relative to S,
where |v|<c. Our speed u is measured relative to S. Accord-
ing to the Lorentz transformations, if the observer in § sees
one of our ships travel a distance Ax in time A¢, then the
distance and trme intervals recorded in S’ are given by Ax'

and At’, where’
v
Ax'=yAx( 1- ;), (1)
uv
At'=yAt( 1- 7). 2)

With the definition of a unitless speed B=v/c, the relativistic
v factor is

1
= —— 3
[Ny )

Depending on the values of u and v, the distance interval
Ax’ can have either the same or the opposrte sign as Ax.
However, |uv|<c? for all # and v, so At’ always has the
same sign as A¢. In other words, whether an observer records
a particular ship moving in the +x or —x direction depends
on that observer’s speed relative to the ship, but every ob-
server agrees the ship goes forward in time.

Now consider what happens if the ships are superluminal.
Assuming the Lorentz transformations are valid for |u|>c,
we can show that time and space interchange character as
compared to the subluminal universe. Because |u|>|v|, the
space interval Ax’ must always have the same sign as Ax (I
am assuming the observers are still subluminal). However,
depending on the value of uv, the interval A¢’ may have
either the same or the opposite sign as Az. Thus all observers
agree on the direction a ship travels in space but not on its
direction in time. This is the causality paradox; if something
can travel back in time, the effect of an event can be put
before its cause. An observer could see you die before you
were born!

Causality paradoxes are not the only problem we encoun-
ter in the superluminal universe. The Lorentz transformations
predict that if we observe a particle moving ‘“‘pastward,” we
will also measure its relativistic energy as negative. Here, I
am using the energy E defined by

E=Mc?, )
where the mass of an object traveling with speed 8 is
M=myy. (5)

In the subluminal universe, m refers to the mass of a partrcle
as measured in the reference frame where it is at rest.!’” Us-
ing m allows us to rewrite the energy as

E=mgc?+my(y—1)c?, (6)
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which is the sum of the rest energy and kinetic energy, both
of which are inherently positive. Let E and At be, respec-
tively, the energy and interval of time associated with a pro-
cess in reference frame S, say a particle traveling with speed
u through distance Ax. If E' and A¢t' are the corresponding
energy and time intervals as observed in frame S’ (which
moves at speed v with respect to ), it is straightforward to
show that’

E’_At’_ p2\ 12 uv -
Foac\iTa) \tz @

When uv>c?, both E’ and At' change sign relative to their
values in S.

Physicists object to particles with £ <0 because no system
would be stable against their emission.” Relativistic theory
predicts that if one observer can record such an energy, then
that state must be possible for all observers, which means
negative energy states exist for all observers, contradicting
the known stability of ordinary matter.’

We can resolve the time and energy problems using the
reinterpretation principle.** According to reinterpretation, a
tachyon with negative energy going into the past appears as
an antitachyon with positive energy going into the future,
traveling from its destination to its point of origin. Suppose
particle P, emits a tachyon with energy E>0 that travels
until particle P, absorbs it. Any observers who measure its
energy as negative should also observe it going backward in
time, which means they would record its absorption before
its emission. Reinterpretation suggests the observers actually
see the time-reversed process: P, emits an antitachyon with
positive energy E that travels into the future until P, absorbs
it. The laws of physics remain valid, though we may not all
agree on the events we observe.

Reinterpretation can be seen as the temporal analogy of a
much more familiar phenomenon. Consider what happens to
cars fraveling at sublight speeds. Person P, is in a car that
travels at speed v,. Person P, is in a car traveling in the
same direction at speed v, such that v, <v, . If we are stand-
ing still on the sidewalk, then when the two cars go by we
observe both moving in the same direction relative to us. P,
sees P,’s car moving backward relative to his car, and P,
sees herself as stationary relative to her car. The various
observers see different processes, but every process is con-
sistent with the others; everyone agrees that P, and P, arrive
at their destinations, but each person sees the arrivals occur
in a different way.

Now consider superluminal speeds. For tachyons, it is the
temporal rather than spatial direction that depends on the
observer’s reference frame. Say P, is the pilot of a superlu-
minal ship and P, is a rocket scientist recording P,’s journey
from an observatory on her home planet. P, always observes
himself moving forward in time because he is at rest relative
to his ship. However, his speed is such that P, observes him
traveling pastward. Can P, watch P, go back in time and,
say, affect his parent’s history so that they die before he is
born, creating a paradox? I would say no, for the following
reason: P, sees himself living in a timeline that for him
always progresses futureward. In analogy with the spatial
example given above, his observations must be consistent
with those of all other observers. This suggests it is impos-
sible for him to kill his parents; otherwise, that event would
have already taken place in his timeline, which of course it
has not. In other words, P,’s life as observed from other
reference frames must be consistent with his own observa-
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tions just as spatial observations must be consistent. This
does not necessarily mean P, can never appear in his own
past, but rather that he cannot change that past after he has
experienced it.

But what does P, see when P, goes pastward? Imagine
that P, travels to point x, in space and arrives there at time
ty, where position and time are measured in his frame of
reference. At x;, his ship takes on a speed such that the
scientist P, observes it traveling pastward. She records P,
moving into the past until he reaches point x, at time ¢, (as
measured in his frame), after which he takes on a speed such
that P, once again records his motion as futureward. P, then
continues on to point x;. Relativity predicts that P, observes
the ship at x; first, where the prime indicates the measure-
ment is made in P,’s reference frame. However, P, observes
himself traveling forward in time continuously from point x;
to point x5. In other words, P, records ¢, <t, and P, records
t1 > t;. So what does P, actually see? .

Extrapolating reinterpretation into a macroscopic realm
suggests a possible interpretation of the above events. At
point x5 and time ¢, scientist P, sees two ships create by
pair production, one matter and the other antimatter (this
requires large enough mass in the vicinity to ensure conser-
vation laws are satisfied). The matter ship travels on to x5 .
However, the antimatter ship follows a reversed trajectory
between x; and xi; it moves along a time-reversed path
compared to what P, himself observes when he travels from
x, to x,. Meanwhile, P, sees a third ship approaching point
X1, a twin to the matter ship now traveling from x to x (the
twin ships are not identical because they are at different
points along the trajectory). At point x; and time #; the an-
timatter and matter ships meet and annihilate each other, pro-
ducing an equivalent amount of energy, mass and charge as
was used to create the antimatter and matter ships at x; .
Although the different observers see dramatically different
processes, in theory no physical laws are violated. The final
result is the same in both reference frames: The ship arrives
at its destination.

Of course, the macroscopic nature of this scenario raises
problems. For one thing, the matter and antimatter ship must
pair produce without annihilating; they must create together
without occupying overlapping regions in space. The ex-
ample also makes the rather odd prediction that P, sees the
antimatter ship gaining antifuel as it travels “backward”
from point x; to x;. The reader may be able to supply ad-
ditional oddities regarding the scenario, and perhaps think up
possible solutions or explanations.

One might argue that the above scenario requires prede-
termination. Although this is more a philosophical than
physical matter, my first inclination is to say consistency is a
less severe constraint than predetermination. Actually, cau-
sality itself is a form of predetermination. In some ways a
universe where objects move forward or backward in time,
but not space, is analogous to a universe such as ours where
objects move forward or backward in space, but not time.
The equations for position, velocity and acceleration deter-
mine an object’s behavior until a new force acts on it; if we
know all of the forces involved, we can specify exactly how
the object behaves at all times.

Another problem raised by superluminal travel is that rela-
tivity predicts that superluminal objects have imaginary
mass. When 8>1 is put into Eq. (5), the mass becomes
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Iimo
=t ®

The -+im, comes from the negative root of V=1 and is
dropped in most treatments. For the time being, I will do
likewise and deal only with —im,. However, I will show
later that the second root does play a useful role in the dis-
cussion.

Unfortunately, even if a universe with imaginary proper-
ties exists, we do not (yet) know how to interact with it.
Superluminal reference frames provide one possible theoreti-
cal device for circumventing the imaginary nature of
tachyons.>® A tachyon with B>1 relative to subluminal
frames acts like a bradyon with 1/8<1 relative to superlumi-
nal frames, and tachyons obey the same physical laws in
superluminal frames that bradyons obey in subluminal
frames. Combined with reinterpretation, this leads to the in-
triguing suggestion that what we measure as antiparticles are
the particles themselves, but traveling backward in time.

Another way to avoid the imaginary nature of tachyons is
to postulate an imaginary mass m for superluminal particles.
In the superluminal universe we then have

mo=iu when |B|>1. 9)

Here w is real. An imaginary m does not contradict known
physics because the Lorentz equations predict that nothing
can go slower than light speed in a superluminal universe,
which means a tachyon has no rest frame. Substitution of Eq.
(9) into Eq. (8) (using the —img root) gives a real value:
M= pu/ \/V,Bz— 1, which means E =M c? is also real.

Time dilation and length contraction can be treated in a
similar manner. Suppose a ship of proper length L, flies
through a distance Ax in proper time 7y, where both L, and
T, are measured in the reference frame of the ship (that is,
the frame where the ship is at rest). Define T and L as the
time and length measured by an observer in a reference
frame traveling at speed B with. respect to the ship. When
|B|>1, it is useful to write L and T as

e Ty,  —iT, (10)
_\/T:__—f_\/ﬂz—_l,
L=LoJ1-B%=iLyJB*—1. 11

If we write Ty=i7 and L,=—i\, where 7 and X\ are real,
then T and L become real and positive at superluminal
speeds.

The relativistic equations predict that at speeds near
|Bl=1, a decelerating faster-than-light ship experiences ef-
fects similar to an accelerating slower-than-light ship; an ob-
server measures an increase in the magnitude of its mass,
greater dilation in the passage of time on the ship, and more
contraction in the magnitude of its length. Similarly, an ac-
celerating superluminal ship is like a decelerating sublight
ship: mass decreases, length increases, and time dilates less.
At |8|=Vv2, the magnitude of the ship’s mass equals m, the
magnitude of its length equals Ly, and time passes at the
same rate for both the object and the observer (|7|=T). In
other words, M, L, and T have the same magnitudes at
B=*v2 as they do in the ship’s rest frame.

Nothing in the equations sets an upper limit on our speed
in the superluminal universe. But as |8| increases above v2,
odd things happen; the observer keeping track of our super-
luminal progress records a decrease in the magnitude of our
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mass relative to mg, an increase in the magnitude of our
length relative to L, and an increase in how fast time passes
for us relative to her reference frame. If we accelerate all the
way to |B|=c, our disconcerted observer finds that for us
M =0, |L|=, and T=0. In other words, our ship has no
mass and infinite length dilation, and an infinite amount of
time passes for us while no time passes for the observer.'®
The term “transcendent” is used for objects with infinite
speed.’

Bilaniuk and Sudarshan make the intriguing suggestion
that the infinite |L| for a transcendent particle is analogous to
a particle at rest having infinite position uncertainty.* This
follows from the Heisenberg uncertainty principle, which
states that the product of the uncertainties in position and
momentum (or in energy and time) must be finite, so if one
variable has no uncertainty then the other must have infinite
uncertainty. The momentum of a particle at rest equals zero,
so its - momentum uncertainty is zero and its position uncer-
tainty is infinite. However, the interchange of space and time
for superluminal particles suggests that if the spatial uncer-
tainty is infinite for a transcendent tachyon, then it is the
energy, rather than the momentum, which may be known
exactly.

If our ship is traveling at a speed (3, then its momentum is
given by p=Muv=McB. What happens to its energy and
momentum when it reaches transcendence? In general,

E=myc’y and p=mycBy. (12)

If |8>1, then |p|>|E|. The limit |8/—> gives E—0 and
|p|— mc. So an observer records the object as having zero
energy and finite momentum. This contrasts to the sublumi-
nal universe, where an object can have zero momentum but
never zero energy. So bradyons have “zero-point energy”
(E=mgc?) and tachyons have “infinite-point momentum”
(Ipl=puc). Just as B=0 is not invariant for bradyons, but
depends on the observer’s reference frame, so |8|=0 for ta-
chyons depends on reference frame.

III. GOING AROUND THE TREE

Although differences exist between the various tachyon
theories, they all agree that the singularity in the Lorentz
transformations at B8==*1 creates an infinitely high energy
barrier between subluminal and superluminal speeds. Let us
look now at a mathematical device for getting around the
barrier at light speed.

The equations of special relativity are singular at |B8|=1
because \'1— 2 appears in the denominator of the relativis-
tic y factor. This singularity is easily circumvented by allow-
ing speed to become complex:

B=B,+iB;. (13)

For the sake of simplicity, I will consider motion only in one
dimension. Figure 1 shows the coordinates of an arbitrary
complex speed B, where

Bi=1+B=r, exp(if.),
B_=1—B=r_ exp(if_).

It is convenient to define such quantities because of the fre-
quent occurrence of the term 1— B in the relativistic equa-
tions;  with  these  definitions, B B_=1-f
=r,r_ expli(f,+6_)], which simplifies the mathematical
manipulations. Here, r. and 6. are the polar coordinates of

Bt

(14)
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Fig. 1. Coordinates of point P in the complex speed plane. The horizontal
axis specifies the real part of 8 and the vertical axis specifies its imaginary
part, where S is the unitless complex speed. For points in the upper half-
plane (as shown above), 6,>0 and #_<O0. For points in the lower half-
plane, §_>0 and 8,<0. For the case illustrated, §,=45° and #_=-80°.
The negative sign on #_ can be motivated by drawing a vector from the
origin to the point B_=1— 8. The angle made by that vector with the posi-
tive x axis is #_, which, by geometry, is the same angle shown as 6_ in the
triangle.

Bi
- Y] _ -1
re=y(1£8,)"+p;, 6.=*tan [1'—",3r
For points in the upper half-plane (such as P shown in Fig.
1), #,>0 and 6_<0. For points in the lower half-plane,
60_>0 and 0, <<0. In either case the mass and energy are

. (15)

M= % expl—i(6_+6.)/2], (16)
m002
E= expl —i(0_+0,)/2]. (17)

Equation (17) is not single valued: E(8.+6_)#E(6,
+6_+2w). To make the energy a function we restrict its
phase to an interval where it is single-valued. The function in
such an interval is a branch of E, and the singular points
B==1 are branch points.'” A branch cut originates at a
branch point, cannot be crossed, and is drawn to define the
interval of allowed values for 4, +6_ that make E single-
valued. Figure 2 shows three out of the infinite number of
ways to draw branch cuts for the energy given in Eq. (17).
Each situation has a physical interpretation, which I will talk
about next.

A. Bradyons

The branch cuts shown in Fig. 2(a) lie on the real 8 axis,
one stretching from —1— —o and the other from 1—o. This
configuration blocks the real axis for all [8/>1, so for real
speeds only |B|<1 is allowed, which means both 6, and 6_
equal zero. The energy on the real axis is thus

mocz

E= ey 18
N a8

which is the usual form E takes in our subluminal universe.
In the universe represented by Fig. 2(a), no object with real
speed can ever have |B|>1. So this arrangement of branch
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Fig. 2. Branch cuts in the complex 8 plane: situation corresponding to (a)
bradyons. (class I particles), (b) tachyons (class Il particles), “massons”
(class “0” particles). In each plot, the horizontal axis specifies the real part
of B and the vertical axis specifies the imaginary part.

cuts corresponds, along the real axis, to the universe of
bradyons.

However, Fig. 2(a) suggests many other possibilities. Sup-
pose the speed of our space ship corresponds to P in Fig. 1:

B=r exp(if) at P. ‘(19)

If 8+0, what will our observer measure for properties such
as energy and momentum? At this point, she is ready to
throw up her hands in frustration. How can she make obser-
vations if our speed, and thus many of our other attributes,
has both a real and an imaginary part? However, being a
persistent sort, she makes a go at the problem. To detect the
energy (or any other complex quantity), it seems reasonable
to expect she would measure either (A) its magnitude, or (B)
its real part. For the time being, I will assume i, is real.
However, in keeping with the ideas in the literature (and to
make our observer’s life more interesting), 1 will later con-
sider the possibility that properties such as mg, Ly, and T
are complex.
Using method A on the energy in Eq. (17) gives

2

myc
E|= —, (20)
whereas, with method B, a modulating factor appears:
m0C2
E,=cos[(6_+8,)/2] (21)

N

where E, is the real part of E. The two methods yield iden-
tical results for real subluminal speeds, which is essential if
they are to agree with known physics. As |8| (and thus 8,
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and B_) goes to « in either Eq. (20) or (21), E—0. So, in
both methods A and B, the energy behaves as expected at
transcendent speeds. However, elsewhere the two equations
give different results. The method A energy has no phase
angle dependence; it varies only with the magnitude of 8.
The method B result depends on phase; as |6_+ 6, | increases
from 0—, the magnitude of the cosine in Eq. (21) de-
creases, until at |6_+6,|=7 we get E,=0 as the observed
energy. In other words, method B predicts the observed en-
ergy is zero at all real superluminal speeds (this will turn out
to be important for other configurations where the branch
cuts do not block the real superluminal axis).

The observer next considers the momentum p, where, in
general,

mycr ) .
p= expli(6— (8. +6_)/2)]. (22)
ror.
Method A gives
mocr

NrLr.

and method B yields

mycr

as the observed momentum, where p, is the real part of p. As
with the energy, method A predicts the momentum has no
phase dependence and method B predicts it varies with
phase. According to Eq. (24), the observed momentum
equals zero whenever the speed is such that 6—(6.
+6,)/2)=7/2 (or an odd multiple of 7/2). By plugging in
angles, it can be shown that real superluminal values of 8
satisfy this condition.

Method A thus gives nonzero values for E and p at finite
real superluminal speeds, whereas method B predicts the ob-
served energy and momentum both vanish at such speeds.
The branch cuts in Fig. 2(a) block that portion of complex
speed space, but it becomes available if we move the cuts
even slightly off the real axis. Method B would then appear
to suggest that when our speed is real and superluminal, we
cease to exist! Although the observer gleefully contemplates
this possibility as an end to her observation problems, she
quickly realizes she has determined no more than that
method B predicts the real parts of E and p cease to exist for
|B]>1, which is consistent with the fact that tachyons have
yet to be detected in our universe. It does not by itself rule
out the possibility that they “exist” with purely imaginary
properties.

p,=cos[6—(0_+8,)/2]

24)

B. Luxons

Before considering superluminal particles I will look at
luminal particles, or luxons, which travel at the speed of light
and so exist on the boundary between subluminal and super-
luminal space. Relativity predicts that such particles exist
only if they have my=0. The reason can be seen from Egs.
(3) and (5). A particle with my=0 traveling at light speed
satisfies M =0/0, which is undefined and may yield a finite
number. At subluminal (or superluminal) speeds such an ob-
ject ceases to exist because M =0. So luxons are defined as
massless particles moving at luminal speeds.
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Fig. 3. The circle gives all values of B in the complex plane that have |8|=1.
It crosses the real axis at the points 8=-1 and 8=1. At any point P on the
circle, the magnitude of a particle’s speed equals the speed of light. The
angle 4_=-50°.

How do we extend the definition of a luxon to the complex
speed plane? Consider all speeds with |B|=+B:+8/=1.
As shown in Fig. 3, these correspond to a circle of radius one
centered at the origin and intersecting the real axis at the
branch points f=*1. The fact that, on this circle, the rela-
tivistic equations encounter no-singularities off the real axis
suggests the possibility of luxons with mass. To investigate
this idea, consider the mass as given by Eq. (16). With
B2+ B?=1, it is straightforward to show r . r _=2|B;. Using
the fact that the magnitudes of the angles in a triangle add up
to 7r then yields

M= my 7 6]
= exp| Xi{ 7= > |, (25)

V2[Bil

where the plus sign is for points in the upper-half-plane
(6>0) and the minus sign is for points in the lower-half-
plane (#<0). Method A thus predicts the observer measures

M= — (26)

v2|Bil

and method B predicts she measures

Mr=cos(—7£—|-ﬂ) s , (27
4 2] \2|B

where M, is the real part of M. In either method, if my#0
then the observed mass goes to « as 3;,—0. The only way to
ensure M gives the observed result for particles with g=*1
is to make m,=0 for all speeds on the circle, which means
M =0 everywhere except at ==1. This does not mean an
object with mass can never have |B|=1, but rather that such
an object must always have an imaginary component to its
speed. Conversely, if an imaginary part is added to the speed
of a massless luxon, y becomes finite; the condition my=0
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then requires M =0, which means the particle ceases to exist.
For these reasons, I will continue to use the word luxon to
mean only massless particles with S=*1.

C. Tachyons

Figure 2(b) shows an alternate way to make 7y single-
valued. Instead of two branch cuts, we have only one going
from —1—+1. Now no points can be taken on the real axis
where |8|<1, so particles with real speed must always be
superluminal. Figure 2(b) thus corresponds, on the real axis,
to a universe of tachyons.

For purely real speeds, Eq. (16) gives M =imy/r r_ if
p>1 and M=—imy/\r r_ if B<—1 (in the interval
0< @< that defines the upper half-plane). This is consistent
with the discussion following Eq. (8), which notes that
strictly speaking y=Fi/yB,—1. Method A predicts that
M=mg/\r,r_ is observed at real superluminal speeds and
method B gives M, =0 as the observed mass. Although so far
we have assumed m,, is real, the results of method A are
reminiscent of those obtained from theories that make proper
mass imaginary for tachyons. One way to provide an expla-
nation as to why method A would allow us to observe the
magnitude of a complex quantity is to extend the idea of
imaginary mass to the complex plane;

mo=p expli(8.+6_)/2], (28)
where u is real. Putting Eq. (28) into Eq. (17) then gives

2
E=H2_ (29)
Nror,

Along the real superluminal axis this is the same result as
that obtained with tachyon theories where m,=i 1. However,
for points along the real axis, Eq. (28) gives my=—iu if
B>1 and my=iy if B<—1. The predictions of Eq. (28) are
physically pleasing because they suggest that as speed
changes, mg rotates smoothly through the complex plane
rather than jumping discontinuously from a real quantity in
our universe to an imaginary quantity in the superluminal
universe.

The 7 factor also appears in the time and length relations
given in Egs. (10) and (11), suggesting the definitions

To=7expli(8.+6_)/2],

Ly=N\ exp[—i(0,+6.)/2], (30)

to make T and L real.

In either Fig. 2(a) or 2(b) it is impossible to draw a curve
that lies on both subluminal and superluminal sections of the
real axis. In other words, if our ships are traveling at real
sublight speeds we cannot get into a superluminal universe
with real speed, and vice versa; if we leave the road to go
around the road block, we cannot return to the road after we
pass the barrier.

However, there are other ways to draw the branch cuts.

D. Massons

If we think of complex B space as curved into a sphere,
then Figs. 2(a) and 2(b) are actually different configurations
of the same branch cut. We can envision this by sticking two
pins in a ball so that they are separated by a few degrees of
arc. The surface of the ball corresponds to B space and the
pins to B=*1. A rubber band stretched between the pins
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represents the branch cuts. If we pull the band around the
ball so that it stretches the long way from pin to pin, we have
the situation in Fig. 2(a). The curving of complex g space
allows © and — to “meet” on the far side of the ball, so
that the two cuts are actually one. To obtain Fig. 2(b), we
move the band so that it stretches the short distance between
the pins.

However, with a bit of glue we can attach the rubber band
to the ball in ways other than the two discussed above. In
fact, an infinite number of configurations exist. The only re-
quirement is that we anchor the branch cut at ==*1. Figure
2(c) shows a third possibility. Now all real speeds are avail-
able except f==*1, which means our ships can start at real
subluminal speeds and accelerate (via complex space) to real
supetluminal speeds. This suggests the possibility of a “class
0” particle that can go at any speed, real or complex, except
B==*1. Class 0 would contain all particles with mass, so 1
will call them massons (to contrast with luxons, which have
no mass). For such particles, the relativistic equations vary
smoothly with the phase (6_+6.).

No known method exists for observing imaginary speeds,
so even if we were detecting particles with such speeds we
would not know. We continually make leaps in understand-
ing which revolutionize our view of the universe, as wit-
nessed by quantum mechanics and relativity. In the past such
leaps of understanding have been accompanied by a refor-
mulation of the equations that describe physical phenomena;
Newton’s equations, for example, gave way to those of
Schrodinger and Einstein. The validity of a theory is deter-
mined by how well it predicts observed results. The impor-
tant point for the student to remember is that the equations of
physics are not “absolute truths,” but rather they represent
models that describe the universe to the best of our current
knowledge. A lack of evidence is not the same as proof of
impossibility; theories may well turn out to be incomplete
when pushed to describe new results previously inaccessible
to experiment.20

IV. RELATIVISTIC “ABSORPTION”

Precedent does exists for the imaginary part of a complex
function having a physical meaning, as in the damped dis-
persion equations for n, the refractive index of light. The real
part of n gives the speed of light in a material and its imagi-
nary part provides a measure of how much the material ab-
sorbs light. Perhaps an imaginary speed might also manifest
as a physical property we could measure in the real universe.
This section presents a problem that students and relativity
buffs might find intriguing, one based on an analogy between
the complex forms of the dispersion and relativity equations.
The analogy is purely speculative; it has no known physical
basis. What it illustrates is how comparisons between differ-
ent areas of physics have the potential to yield new insights.

Consider a molecule in an isotropic dielectric medium
subject to an electromagnetic field E=F, sin wt. There are
N electrons per unit volume, m is the electron mass and e is
charge. To a first approximation, the system can be described
as a mechanical oscillator driven by a sinusoidal force with
frequency w. The refractive index for a rarified medium,
n{w), is then determined from?!

Ne? 1

nz(w)=1+— 3 3|

€M | wyg— w (31)
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Here wy is the resonance frequency of the oscillator (for
simplicity, I will consider a system with only one resonance).
With the definition of a unitless dispersion frequency
Bs=w/wy, and a “dispersion” vy, such that

Ya= VW(" -1), (32)

Eq. (31) can be written as
1

= 33
Ya m (33)

Thus vy, has the same form as the relativistic y, with @ and
wy playing analogous roles in dispersion to v and c in special
relativity.

However, classical dispersion theory neglects absorption.
Energy losses due to such processes cause the oscillating
atom to behave like a damped oscillator. The damping force
is f=mG(dR/dt), where G is a constant characteristic of
the damping and dR/dt is the time derivative of the displace-
ment R experienced by the electron cloud. When absorption
is included, the index of refraction can be written??

Ne?

n*(w)=1+~——
€gm

1
] . (34)

(w%—— 0?)—iGw
Combining Egs. (34) and (32) yields
_ 1
T 1= B iGBalw,

The complex form of the relativistic vy is found by substitut-
ing B=p,+ipB; into Eq. (3);

1
1-B2+B-2iB,B:

In dispersion theory, the resonance occurs at w= * w,, which
can be rewritten as 8;,=*+1 (only the +w, root has known
physical meaning). When absorption is ignored, y,— at the
resonance frequency. With the inclusion of absorption, the
real part of y, goes to zero at S;==*1.

Similarly, the relativistic y— at 8=*1. However, when
we make B complex, the real part of y does not necessarily
go to zero at the points where the purely real vy is singular.
The location of the zeros is determined by the hyperbola

Bi-pi=1. (37)

Speed can be either positive or negative, so both the positive
and negative branches of the equation have physical mean-
ing. If we take as the relativistic analog of the dispersion
resonance the points where the real part of the complex y
equals zero (which includes as the points where the purely
real y—o), then the analogy suggests that an object with 8
on the hyperbola in Eq. (37) is “absorbed” out of real space
into a purely imaginary universe. This is consistent with the
fact that we measure my=0 for luminal particles. As 8;—0,
the relativistic resonance goes to *1, which is consistent
with known physics.

The relativistic model has two variables, 8, and S;,
whereas the dispersion model has only one, 8,. Comparison
of y and 7y, suggests the following analogies:

35)

Y (36)

dispersion relativity
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1-B}+B — 1-82
28,8, « GBywy

We can try out various scenarios depending on what we do
with the extra degree of freedom introduced by the additional
relativistic variable. Comparing v/c with w/w, suggests the
real part of the relativistic 8 compares with the dispersion
B, . The reader may enjoy investigating the implications of
other choices.

Note that the comparison 8, 8, does not require B;=0;
rather, it indicates that a constant in the dispersion model
compares with a variable in the relativistic model. The com-
pariso.. %+ G/(2wy), which comes from applying B, B, to
the second analogy relationship, suggests that the imaginary
part of the complex speed “damps” the mass (or energy) of
an object in a manner analogous to the way absorption
damps the oscillation of an electron cloud subject to an ex-
ternal field.

When a molecule has more than one resonance, a sum
over wy; appears in Eq. (34) (the j index runs over all reso-
nance frequencies). This raises the intriguing suggestion that
*c (or the associated hyperbola) may be only the first of
many singularities in the allowed speeds of an object.

Gascon has introduced real transformation formulas for
the relativistic equations that contain a discrete spectrum of
singularities. The first speed is invariant with resgect to sub-
luminal space, but the remaining speeds are not.”
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