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For scattering processes in which both s and t are significantly larger than the Planck mass
we have string theory on the one hand, and on the other hand the physics of black hole formation
and decay . Both these descriptions are as yet ill understood. It is argued in this paper that a lot of
insight is to be gained by insisting that black holes and strings should be "unified" . Just like string
theory, the horizon of a black hole is governed by some conformal operator algebra on a
two-dimensional surface, where the in- and out-going particles are represented as vertex insertions,
so here we have a starting point for a unified description . Only the "physical picture" is very
different . Rather than a quantized string, a black hole is seen to be a classical statistical ensemble
defined on a membrane, its horizon. The former requires a minkowskian surface ; the latter a
euclidean one . These two are known to be related by a Wick rotation . We stress that black holes
are as fundamental as strings, so the two pictures really are complementary.

1 . Introduction

The black hole interpretation of strings has been highlighted by the author at
various occasions in conferences and summer schools [1], but received remarkably
little attention . Because we think the observations made are absolutely crucial for a
proper understanding of both black holes and strings, those results that are basically
new are presented here.

(Super)string theory, as it stands, suffers from a couple of very fundamental
weaknesses . It is now becoming more and more clear that these are standing in the
way of a good understanding of what precisely the purported fundamental laws of
nature are . Now such statements should not be regarded as criticism against the
brilliant work that went into producing these theories (a comprehensive review is
given in ref. [2]), but rather as an attempt to indicate what direction future work
should take . In our work we will do no better than to replace the weaknesses of
string theory by other weaknesses .
What are those weaknesses of string theory? First of all (super)string theory is a

model, with degrees of freedom that are postulated, not derived. Most researchers
are not aware of this weakness because models have always been used in particle
physics, and indeed led to the tremendously successful standard model for the
observed elementary particles . But indeed this standard model was not found before
decades of research in fundamental quantum field theory gave a complete classifica-
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tion of all models that can possibly be used to describe elementary particles in flat
space-time .
How do we know that x l'(a, T), ,u = 1, . . . ,10 or 26, and X0(6, T) are the "right"

degrees of freedom? The statement "it works" is not valid anymore . Neither is the
statement "it is finite", because of the intrinsic infinity of the integration over all
surfaces of all topologies . And even if those long sought for properties were true
there would forever be this nagging doubt that we might be working on the wrong
model after all .
Another fundamental weakness is that string theory by its very nature is pertur-

bative . One must expand with respect to the number of topological loops in the
surfaces . Again, we were used to having to do such expansions in ordinary field
theories, but there are three things different here : in the old theories we can always
formulate a non-perturbative version using a lattice cut-off ; secondly, in string
theory the physical interpretation of space-time itself hinges upon a non-perturba-
tive formulation . And then, finally, the old theories never claimed to be the ultimate
theories of everything .

It would be a lot safer if we could derive what the relevant degrees of freedom
should be at the Planck length . Of course such a derivation requires assumptions, so
what we should work at is to make these assumptions as reasonable as possible . It is
reasonable to assume that in the classical limit (i .e. h - 0) general relativity should
be exactly valid . Also, quantum mechanics should exactly describe the statistics of
events at low energies. A somewhat less obvious, but to our mind extremely
plausible assumption is that the quantum mechanical formulation of the evolution
of states in a Hilbert space, using some sort of evolution operator, should still be
exactly valid at energies at and above the Planck mass . The reasoning behind this
assumption is that any deviation from the algebra of (linear) evolution operators
seems to give very serious (though perhaps not insurmountable) problems with the
conservation of total probabilities or space-time causality .

It is this latter assumption that turns out to be very powerful . We claim that this
indeed allows us to derive things about nature at the Planck length . The point is that
at energies above the Planck mass gravitational collapse is unavoidable . Black holes
with radii large compared to the Planck size can form . This follows from the
assumption that general relativity is valid at distance scales large compared to the
Planck length . So our Hilbert space should contain states where black holes, or
more precisely, black-hole like objects occur .

Indeed, all states in which the total energy per unit of length exceeds a number of
order one in natural units, are black-hole like. And then we can use a very powerful
result from quantum field theory in curved space-time, namely the thermodynamic
properties of a black hole, which are known*. The entropy of a black hole increases

* There is a possibility to dispute a factor of 2 in the black hole temperature if one assumes covariance
rather than invariance of quantum mechanical probabilities under a general coordinate transforma-
tion [3] . One should keep on the lookout for such surprises, but the present theory favors the
conventional value.
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with the size-squared, and this implies that the total number of states in Hilbert
space in a certain volume of space increases as an exponential function of the
surface area only, because the black hole itself is the limit of what one can squeeze
inside any given volume .

This implies that the dimensionality of Hilbert space for quantum gravitodynam-
ics in any finite volume is much smaller than in any other field theory, even if a
fixed lattice cut-off were introduced (the dimensionality there, if finite, grows
exponentially with the volume), and certainly much smaller than in any (naive?)
interpretation of string theory, where the number of states, even in the compactified
case, is strictly infinite .
The assumption that black holes are described by a more or less conventional

Hilbert space has another consequence that is well known, namely the absence of
any exact continuous global symmetry [4] . In practice we need only be concerned
about the U(1) symmetries corresponding to baryon number and lepton number
conservation (the latter with possible separate conservation laws for each genera-
tion) . All these symmetries must be broken . The argument is simple . We could drop
unlimited amounts of baryons into a black hole, at a rate equal to the Hawking
emission of particles of the same energy . But Hawking radiation [5] is known not to
discriminate between baryons and antibaryons (if it would, that would be a
deviation from general relativity, which we decided to be unacceptable) . So the net
baryon number of a black hole with given mass can be raised indefinitely, whereas
the total number of possible states is limited by the horizon's area, a fixed number .
This can only be if the symmetry is completely lost inside the black hole .
The above demonstrates that the mere assumption that a more or less conven-

tional Hilbert space exists for black holes has drastic consequences . However, so far
the consequences derived were only qualitative, obtained through counting argu-
ments . One can be much more precise however, and discover that a scattering
matrix should exist in this Hilbert space that in more than one respect resembles a
string theory S-matrix . This is what the rest of this paper will be about . Our main
point is that this result is practically model independent. No assumptions about a
possible "stringy" nature of elementary particles were used, or should be used .
What we consider to be a tremendous advantage of this approach is that one can see
to what extent the two-dimensional operator algebra is a necessary consequence of
the gravitational back reaction of a black hole horizon, as dictated by general
covariance and quantum mechanics alone, without any other assumptions than the
ones stated .

The fundamental importance of these attempts to construct the black hole
S-matrix is that our Gedanken experiments with the black hole horizon will create
all possible states near this horizon . If we succeed in characterizing the generic state
a black hole can be in, then we also find a complete characterization of all possible
configurations of matter, at all energies, in a given region of space-time . This is why
we believe this to be a promising strategy to find the "theory of everything" .
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But, as promised, our approach has its weaknesses also . The arguments are
strictly speaking only airtight at distance scales large compared to the Planck length .
We suspect that this means that what we obtained this way is the large scale
structure of the "string" . Extra dynamics at small scales (such as compactified
dimensions and fermionic degrees of freedom) is allowed but not yet derived .
Furthermore, we put "string" between quotation marks because what we get is not
exactly a string. Rather, we discover a string with imaginary string constant . To
understand this aspect more work is necessary . Clearly, unitarity is insisted upon
throughout, so how could we get an imaginary string constant? Presumably the
deviation from the conventional picture is a consequence of the fundamentally
non-trivial way in which space-time itself is incorporated in this approach . And, we
hasten to add that string theory's most conspicuous phenomenological successes are
the predictions of the zero mass spectrum, obtained at the zero slope limit, which is
the same for real as for imaginary string constants . Indeed, we will find that
particles going in and out will have to be represented as massless vertex insertions,
carrying quantum numbers just as in string theory .

2 . The gravitational back reaction

When an electrically neutral particle is dropped into a medium sized* black hole
then, according to classical general relativity, it leaves no trace . If quantum
mechanics is switched on it also leaves no trace, or so it seems in standard
derivations [5] . But it does have a more subtle effect on the Hawking radiation
emitted . Suppose the particle falls into a hole that "planned to emit" a certain series
of particles, possibly to be detected in the late future by some detector . The hole is
then said to be in one of its various possible states in Hilbert space . The infalling
particle, no matter how light it is, will change all that. A different series of particles
will come out . So the incoming particle does cause a transition from one state into a
different one . The effect can be computed rather precisely, using the physics at
distance scales of the particles considered, which we may presume to be known to
some extent : the standard model . First of all we have the interactions postulated by
the standard model itself . The in- and outgoing particles will scatter . What we will
do in this paper is to presume that these interactions are relatively insignificant . The
standard model interactions are essentially perturbative, and so their effects could
be added at a later stage in the form of successive perturbative corrections .

In particular the non-gravitational interactions between any incoming particle
and any of the outcoming Hawking particles will be insignificant when they each
cross the horizon at relatively large angular distance from each other . More

* If the hole is smaller than a proton the particle should also be color neutral, and there are similar
restrictions at the weak and further scales . We look at electromagnetism in sect . 7, but effects due to
other forces such as color and weak charges are not given much attention in this paper . It should be
fairly easy to take them into account.
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precisely, we consider two particles whose space-time trajectories, where they cross
each other in the Penrose diagram [6], have significantly different values for the
angles t$ and q) .
On the other hand the gravitational interactions between these two particles

increases as an exponential function of the time difference when they were far from
the horizon . So it is important to compute this interaction non-perturbatively . This
is not difficult and has been done [7]! The simple observation is that even very light
particles have an effect on the precise position of the horizon whose importance (for
the composition of the actually emitted Hawking particles) increases exponentially
with time . The precise metric of space-time surrounding a black hole with a tiny
particle falling in was computed in ref. [7] . The result can be formulated as two
Schwarzschild solutions glued together at the null surface x = 0 (x is one of the
Kruskal coordinates), but with a slight shift Sy in the other Kruskal coordinate y,

Sy( Q) = Kpinf(2 2) ,	(2 .1)

where 2 stands for the two angles (t~, cp); pin is the ingoing particle's momentum
with respect to the Kruskal coordinates, K= 29GM4e-1 and the Green function f is

determined by the equation

Af-f= -27TSZ (S2,S2') .

	

(2 .2)

Here, 4 is the angular laplacian . This is a Green function defined on the horizon
and by its very nature it is a two-dimensional one. Eq. (2.2) follows from imposing
the Einstein equations on the "seam" between the two Schwarzschild configura-
tions . The sign of the shift is such that a particle falling in drags other particles that
otherwise might just barely have escaped, back into the hole . The sign of f is the

same for all values of S2 and S2'.

Eqs . (2.1) and (2.2) are exact and the above no doubt describes the correct metric
when a particle with original energy small compared to the hole falls in . Surely,
when p in is tiny then also Sy is tiny, but remember that the Kruskal coordinates are
defined by

xy = _ (r12M - 1)er/2M

	

x/y = e('-ta )/?M (2.3)

where to is some reference time . M is the gravitational mass of the black hole . If we
reintroduce these coordinates at a later reference time to, we notice that the new
y-coordinate is much larger than the old one, whereas the x-coordinate shrank. The
ingoing particle's momentum with respect to the new coordinates has also become
much larger (the wave function is proportional to exp(ip inx)) . So the shift Sy
increases exponentially with the reference time t o .
The fact that this derivation is only valid for light infalling particles will be a

second reason why the black hole S-matrix that we will derive is only approximately
correct (the other was that we ignored non-gravitational interactions) .
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Astronomical black holes* can only have been formed by myriads of infalling
particles . Each single individual of these caused an essential horizon shift . Hawking
radiation was derived by ignoring all these individual shifts and treating the horizon
as one single entity . It should not be considered as surprising that such a procedure
gives only a rough description of the state of the resulting black hole as a statistical
average over many quantum mechanical states : the density matrix . Since the
position of the point where the horizon was formed is kept fixed in space-time, such
a derivation yields a black hole that is very far from any single energy eigenstate . In
this formalists it will be impossible to notice the effect of adding one further
particle . This is why the shift (2.1) will be extremely difficult to verify experimen-
tally for astronomical black holes . More precisely : Hawking's derivation of the
radiation gives the statistical distribution of the outcoming particles. This distribu-
tion is, by construction, unaffected by the shift .
But when we consider a black hole in a single state the shift (2.1) has the effect of

a transition into another state . And this transition is computable! Essentially, the
argument goes as follows . We characterize the state of the black hole in terms of all
particles it will eventually decay into, or would decay into if absolutely nothing were
thrown in . As soon as these particles come free they are described by conventional
quantum field theory . Since many of these particles emerge very late in the history
of the black hole, there will be an extremely tight clustering of particle states at the
future event horizon . Thus, a black hole in a given, fixed quantum state is very far
from the Hartle-Hawking vacuum . We do not claim that an infalling observer
would actually see all these particles . This is because for fundamental reasons this
observer would be unable to prepare the particular state of the black hole that we
are now discussing . In particular, the infalling observer will not notice the gravita-
tional field of all these particles .

Let the momentum distribution of all these particles due on their way out be
given by a function

This may seem to be an approximation. We ignored the components of the
momenta in the transverse directions, yet assumed the particles to be well localized
in the angular direction . But since the radial component of the momentum com-

`Any black hole that is very much larger than the Planck length will be called "astronomical" .

pou'(Q) Q-(0,9P)- (2 .4)

This means that we have wave functions of particles at each S2 of the form

e-'n 'pout v , (2 .5)

with at each S2,

y-pout
=pout() . (2 .6)
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mutes with the angular coordinates 0 and T, it is not unreasonable to consider all
outgoing particles as being in a mixed momentum/coordinate representation
~(p`ut , Sl), so (2.4) is a good operator for the outgoing states, of which we could
consider a particular eigenstate .
The effect of the shift (2.1) on this eigenstate is simple. In the outgoing waves we

make the replacement y - y - Sy, so that

Ip"t(2), a) -exp(ifd2Sapout(p)&y ( ~2 ))Ipout( f~ ), a) .

Here, a stands for any conceivable further parameters that might be necessary to
completely specify the out-state, besides the momentum distribution. Thus, throw-
ing a light particle into a hole in a given out-state has the effect (2.7) on this state .

3 . Construction of the S-matrix

Instead of specifying the particles the black hole plans to decay into, we could
specify the particles that produced it . Again we give the radial-momentum distribu-
tion as a function of the angles S2 in the Kruskal coordinate frame,

Ip'n(S2), p),

(2.7)

where now the ingoing wave functions are considered to be in the mixed coordi-
nate/momentum representation where Sl and p'n are specified . Just as is the case
for the out-states, the momenta p'n(Sl) alone might not be sufficient to characterize
these states completely (there could for instance be more than one particle at a given
set of angles SZ) . This is why we (temporarily) introduce the additional parame-
ter(s) ß .

Clearly, we now have two bases for the black hole states, the in- and the out-basis .
The dynamical properties of a black hole will be completely determined by the
S-matrix, i .e . the set of inner products

(
pout(Q) aIPln (SZ t),a) .

	

(3 .2)

That this S-matrix should be unitary is a consequence of our assumption that a
decent Hilbert space description of black holes is possible, with the usual probabil-
ity interpretation of the wave functions .

This unitarity condition, together with the expression (2.7) for the shift, nearly
completely determines the S-matrix. Suppose namely that we knew just one of the
elements (3.2) . Now add a single light incoming particle with momentum Sp'° and
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angular coordinates S2' . The in-state changed into

and the out-state became

Ip in (Q) + Spins2(S2 _ ~,),
ß,)

	

(3 .3)

exp(ifd2S2pout(S2)sy (Q))Ipout(Q), a)

=exp(iK fd 2 S2 p
out (S2)f(S2 , 52i)Sp in )Ipout ( 9) a) .

	

(3 .4)

Now eq . (3 .3) has an unspecified phase factor, whereas the out-state changed only
by a phase factor . The point to consider however is that, whatever the new phase
factor in (3.3) should be, it should be independent of the details such as pout(S2)
describing the out-state . Thus we ignore possible arbitrary phase factors in (3 .3) .
One additional phase factor, due to electromagnetic interactions between in- and
out-states will be added later . For the time being we ignore electromagnetic
interactions .
An apparently disturbing fact is that the out-state turns out not to react upon any

possible changes in the additional parameter ß. One immediately concludes that this
is in contradiction with unitarity unless the additional parameters a and ß are
declared to be absent . In the latter case essentially only one S-matrix (up to an
overall phase) agrees with (3.4) . This is because one can reach all other matrix
elements starting with just one . The result is

l pout (S2)Ip'n (Q)/ = Nexp(iu fd2 S2 fd2 S2if(S2, 2')pin(2t)pout(S2)) ,

	

(3.5)

where N is a common normalization factor .
The disappearance of the parameters a and ß is remarkable but acceptable. It

means that an infinitely precise determination of p i n(S2) or pout(S2) should be
sufficient to completely specify the black hole state. It is remarkable because
apparently a state with two particles at exactly the same angular coordinates S2 and
radial momenta p, and p2 should be indistinguishable from a state with one
particle having momentum p, + p2 at those same angular coordinates . But this is
not in contradiction with anything we know because in practice there is always some
uncertainty in S2, and a state where the two angular positions differ just very slightly
can be distinguished from any single particle state .
A difficulty of course is that expression (3.5) seems to be intrinsically infinite . The

states are functionals, and the unitarity equation becomes a functional integral
equation, with dangerous infinities, implying that N is not directly computable as
yet . It will become important to introduce some cut-off. In what sense should (3 .5)
be exactly valid?
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The additional parameters a and iß, formally removed from the expression, can
be reintroduced via the back door by now introducing (for instance) a lattice in SZ
space . The details of the functions pin, '"t within one single lattice site are repre-
sented by the extra variables, and only the course grained structure is kept . The
point is that we should only believe the functional dependence described in (3.5)
when Sl and 2' are sufficiently far apart, otherwise both non-gravitational interac-
tions and transverse gravitational interactions cause havoc. The need for a cut-off
becomes apparent also when we realize that the total number of states should be
finite, depending exponentially on the total area of the horizon . This implies that we
expect only a finite number of discrete and bounded degrees of freedom at every
cell in Sl space of planckian dimensions (as determined by the transverse metric on
the horizon) .

4 . The functional integral for the S-matrix

The geometric interpretation of our S-matrix (3 .5) becomes more apparent when
we make the transition to a complete "coordinate representation" . We Fourier
transform the states with respect to the radial momenta pin and pout ,

put

	

9
pin (S2))=Cf~u'(Sl)exp( - ifd 2Slpn

nt

(Sa)u :F
(2)

l
lul-(SZ)),

	

(4 .1)

where u - = y, u+ = x, and C is a normalization factor . The integral is a functional
integral . In some sense the "observables" u- and u+ can be regarded as represent-
ing the position and shape of the future and past horizon, respectively . Together
they seem to localize the intersection of the future and past horizons, but we have to
be careful with this identification (for one thing, these two observables obviously do
not commute with each other) . We easily derive

(u - (S2) j u+(Sa))=C'exp(K ff- '(S2, SZ')u+(S2)u-(S2')),	(4 .2)

where the inverse f-i of f is simply (1 -4)/27r, from eq. (2.2) . Using this
expression we can reexpress the amplitudes (3.5) in the following way :

(pout(g)Ipin(Q)/ = C"Pu-(62) f3u+(Q)

i
Xexp fd22

	

(u+u- + dQu
+ ôau- ) + iu-pout - iu+pin)

(

	

.

277K

(4 .3)
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We can rewrite this amplitude in a slightly more covariant way . Let the external
momenta (in a radial coordinate frame) be

where the functional integral is over those two components of x" which are
orthogonal to the two transverse directions generated by 0 and q) .

5 . Space-time interpretation

The amplitude (4.6) is remarkably similar to string amplitudes apart from the fact
that the string constant i/7TK is imaginary . This rotation over 90° in the complex
plane is also seen when the gravitational scattering amplitude is computed in a flat
space-time background [7] . We must remember that although the mathematical
nature of the obtained expressions in the three cases, string theory, flat space
gravitational scattering [7], and the black hole scattering matrix, is very similar, the
physical interpretation is very different .
A space-time diagram appropriate for the amplitude (4.6) is difficult to draw,

because there is no classical background space-time . What we have is a quantum
mechanical mapping from a configuration with a regular, asymptotically flat,
space-time in the past and a future event horizon (fig . la), onto configurations with
a regular space-time that is asymptotically flat in the future and has a past event
horizon (fig . lb) . Thus, our picture has become entirely symmetric under time
reversal . It also becomes clear how to look upon the solutions of the Einstein
equations called "white holes" : they are a representation of black holes in a basis
that does not commute with the conventional one for black holes (i .e . the observ-
ables that are diagonal in this basis do not commute with the ones diagonal in the
usual basis) .

The fact that we insist on our amplitude (4.6) to be unitary will have important
consequences for its short distance structure (i .e . the cut-off) and implies that the
totality of all states with highly energetic particles extremely close to the horizon is
very different from what is usually considered in standard quantum field theories .
This is why we say that this approach should give us fundamentally new informa-

pext = (pin -pout O O -pin -pout)
(4.4)

and define "membrane coordinates" x° , x3 by

u + =x ° +x3 ; a- =x° - x3 . (4.5)

The functional integral (4.3) then reads (in our notation x2 = x 2 - 2),

-i
=C" f9x(fl)expld2lll- 2

+ + l
2, ( astx ix .pext >

7TK
)2) (4.6)
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time

space

black hole
matter
out

matter
in

past
hori-

"white hole"

matter
in

Fig. 1. The black hole as linear superposition of "white holes" . The horizons are light-like surfaces
separating a forbidden region (shaded) from the outside world.

tion on the dynamics at planckian distance scales . If particles there behave as
strings, this is the way to find out . Since large black holes are used as starting
points, the cosmological constant will always be very small by construction .

It is inherent to our philosophy that tiny black holes should naturally blend with
the more ordinary elementary particles and resonances . So also amplitudes at lower
energy scales should be described by expressions similar to eq . (4.6) . We are left
with the functional integral over a tiny 2-d membrane in four-dimensional space-
time, where the external particle lines are represented as vertex insertions . This, of
course, is a euclidean string . Our problem however is that eq . (4.6) is only an
approximation valid for large membranes that are very close to being spherical. It is
as if we imposed a gauge where the two angles tO and rp are used as coordinates at
and 02, after which the string excitations are treated as tiny deviations from the
ideal sphere . After all, in the derivations the infalling and outcoming particles had
been assumed to be light compared with the black hole itself, which was taken to be
a Schwarzschild black hole (spherical therefore) .

6 . Covariant notation

For simplicity we will now ignore the "mass term"* in eq . (4 .6) . It was due to the
curvature of the horizon, and becomes less important if we concentrate on a tiny
segment of this horizon . So we write

l
(

	

) = CfCx(al,a2)exp fd 2a (

	

t
27,(ôax) 2 +ix . P(a)I >

	

(6 .1)

` This term can be seen to be related to the curvature of the surface in the background metric (see

appendix B of ref . [7]) .
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where now Kruskal coordinates were replaced by Rindler coordinates [8] and, if we
choose the dependent variables to be x3 and x° while
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(6 .2)

T= 871G N ,

	

(6.3)

(G N is Newton's constant) . We had argued that eq. (6.1) is only correct when the
excitations of x3 and x ° are small . It seems to be only a small step to replace eq .
(6 .1) by a covariant expression, such that one may expect it to be valid indeed as an
integral over all membranes,

r
( 2T

(

	

) = Cf_g
x"(

(T
)
_9g°b (a

	

")expfd2a

	

Fgab8aX " abx "+ ix p"(a)) ,	(6 .4)

which gives upon integrating over g°`ß the well-known Nambu-Goto action (now

i
iS= - T det(ddax"ôt,x") +ix"p"(a),

	

(6 .5)

and in the gauge a l =

	

X11 a2 = x2 , this gives (6 .1) with "higher-order corrections"
and terms that can be removed by integration . Presumably then, eqs . (6 .4) and (6.5)
are an improvement of eq . (6 .1) .

This makes the connection with string theory, apart from the imaginary string
constant, complete . But it does not answer the question how to formulate the cut-off
needed for the black hole Hilbert space . In sect . 5 the quantities p3(Q), POW),
u ±(d), etc . were seen to be operators in Hilbert space . This is new in the sense that
they are not defined on a one-dimensional space { a } (string), but on a two-dimen-
sional membrane to,, a2 ) (the horizon) . They satisfy non-trivial commutation
relations . If we were able to turn these into completely covariant relations we might
be able to see how the cut-off at planckian distances could be realized .

In the limit of small excitations and the gauge a l = xl, 02 = x2 , we have

[ pout(a) u-(a') ] = Lp'n(a),u+(at) ] = i82(a-a'),

u-(a)=2Tfd'a'f(a'ai)pin(af),

	

_dj(a,a,)=82(a-at) .

	

(6 .6)

Since the algebra of these operators is expected to generate all of Hilbert space, one
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deduces from (6.6) also

We add to these the obvious relations

u+(a) = -2Tfd2Q'f(a' a')p
OUt (a t) .

	

(6 .7)

Pout

	

u + I = [Pin, U-]
= 0 .

	

(6 .8)

Going back to Minkowski coordinates (transformations (4.4) and (4.5)), these
relations read

Remember that (6.12) is a commutation relation that was derived for the
infinitesimal oscillations of a membrane that is oriented in the 12-direction . To turn
these commutators into covariant ones, so that we get something that holds for all
membranes, is far more difficult than to make the action covariant (eq. (6 .5)) . A
problem is that in (6.12) the constant T has dimension mass-squared . The right-hand
side obviously depends on the orientation of the surface (the quantities x 1 and x2
commute). As a consequence we were unable to derive simple-looking commutation
rules for the fields x".
Let us however indicate a better way to proceed . Introduce the orientation tensor

W,,�(a) of the surface,

Wp°(a) = eab ôax~` ô bx °,

	

(6 .14)

which transforms as a density in a-space. In the approximation in which eqs .

[
Pp(a), x °(a')] = -e,w1282( a _ al) (6 .9)

x"(a)=Tfd2a'f(a,a')pw( (Y '), (6 .10)

where e0312 From eq. (6.10),

From this,

[x ju(a), x ° (a f)] = - Te tLv
12f( 0 a '), (6 .12)

with

- aâf(a, a') = 82(a - ai ) . (6 .13)



(6 .6)-(6 .13) were derived we have

W12=1,

	

W1"=a2x",

	

W2"=-a1x"

	

(1t=3,4),

	

W34 =(9(x2) .

(6 .15)

From (6.12) and (6.13) one easily derives

P2x"(a), a2XV (a ' ) J + [01x"(0)> a1x''(Q ') ] = Te"12W12s 2 (Q_ (Y ') (6 .l6)

so we have also
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[ WIl"(a), Wx~
(a1)1 = Te"VKAWKX(a)s2( a _ a'),

	

(6.17)

where terms of higher order in d,x were ignored. Eq. (6.17) is known to hold for
surfaces that are approximately flat. it is suggestive to suspect that it has to hold
more generally .
Commutation relation (6.17) is not yet sufficient to fix completely the algebra of

these operators in Hilbert space, because the left-hand side still contains a summa-
tion over X . We could suspect

[W""(a),Wav(a)] ? zTS"°e"VK2,WKA(Q)s 2 (Q_Q'),

	

(6.18)

but this does not agree with the small-excitation commutation relations . More likely,
eq . (6.14), which defined the 6 components of W in terms of the 4 variables x" gives
us a further constraint to determine the way in which these operators act in Hilbert
space.
The (probably incorrect) equation (6 .18) was written down merely to illustrate

where one could go from such equations . Eqs. (6.18), of course, are the commutation
relations of the rotation group (the e symbol can simply be removed by redefining
W) . Clearly then, the operators W will be quantized. The delta function in (6.18)
would imply that if we choose a dense lattice of points on a space the quantum
units of dQx" would be inversely proportional to the lattice size, or in other words,
the distances between adjacent points of the surface in real space would be
quantized with units of the order of the Planck length. This is the picture we would
like to achieve : a surface with a limited set of discrete, bounded variables per unit of
surface area .

See further the note added in proof on p. 154.

7. Electromagnetism

One type of long-range force which was ignored in our derivations so far, but can
easily be included, is the electromagnetic force . Let us now drop an electrically
charged particle in the hole . Such a particle not only produces the shift (2.1) but also
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an electromagnetic field at the horizon . Just as is the case with the gravitational field
that this disturbance generates, the observable part of the electromagnetic field is a
delta-distribution . In flat space this is well known, a charged particle moving with
the speed of light is accompanied by Cerenkov radiation, an infinitely sharp plane
wave front . In the black hole its field is similar . The current in the Kruskal frame is

1,(x, y, e, 99 ) = e&,xö(x)S2(Q- Slo),

from which one finds the vector potential A.,

A,,=(e/r2)S,~xS(x)A(Q), A gA(2)=S2(Sa-Sa0), (7 .2)

where r = 2M. We see that along any path in space-time that crosses the surface
x = 0 this vector potential causes a phase shift

SA = (e/r 2 )A(Q) .

	

(7 .3)

This has the effect that the outcoming Hawking particles, besides being shifted by
the gravitational field, also undergo a phase rotation,

Applying the same philosophy as in sect . 3 we see that now we have as conjugated
variables the charge density ep'°(0) of the incoming particles and the phase angle
(pout(Sl) of the outcoming waves,

4iout(Q)=(elr 2)fd2 Q0A(S2,Q0)pin(90), as2A(SZ,S20)=S
2 (SZ-Q0) . (7 .5)

A state with charge density epout(SZ) in its outgoing particles will be rotated as

(7 .4)

IP out( S2), pout ( 9)) - exp(iKefd 2SZ fd2620 A(Sa,Sa 0 )pout(Q)pin(S20))

X IP out (SZ)I pout (92))

	

(7 .6)

in addition to the rotation (2.7) . Here, Ke = e2/r2 .
The inner product (3 .5) is replaced by

pout(Q), pout(2)1Pin( 2̀ ), p
in
(SZ)

pout(Sl,)IP '" ( S2 )~exp(iKefd2SZ fd2SZ0A(92,2.) pout( 62)p"(SZ0)) . (7 .7)
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There is however an important difference between this term and the original term
(3.5) : ptn and pout do not increase or decrease exponentially with the external
reference time to . For this reason we see that no harm* is done if in eq. (7.7) we
make the replacement

pout(S2) pin(S20 ) _ .), - I ( Pout(Q) _ pin(S2)) ( pout (S2 0 ) - pin( S?o)) . (7 .8)

The two extra pieces are extra overall phase factors that redefine the phases of the
in- and out-states only. Thus, we find as extra contribution to the functional integral
(4.3),

/pout( S2), pout( Q)Ipin(S2), Pin(S2)
)

i
~pou t(Q)Ipin(2) ) f_Q~p(S2) expfd 2S2 ( Zk ( aü~) 2 + t~( pont _ pin ) ) ,

e

(7 .9)

where the variable 4p could safely be taken to be periodic with period 277 if we may
assume electric charge to be quantized .
We see that electromagnetism naturally emerges as a fifth, periodic dimension.

The Kaluza-Klein picture will apply equally well to the non-abelian forces . Again,
the similarity with string theory is striking, but again the relevant degrees of
freedom were derived rather than postulated .

Unfortunately, collecting the operators p`n and pou t into one single operator p
does not seem to work well when we try to derive the commutation rules . We did
not work these out in detail but it seems that pin and p°n t and Din and 0°° t occur
separately there (see also footnote) .
One other remark is of order . We argued initially in sect . 3 that weak forces such

as electromagnetism may be ignored as a first approximation, and then that
unitarity forbids the occurrence of the extra variables a and ß. Now we see that
things are not quite this simple . Adding electromagnetism does give rise to extra
degrees of freedom . But we also see that these extra degrees of freedom have the
form of compactified dimensions, local degrees of freedom on the "string/mem-
brane" . Thus, the string or membrane itself arises from the gravitational back
reactions alone, the extra internal degrees of freedom from further non-gravitational
interactions .

` This is not quite true : the extra terms rotate both the bras and the kets in the same direction, where
the opposite direction would be more natural . These "self-energy terms" however are divergent, and
as long as the cut-off procedure is not specified it is hard to tell how important this problem is.
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Note that electromagnetism is represented on the horizon by the phase field (p,
the generator of gauge transformations in the four-dimensional world, and that,
similarly, the gravitational force on the horizon is a field x", the generator of
general coordinate transformations .

Note added in proof

One may observe that indeed a discrete representation for the black hole horizon
can be obtained by considering only the self-dual part of the operator (6 .14),
because this does obey a complete set of commutation relations . The picture
emerges of a black hole horizon covered by a lattice of simplexes each of Planck
size, and on every simplex i, quantum numbers li = 1/2, m i = ± 1/2 can be added
as if they were angular momenta. The fact that this representation is not unitary
(because the self-dual part of (6.14) is not hermitean) is perhaps related to require-
ments for a cut-off for the degrees of freedom at not too large distances from the
horizon.
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