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We introduce spinors, at a level appropriate for an undergraduate or first year graduate course
on relativity, astrophysics or particle physics. The treatment assumes very little mathematical
knowledge (mainly just vector analysis and some idea of what a group is). The SU(2)–SO(3)
homomorphism is presented in detail. Lorentz transformation, chirality, and the spinor Minkowski
metric are introduced. Applications to electromagnetism, parity violation, and to Dirac spinors are
presented. A classical form of the Dirac equation is obtained, and the (quantum) prediction that
g = 2 for Dirac particles is presented.

I. INTRODUCING SPINORS

Spinors are mathematical entities somewhat like ten-
sors, that allow a more general treatment of the notion
of invariance under rotation and Lorentz boosts[7]. To
every tensor of rank k there corresponds a spinor of rank
2k, and some kinds of tensor can be associated with a
spinor of the same rank. For example, a general 4-vector
would correspond to a Hermitian spinor of rank 2, which
can be represented by a 2 × 2 Hermitian matrix of com-
plex numbers. A null 4-vector can also be associated with
a spinor of rank 1, which can be represented by a com-
plex vector with two components. We shall see why in
the following.

Spinors can be used without reference to relativity, but
they arise naturally in discussions of the Lorentz group.
One could say that a spinor is the most basic sort of
mathematical object that can be Lorentz-transformed.
The main facts about spinors are given in the box on
page 2. The statements in the summary will be explained
as we go along.

It appears that Klein originally designed the spinor
to simplify the treatment of the classical spinning top
in 1897. The more thorough understanding of spinors
as mathematical objects is credited to Élie Cartan in
1913. They are closely related to Hamilton’s quaternions
(about 1845).

Spinors began to find a more extensive role in physics
when it was discovered that electrons and other parti-
cles have an intrinsic form of angular momentum now
called ‘spin’, and the behaviour of this type of angular
momentum is correctly captured by the mathematics dis-
covered by Cartan. Pauli formalized this connection in a
non-relativistic (i.e. low velocity) context, modelling the
electron spin using a two-component complex vector, and
introducing the Pauli spin matrices. Then in seeking a
quantum mechanical description of the electron that was
consistent with the requirements of Lorentz covariance,
Paul Dirac had the brilliant insight that an equation of
the right form could be found if the electron is described
by combining the mathematics of spinors with the ex-
isting quantum mechanics of wavefunctions. He intro-
duced a 4-component complex vector, now called a Dirac
spinor, and by physically interpreting the wave equation

thus obtained, he predicted the existence of antimatter.
Here we will discuss spinors in general, concentrating

on the simplest case, namely 2-component spinors. These
suffice to describe rotations in 3 dimensions, and Lorentz
transformations in 3 + 1 dimensions. We will briefly in-
troduce the spinors of higher rank, which transform like
outer products of first rank spinors. We will then intro-
duce Dirac’s idea, which can be understood as a pair of
coupled equations for a pair of first rank spinors.
Undergraduate students often first meet spinors in the

context of non-relativistic quantum mechanics and the
treatment of the spin angular momentum. This can give
the impression that spinors are essentially about spin, an
impression that is fortified by the name ‘spinor’. How-
ever, you should try to avoid that assumption in the first
instance. Think of the word ‘spinor’ as a generalisation
of ‘vector’ or ‘tensor’. We shall meet a spinor that de-
scribes an electric 4-current, for example, and a spinor
version of the Faraday tensor, and thus write Maxwell’s
equations in spinor notation.
Just as we can usefully think of a vector as an arrow

in space, and a 4-vector as an arrow in spacetime, it is
useful to have a geometrical picture of a rank 1 spinor (or
just ‘spinor’ for short); see figure 1. It can be pictured as
a vector with two further features: a ‘flag’ that picks out
a plane in space containing the vector, and an overall
sign. The crucial property is that under the action of
a rotation, the direction of the spinor changes just as a
vector would, and the flag is carried along in the same
way is if it were rigidly attached to the ‘flag pole’. A
rotation about the axis picked out by the flagpole would
have no effect on a vector pointing in that direction, but
it does affect the spinor because it rotates the flag.
The overall sign of the spinor is more subtle. We shall

find that when a spinor is rotated through 360◦, it is re-
turned to its original direction, as one would expect, but
also it picks up an overall sign change. You can think of
this as a phase factor (eiπ = −1). This sign has no con-
sequence when spinors are examined one at a time, but
it can be relevant when one spinor is compared with an-
other. When we introduce the mathematical description
using a pair of complex numbers (a 2-component complex
vector) this and all other properties will automatically be
taken into account.
To specify a spinor state one must furnish 4 real pa-
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Spinor summary. A rank 1 spinor can be represented by a two-component complex vector, or by a null 4-vector,
angle and sign. The spatial part can be pictured as a flagpole with a rigid flag attached.

The 4-vector is obtained from the 2-component complex vector by

V
µ = 〈u|σµ |u〉 if u is a contraspinor (“right-handed”)

Vµ = 〈ũ|σµ |ũ〉 if ũ is a cospinor (“left handed”).

Any 2× 2 matrix Λ with unit determinant Lorentz-transforms a spinor. Such matrices can be written

Λ = exp (iσ · θ/2− σ · ρ/2)

where ρ is rapidity. If Λ is unitary the transformation is a rotation in space; if Λ is Hermitian it is a boost.
If s′ = Λ(v)s is the Lorentz transform of a right-handed spinor, then under the same change of reference frame a

left-handed spinor transforms as s̃′ = (Λ†)−1
s̃ = Λ(−v)s̃.

The Weyl equations may be obtained by considering (Wασα)w. This combination is zero in all frames. Applied to a
spinor w representing energy-momentum it reads

(E/c− p · σ)w = 0

(E/c+ p · σ)w̃ = 0.

If we take σ to represent spin angular momentum in these equations, then the equations are not parity-invariant,
and they imply that if both the energy-momentum and the spin of a particle can be represented simultaneously by

the same spinor, then the particle is massless and the sign of its helicity is fixed.
A Dirac spinor Ψ = (φR, φL) is composed of a pair of spinors, one of each handedness. From the two associated null

4-vectors one can extract two orthogonal non-null 4-vectors

V
µ = Ψ†γ0γµΨ,

W
µ = Ψ†γ0γµγ5Ψ,

where γµ, γ5 are the Dirac matrices. With appropriate normalization factors these 4-vectors can represent the
4-velocity and 4-spin of a particle such as the electron.

Starting from a frame in which V
i = 0 (i.e. the rest frame), the result of a Lorentz boost to a general frame can be

written
(

−m E + σ · p
E − σ · p −m

)(

φR(p)
χL(p)

)

= 0.

This is the Dirac equation. Under parity inversion the parts of a Dirac spinor swap over and σ → −σ; the Dirac
equation is therefore parity-invariant.

y

z
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α

φ

θ
r

FIG. 1: A spinor. The spinor has a direction in space (‘flag-
pole’), an orientation about this axis (‘flag’), and an overall
sign (not shown). A suitable set of parameters to describe
the spinor state, up to a sign, is (r, θ, φ, α), as shown. The
first three fix the length and direction of the flagpole by using
standard spherical coordinates, the last gives the orientation
of the flag.

rameters and a sign: an illustrative set r, θ, φ, α is given
in figure 1. One can see that just such a set would be
naturally suggested if one wanted to analyse the motion
of a spinning top. We shall assume the overall sign is pos-
itive unless explicitly stated otherwise. The application
to a classical spinning top is such that the spinor could
represent the instantaneous positional state of the top.
However, we shall not be interested in that application.
In this article we will show how a spinor can be used to
represent the energy-momentum and the spin of a mass-
less particle, and a pair of spinors can be used to represent
the energy-momentum and Pauli-Lubanksi spin 4-vector
of a massive particle. Some very interesting properties
of spin angular momentum, that otherwise might seem
mysterious, emerge naturally when we use spinors.

A spinor, like a vector, can be rotated. Under the
action of a rotation, the spinor magnitude is fixed while
the angles θ, φ, α change. In the flag picture, the flagpole
and flag evolve together as a rigid body; this suffices to
determine how α changes along with θ and φ. In order to
write the equations determining the effect of a rotation,
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it is convenient to gather together the four parameters
into two complex numbers defined by

a ≡
√
r cos(θ/2)ei(−α−φ)/2,

b ≡
√
r sin(θ/2)ei(−α+φ)/2. (1)

(The reason for the square root and the factors of 2 will
emerge in the discussion). Then the effect of a rotation
of the spinor through θr about the y axis, for example, is

(

a′

b′

)

=

(

cos(θr/2) − sin(θr/2)
sin(θr/2) cos(θr/2)

)(

a
b

)

. (2)

We shall prove this when we investigate more general
rotations below.
From now on we shall refer to the two-component com-

plex vector

s = se−iα/2

(

cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)

(3)

as a ‘spinor’. A spinor of size s has a flagpole of length

r = |a|2 + |b|2 = s2. (4)

The components (rx, ry, rz) of the flagpole vector are
given by

rx = ab∗ + ba∗, ry = i(ab∗ − ba∗), rz = |a|2 − |b|2, (5)

which may be obtained by inverting (1). You can now
see why the square root was required in (1).
The complex number representation will prove to be

central to understanding spinors. It gives a second pic-
ture of a spinor, as a vector in a 2-dimensional complex
vector space. One learns to ‘hold’ this picture alongside
the first one. Most people find themselves thinking pic-
torially in terms of a flag in a 3-dimensional real space
as illustrated in figure 1, but every now and then it is
helpful to remind oneself that a pair of opposite flagpole
states such as ‘straight up along z’ and ‘straight down
along z’ are orthogonal to one another in the complex
vector space (you can see this from eq. (3), which gives
(s, 0) and (0, s) for these cases, up to phase factors).
Figure 2 gives some example spinor states with their

complex number representation. Note that the two ba-
sis vectors (1, 0) and (0, 1) are associated with flagpole
directions up and down along z, respectively, as we just
mentioned. Considered as complex vectors, these are or-
thogonal to one another, but they represent directions in
3-space that are opposite to one another. More gener-
ally, a rotation through an angle θr in the complex ‘spin
space’ corresponds to a rotation through an angle 2θr in
the 3-dimensional real space. This is called ‘angle dou-
bling’; you can see it in eq (3) and we shall explore it
further in section II.
The matrix (2) for rotations about the y axis is real,

so spinor states obtained by rotation of (1, 0) about the
y axis are real. These all have the flag and flagpole in the
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FIG. 2: Some example spinors. In two cases a pair of spinors
pointing in the same direction but with flags in different di-
rections are shown, to illustrate the role of the flag angle α.
Any given direction and flag angle can also be represented by
a spinor of opposite sign to the one shown here.

xz plane, with the flag pointing in the right handed di-
rection relative to the y axis (i.e. the clockwise direction
when the y axis is directed into the page). A rotation
about the z axis is represented by a diagonal matrix, so
that it leaves spinor states (1, 0) and (0, 1) unchanged
in direction. To find the diagonal matrix, consider the
spinor (1, 1) which is directed along the positive x axis.
A rotation about z should increase φ by the rotation an-
gle θr. This means the matrix for a rotation of the spinor
about the z axis through angle θr is

(

exp(−iθr/2) 0
0 exp(iθr/2)

)

. (6)

When applied to the spinor (1, 0), the result is
(e−iθr/2, 0). This shows that the result is to increase
α + φ from zero to θr. Therefore the flag is rotated. In
order to be consistent with rotations of spinor directions
close to the z axis, it makes sense to interpret this as a
change in φ while leaving α unchanged.
So far our spinor picture was purely a spatial one. We

are used to putting 3-vectors into spacetime by finding a
fourth quantity and forming a 4-vector. For the spinor,
however, a different approach is used, because it will turn
out that the spinor is already a spacetime object that can
be Lorentz-transformed. To ‘place’ the spinor in space-
time we just need to identify the 3-dimensional region or
‘hypersurface’ on which it lives. We will show in section
IIIA that the 4-vector associated with the flagpole is a
null 4-vector. Therefore, the spinor should be regarded
as ‘pointing along’ or ‘existing on’ the light cone. The
word ‘cone’ suggests a two-dimensional surface, but of
course it is 3-dimensional really and therefore can con-
tain a spinor. The event whose light cone is meant will
be clear in practice. For example, if a particle has mass
or charge then we say the mass or charge is located at
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each event where the particle is present. In a similar
way, if a rank 1 spinor is used to describe a property of
a particle, then the spinor can be thought of as ‘located
at’ each event where the particle is present, and lying
on the future light cone of the event. (Some spinors of
higher rank can also be associated with 4-vectors, not
necessarily null ones.) The formula for a null 4-vector,
(X0)2 = (X1)2+(X2)2+(X3)2, leaves open a choice of sign
between the time and spatial parts, like the distinction
between a contravariant and covariant 4-vector. We shall
show in section IV that this choice leads to two types of
spinor, called ‘left handed’ and ‘right handed’.

II. THE ROTATION GROUP AND SU(2)

We introduced spinors above by giving a geometrical
picture, with flagpole and flag and angles in space. We
then gave another definition, a 2-component complex vec-
tor. We have an equation relating the definitions, (1). All
this makes it self-evident that there must exist a set of
transformations of the complex vector that correspond to
rotations of the flag and flagpole. It is also easy to guess
what transformations these are: they have to preserve
the length r of the flagpole, so they have to preserve the
size |a|2 + |b|2 of the complex vector. This implies they
are unitary transformations. If you are happy to accept
this, and if you are happy to accept eq. (31) or prove it by
others means (such as trigonometry), then you can skip
this section and proceed straight to section II B. How-
ever, the connection between rotations and unitary 2× 2
matrices gives an important example of a very powerful
idea in mathematical physics, so in this section we shall
take some trouble to explore it.
The basic idea is to show that two groups, which are

defined in different ways in the first instance, are in fact
the same (they are in one-to-one correspondance with
one another, called isomorphic) or else very similar (e.g.
each element of one group corresponds to a distinct set of
elements of the other, called homomorphic). These are
mathematical groups defined as in group theory, having
associativity, closure, an identity element and inverses.
The groups we are concerned with have a continuous
range of members, so are called Lie groups. We shall es-
tablish one of the most important mappings in Lie group
theory (that is, important to physics—mathematicians
would regard it as a rather simple example). This is the
‘homomorphism’

SU(2)
2:1−→ S0(3) (7)

‘Homomorphism’ means the mapping is not one-to-one;
here there are two elements of SU(2) corresponding to
each element of SO(3). SU(2) is the special unitary group
of degree 2. This is the group of two by two unitary[8]
matrices with determinant 1. SO(3) is the special orthog-
onal group of degree 3, isomorphic to the rotation group.
The former is the group of three by three orthogonal[9]

real matrices with determinant 1. The latter is the group
of rotations about the origin in Euclidian space in 3 di-
mensions.
These Lie groups SU(2) and SO(3) have the same ‘di-

mension’, where the dimension counts the number of real
parameters needed to specify a member of the group.
This ‘dimension’ is the number of dimensions of the ab-
stract ‘space’ (or manifold) of group members (do not
confuse this with dimensions in physical space and time).
The rotation group is three dimensional because three pa-
rameters are needed to specify a rotation (two to pick an
axis, one to give the rotation angle); the matrix group
SO(3) is three dimensional because a general 3 × 3 ma-
trix has nine parameters, but the orthogonality and unit
determinant conditions together set six constraints; the
matrix group SU(2) is three dimensional because a gen-
eral 2 × 2 unitary matrix can be described by 4 real pa-
rameters (see below) and the determinant condition gives
one constraint.
The strict definition of an isomorphism between groups

is as follows. If {Mi} are elements of one group and {Ni}
are elements of the other, the groups are isomorphic if
there exists a mapping Mi ↔ Ni such that if MiMj =
Mk then NiNj = Nk. For a homomorphism the same
condition applies but now the mapping need not be one-
to-one.
The SU(2), SO(3) mapping may be established as fol-

lows. First introduce the Pauli spin matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Note that these are all Hermitian and unitary. It follows
that they square to one:

σ2
x = σ2

y = σ2
z = I. (8)

They also have zero trace. It is very useful to know their
commutation relations:

[σx, σy ] ≡ σxσy − σyσx = 2iσz (9)

and similarly for cyclic permutation of x, y, z. You can
also notice that

σxσy = iσz, σyσx = −iσz
and therefore any pair anti-commutes:

σxσy = −σyσx (10)

or in terms of the ‘anticommutator’

{σx, σy} ≡ σxσy + σyσx = 0. (11)

Now, for any given spinor s, the components of the
flagpole vector, as given by eqn (5), can be written

rx = s
†σxs, ry = s

†σys, rz = s
†σzs (12)

which can be written more succinctly,

r = s
†σs = 〈s|σ |s〉 (13)
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where the second version is in Dirac notation[10].
Consider (exercise 1)

ei(θ/2)σj = cos(θ/2)I + i sin(θ/2)σj (14)

hence

ei(θ/2)σx =

(

cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)

, (15)

ei(θ/2)σy =

(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)

, (16)

ei(θ/2)σz =

(

eiθ/2 0
0 e−iθ/2

)

. (17)

We shall call these the ‘spin rotation matrices.’ We will
now show that when the spinor is acted on by the matrix
exp(iθσx/2), the flagpole is rotated through the angle θ
about the x-axis. This can be shown directly from eq.
(3) by trigonometry, but it will be more instructive to
prove it using matrix methods, as follows. Let

s
′ = ei(θ/2)σxs

then

r′ = 〈s′|σ |s′〉 = 〈s| e−i(θ/2)σx σ ei(θ/2)σx |s〉 (18)

where we used that σx is Hermitian. Consider first the
x-component of this expression:

x′ = 〈s| e−i(θ/2)σxσxe
i(θ/2)σx |s〉

= 〈s|σxe−i(θ/2)σxei(θ/2)σx |s〉
= 〈s|σx |s〉 = x, (19)

where we used that σx commutes with I and itself, and
you should confirm that

e−i(θ/2)σxei(θ/2)σx = I (20)

(more generally, if a matrix H is Hermitian then exp(iH)
is unitary). Now consider the y-component of (18):

y′ = 〈s| e−i(θ/2)σxσye
i(θ/2)σx |s〉 (21)

To reduce clutter in the following, introduce α = θ/2.
Then, using (14), the operator in the middle of (21) is

(cosα − i sinασx)σy(cosα+ i sinασx)

= σy(cosα+ i sinασx)(cosα+ i sinασx)

= σy(cos
2 α− sin2 α+ 2i sinα cosασx)

= σy(cos θ + i sin θσx) (22)

where in the first step we brought σy to the front by
using that σx and σy anti-commute (eqn (10)), and in
the second step we used that σ2

x = I. Upon subsituting
the result (22) into (21) we have

y′ = cos θ 〈s|σy |s〉+ i sin θ 〈s|σyσx |s〉 (23)

but σyσx = −iσz, so this is

y′ = cos(θ)y + sin(θ)z. (24)

The analysis for z′ goes the same, except that we have
σzσx = +iσy in the final step, so

z′ = cos(θ)z − sin(θ)y. (25)

The overall result is r′ = Rxr, where Rx is the matrix
representing a rotation through θ about the x axis. Ow-
ing to the fact that the commutation relations (9) are
obeyed by cyclic permutations of x, y, z, the correspond-
ing results for σy and σz immediately follow. Therefore,
we have shown that multiplying a spinor by each of the
spin rotation matrices (15)-(17) results in a rotation of
the flagpole by the corresponding matrix for a rotation
in three dimensions:

Rx =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 (26)

Ry =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 (27)

Rz =





cos θ +sin θ 0
− sin θ cos θ 0

0 0 1



 . (28)

These are rotations about the x, y and z axes respec-
tively, but note the angle doubling: the rotation angle θ
is twice the angle θ/2 which appears in the 2 × 2 ‘spin
rotation’ matrices. The sense of rotation is such that R
represents a change of reference frame, that is to say, a ro-
tation of the coordinate axes in a right-handed sense[11].
We have now almost established the homomorphism

between the groups SU(2) and SO(3), because we have
explicitly stated which member of SU(2) corresponds to
which member of SO(3). It only remains to note that
any member of SU(2) can be written (exercise 2)

U = eiσ·θ (29)

and any member of SO(3) can be written

R = eiJ·θ

where J are the generators of rotations in three dimen-
sions:

Jx =





0 0 0
0 0 −i
0 i 0



 ,

Jy =





0 0 i
0 0 0

−i 0 0



 ,

Jz =





0 −i 0
i 0 0
0 0 0



 . (30)
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Note also that to obtain a given rotation R, we can use
either U or −U . We have now fully established the map-
ping between the groups:

spinor s ↔ vector r = 〈s|σ |s〉
Members U

and −U of SU(2)
↔ member R of SO(3)

U = eiσ·θ/2 R = eiJ·θ

(31)

Let us note also the effect of an inversion of the coordi-
nate system through the origin (called parity inversion).
Vectors such as displacement change sign under such an
inversion and are called polar vectors. Vectors such as an-
gular momentum do not change sign under such an inver-
sion, and are called axial vectors or pseudovectors. Sup-
pose polar vectors a and b are related by b = Ra. Under
parity inversion these vectors transform as a′ = −a and
b′ = −b, so one finds b′ = Ra′, hence the rotation ma-
trix is unaffected by parity inversion: R′ = R. It follows
that, in the expression R = exp(iJ · σ), we must take J
and σ as either both polar or both axial. The choice,
whether we consider σ to be polar or axial, depends on
the context in which it is being used.
With the benefit of hindsight, or else with a good

knowledge of group theory, one could ‘spot’ the SU(2)–
SO(3) homomorphism, including the angle doubling, sim-
ply by noticing that the commutation relations (9) are
the same as those for the rotation matrices Ji, apart from
the factor 2. This is because, if you look back through
the argument, you can see that it would apply to any
set of quantities obeying those relations. More generally,
therefore, we say that the Pauli matrices are defined to
be a set of entities that obey the commutation relations,
and their standard expressions using 2 × 2 matrices are
one representation of them.
The angle doubling leads to the curious feature that

when θ = 2π (a single full rotation) the spin rotation
matrices all give −I. It is not that the flagpole reverses
direction—it does not, and neither does the flag—but
rather, the spinor picks up an overall sign that has no
ready representation in the flagpole picture.
It is worth considering for a moment. We usually con-

sider that a 360◦ leaves everything unchanged. This is
true for a global rotation of the whole universe, or for a
rotation of an isolated object not interacting with any-
thing else. However, when one object is rotated while
interacting with another that is not rotated, more pos-
sibilities arise. The fact that a spinor rotation through
360◦ does not give the identity operation captures a valid
property of rotations that is simply not modelled by the
behaviour of vectors. Place a fragile object such as a
china plate on the palm of your hand, and then rotate
your palm through 360◦ (say, anticlockwise if you use
your right hand) while keeping your palm horizontal,
with the plate balanced on it. It can be done but you
will now be standing somewhat awkwardly with a twist

FIG. 3: ‘Tangloids’ is a game invented by Piet Hein to ex-
plore the effect of rotations of connected objects. Two small
wooden poles or triangular blocks are joined by three parallel
strings. Each player holds one of the blocks. The first player
holds one block still, while the other player rotates the other

wooden block for two full revolutions about any fixed axis. Af-
ter this, the strings appear to be tangled. The first player now
has to untangle them without rotating either piece of wood.
He must use a parallel transport, that is, a translation of his
block (in 3 dimensions) without rotating it or the other block.
The fact that it can be done (for a 720◦ initial rotation, but
not for a 360◦ initial rotation) illustrates a subtle property of
rotations. After swapping roles, the winner is the one who
untangled the fastest.

in your arm. But now continue to rotate your palm in the
same direction (still anticlockwise). It can be done: most
of us find ourselves bringing our hand up over our shoul-
der, but note: the palm and plate remain horizontal and
continue to rotate. After thus completing two full revo-
lutions, 720◦, you should find yourself standing comfort-
ably, with no twist in your arm! This simple experiment
illustrates the fact that there is more to rotations than
is captured by the simple notion of a direction in space.
Mathematically, it is noticed in a subtle property of the
Lie group SO(3): the associated smooth space is not ‘sim-
ply connected’ (in a topological sense). The group SU(2)
exhibits it more clearly: the result of one full rotation is
a sign change; a second full rotation is required to get a
total effect equal to the identity matrix. Figure 3 gives a
further comment on this property.

A. Rotations of rank 2 spinors

The mapping between SU(2) and SO(3) can also be
established by examining a class of second rank spinors.
This serves to introduce some further useful ideas.
For any real vector r = (x, y, z) one can construct the

traceless Hermitian matrix

X = r · σ = xσx + yσy + zσz =

(

z x− iy

x+ iy −z

)

.(32)

It has determinant

|X | = −(x2 + y2 + z2).

Now consider the matrix product

UXU † = X ′ (33)
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where U is unitary and of unit determinant. For any
unitary U , if X is Hermitian then the result X ′ is
(i) Hermitian and (ii) has the same trace. Proof (i):
(X ′)† = (UXU †)† = (U †)†X†U † = UXU † = X ′; (ii):
the trace is the sum of the eigenvalues and the eigenval-
ues are preserved in unitary transformations. Since X ′ is
Hermitian and traceless, it can in turn be interpreted as a
3-component real vector r′ (you are invited to prove this
after reading on), and furthermore, if U has determinant
1 then X ′ has the same determinant as X so r′ has the
same length as r. It follows that the transformation of r
is either a rotation or a reflection. We shall prove that it
is a rotation. To do this, it suffices to pick one of the spin
rotation matrices; for convenience choose the z-rotation:

ei(θ/2)σzXe−i(θ/2)σz =

(

z eiθ(x− iy)

e−iθ(x + iy) −z

)

.

The vector associated with this matrix is (x cos θ +
y sin θ, −x sin θ + y cos θ, z), which is Rzr.
The relationship between the groups follows as before.

B. Spinors as eigenvectors

In this section we present an idea which is much used
in quantum physics, but also has wider application be-
cause it is part of the basic mathematics of spinors. Ev-
ery vector can be considered to be the eigenvector, with
eigenvalue 1, of an orthogonal matrix, and a similar prop-
erty applies to spinors. We will show that every spinor
is the eigenvector, with eigenvalue 1, of a 2× 2 traceless
Hermitian matrix. But, we saw in the previous section
that such matrices can be related to vectors, so we have
another interesting connection. It will turn out that the
direction associated with the matrix will agree with the
flagpole direction of the spinor!
In fact, it is this result that motivated the assignment

that we started with, eqn (1). The proofs connecting
SU(2) matrices to SO(3) matrices do not themselves re-
quire any particular choice of the assignment of 3-vector
direction to a complex 2-vector (spinor), only that it be
assigned in a way that makes sense when rotations are
applied. After all, we connected the groups in section
IIA without mentioning rank 1 spinors at all. The choice
(1) either leads to, or, depending on your point of view,
follows from, the considerations we are about to presemt.
Proof. First we show that for any 2-component com-

plex vector s we can construct a matrix S such that s is
an eigenvector of S with eigenvalue 1.
We would like S to be Hermitian. To achieve this,

we make sure the eigenvectors are orthogonal and the
eigenvectors real. The orthogonality we have in mind
here is with respect to the standard definition of inner
product in a complex vector space, namely

u
†
v = u∗1v1 + u∗2v2 = 〈u| v〉

where the last version on the right is in Dirac
notation[12]. Beware, however, that we shall be introduc-
ing another type of inner product for spinors in section
IV.

Let s =

(

a

b

)

. The spinor orthogonal[13] to s and

with the same length is

(

−b∗
a∗

)

(or a phase factor times

this). Let the eigenvalues be ±1, then we have

SV = V σz

where

V =
1

s

(

a −b∗
b a∗

)

is the matrix of normalized eigenvectors, with s =
√

|a|2 + |b|2. V is unitary when the eigenvectors are nor-
malized, as here. The solution is

S = V σzV
† =

1

s2

(

|a|2 − |b|2 2ab∗

2ba∗ |b|2 − |a|2

)

. (34)

Comparing this with (32), we see that the direction as-
sociated with S is as given by (5). Therefore the direc-
tion associated with the matrix S according to (32) is the
same as the flagpole direction of the spinor s which is an
eigenvector of S with eigenvalue 1. QED.
Eq. (34) can be written

S = n · σ = nxσx + nyσy + nzσz

where nx, ny, nz are given by equations (5) divided by
s2. We find that n is a unit vector (this comes from the
choice that the eigenvalue is 1). The result can also be
written nx = s

†σxs/s
2 and similarly. More succinctly, it

is

n =
s
†σs

s2
=

〈s|σ |s〉
s2

, (35)

Another useful way of stating the overall conclusion is

For any unit vector n, the Hermitian traceless
matrix

S = n · σ

has an eigenvector of eigenvalue 1 whose flag-
pole is along n.

Since a rotation of the coordinate system would bring S
onto one of the Pauli matrices, S is called a ‘spin matrix’
for spin along the direction n.
Suppose now that we have another spinor related to the

first one by a rotation: s′ = Us. We ask the question, of
which matrix is s′ an eigenvector with eigenvalue 1? We
propose and verify the solution USU †:

(USU †)s′ = USU †Us = USs = Us = s
′.
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Therefore the answer is

S′ = USU †.

This is precisely the transformation that represents a ro-
tation of the vector n (compare with (33)), so we have
proved that the flagpole of s′ is in the directionRn, where
R is the rotation in 3-space associated with U in the
mapping between SU(2) and SO(3). Therefore U gives a
rotation of the direction of the spinor.
We have here presented spinors as classical (in the

sense of not quantum-mechanical) objects. If you suspect
that the occasional mention of Dirac notation means that
we are doing quantum mechanics, then please reject that
impression. in this article a spinor is a classical object.
It is a generalization of a classical vector.

III. LORENTZ TRANSFORMATION OF
SPINORS

We are now ready to generalize from space to space-
time, and make contact with Special Relativity. It turns
out that the spinor is already a naturally 4-vector-like
quantity, to which Lorentz transformations can be ap-
plied.
We will adopt the font A, B, . . . for 4-vectors, and use

index notation where convenient. The inner product of
4-vectors is written either A ·B or AµBµ. The Minkowski
metric is taken with signature (−1, 1, 1, 1). Note, this is
a widely used convention, but it is not the convention
often adopted in particle physics where (1,−1,−1,−1) is
more common.
Let s be some arbitrary 1st rank spinor. Under a

change of inertial reference frame it will transform as

s
′ = Λs (36)

where Λ is a 2× 2 matrix to be discovered. To this end,
form the outer product

ss
† =

(

a

b

)

(a∗, b∗) =

(

|a|2 ab∗

ba∗ |b|2

)

. (37)

This is (an example of) a 2nd rank spinor, and by def-
inition it must transform as ss

† → Λss†Λ†. 2nd rank
spinors (of the standard, contravariant type) are defined
more generally as objects which transform in this way,
i.e. X → ΛXΛ†.
Notice that the matrix in (37) is Hermitian. Thus outer

products of 1st rank spinors form a subset of the set
of Hermitian 2 × 2 matrices. We shall show that the
complete set of Hermitian 2× 2 matrices can be used to
represent 2nd rank spinors.
An arbitrary Hermitian 2× 2 matrix can be written

X =

(

t+ z x− iy

x+ iy t− z

)

= tI + xσx + yσy + zσz, (38)

which can also be written

X =
∑

µ

X
µσµ

where we introduced σ0 ≡ I. The summation here is
written explicitly, because this is not a tensor expression,
it is a way of creating one sort of object (a 2nd rank
spinor) from another sort of object (a 4-vector).
Evaluating the determinant, we find

|X | = t2 − (x2 + y2 + z2),

which is the Lorentz invariant associated with the 4-
vector Xµ. Consider the transformation

X → ΛXΛ†. (39)

To keep the determinant unchanged we must have

|Λ||Λ†| = 1 ⇒ |Λ| = eiλ

for some real number λ. Let us first restrict attention to
λ = 0. Then we are considering complex matrices Λ with
determinant 1, i.e. the group SL(2,C). Since the action
of members of SL(2,C) preserves the Lorentz invariant
quantity, we can associate a 4-vector (t, r) with the ma-
trix X , and we can associate a Lorentz transformation
with any member of SL(2,C).
The more general case λ 6= 0 can be included by consid-

ering transformations of the form eiλ/2Λ where |Λ| = 1.
It is seen that the additional phase factor has no effect
on the 4-vector obtained from any given spinor, but it
rotates the flag through the angle λ. This is an example
of the fact that spinors are richer than 4-vectors. How-
ever, just as we did not include such global phase factors
in our definition of ‘rotation’, we shall also not include
it in our definition of ‘Lorentz transformation’. In other
words, the group of Lorentz transformation of spinors is
the group of 2× 2 complex matrices with determinant 1
(called SL(2,C)).
The extra parameter (allowing us to go from a 3-vector

to a 4-vector) compared to eq. (32) is exhibited in the tI
term. The resulting matrix is still Hermitian but it no
longer needs to have zero trace, and indeed the trace is
not zero when t 6= 0. Now that we don’t require the trace
of X to be fixed, we can allow non-unitary matrices to
act on it. In particular, consider the matrix

e−(ρ/2)σz =

(

e−ρ/2 0

0 eρ/2

)

= cosh(ρ/2)I − sinh(ρ/2)σz. (40)

One finds that the effect on X is such that the associated
4-vector is transformed as











cosh(ρ) 0 0 − sinh(ρ)

0 1 0 0

0 0 1 0

− sinh(ρ) 0 0 cosh(ρ).










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This is a Lorentz boost along z, with rapidity ρ. You
can check that exp(−(ρ/2)σx) and exp(−(ρ/2)σy) give
Lorentz boosts along x and y respectively. (This must
be the case, since the Pauli matrices can be related to
one another by rotations). The general Lorentz boost for
a spinor is, therefore, (for ρ = ρn)

e−(ρ/2)·σ = cosh(ρ/2)I − sinh(ρ/2)n · σ. (41)

We thus find the whole of the structure of the re-
stricted Lorentz group reproduced in the group SL(2,C).
The relationship is a two-to-one mapping since a given
Lorentz transformation (in the general sense, including
rotations) can be represented by either +M or −M , for
M ∈ SL(2,C). The abstract space associated with the
group SL(2,C) has three complex dimensions and there-
fore six real ones (the matrices have four complex num-
bers and one complex constraint on the determinant).
This matches the 6 dimensions of the manifold associ-
ated with the Lorentz group.
Now let

ǫ =

(

0 1

−1 0

)

. (42)

For an arbitrary Lorentz transformation

Λ =

(

a b

c d

)

, ad− bc = 1

we have

ΛT ǫΛ =

(

a c

b d

)(

c d

−a −b

)

= ǫ (43)

It follows that for a pair of spinors s, w the scalar quan-
tity

s
T ǫw = s1w2 − s2w1

is Lorentz-invariant. Hence this is a useful inner product
for spinors.
Equation (43) should remind you of the defining

property of Lorentz transformations applied to tensors,
“ΛTgΛ = g” where g is the Minkowski metric tensor. The
matrix ǫ satisfying (43) is called the spinor Minkowski
metric.
A full exploration of the symmetries of spinors involves

the recognition that the correct group to describe the
symmetries of particles is not the Lorentz group but the
Poincaré group. We shall not explore that here, but we
remark that in such a study the concept of intrinsic spin
emerges naturally, when one asks for a complete set of
quantities that can be used to describe symmetries of a
particle. One such quantity is the scalar invariant P · P,
which can be recognised as the (square of the) mass of a
particle. A second quantity emerges, related to rotations,
and its associated invariant isW·W whereW is the Pauli-
Lubanski spin vector.

u
†
u zeroth component of a 4-vector

u
T ǫu a scalar invariant (equal to zero)

u
†
u another way of writing u

T ǫu, with u ≡ ǫu∗

u
T
u no particular significance

TABLE I: Some scalars associated with a spinor, and their
significance.

A. Obtaining 4-vectors from spinors

By interpreting (37) using the general form (38) we
find that the four-vector associated with the 2nd rank
spinor obtained from the 1st rank spinor s is











t

x

y

z











=











(|a|2 + |b|2)/2
(ab∗ + ba∗)/2

i(ab∗ − ba∗)/2

(|a|2 − |b|2)/2











=
1

2

(

〈s| I |s〉
〈s|σ |s〉

)

(44)

which can be written (1/2) 〈s|σµ |s〉. Any constant mul-
tiple of this is also a legitimate 4-vector. In order that
the spatial part agrees with our starting point (1) we
must introduce[14] a factor 2, so that we have the result
(perhaps the central result of this introduction)

obtaining a (null) 4-vector from a spinor

V
µ = v

†σµ
v (45)

This 4-vector is null, as we mentioned in the introductory
section I. The easiest way to verify this is to calculate the
determinant of the spinor matrix (37).
Since the zeroth spin matrix is the identity, we find that

the zeroth component of the 4-vector can be written v
†
v.

This and some other basic quantities are listed in table I.
The linearity of eq. (36) shows that the sum of two

spinors is also a spinor (i.e. it transforms in the right
way). The new spinor still corresponds to a null 4-vector,
so it is in the light cone. Note, however, that the sum
of two null 4-vectors is not in general null. So adding up
two spinors as in w = u+ v does not result in a 4-vector
W that is the sum of the 4-vectors U and V associated
with each of the spinors. If you want to get access to
U+V, it is easy to do: first form the outer product, then
sum: uu

† + vv
†. The resulting 2 × 2 matrix represents

the (usually non-null) 4-vector U+ V.
By using a pair of non-orthogonal null spinors, we can

always represent a pair of orthogonal non-null 4-vectors
by combining the spinors. Let the spinors be u and v and
their associated 4-vectors be U and V. Let P = U + V

and W = U − V. Then U · U = 0 and V · V = 0 but
P · P = 2U · V 6= 0 and W ·W = −2U · V 6= 0. That is, as
long as U and V are not orthogonal then P and W are not
null. The latter are orthogonal to one another, however:

W · P = (U+ V) · (U− V) = U · U− V · V = 0.

Examples of pairs of 4-vectors that are mutually orthog-
onal are 4-velocity and 4-acceleration, and 4-momentum
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FIG. 4: Two spinors can represent a pair of orthogonal 4-
vectors. The spacetime diagram shows two spinors. They
have opposite spatial direction and are embedded in a null
cone (light cone), including the flags which point around the
cone. Their amplitudes are not necessarily equal. The sum
of their flagpoles is a time-like 4-vector P; the difference is a
space-like 4-vector W. P and W are orthogonal (on a space-
time diagram this orthogonality is shown by the fact that if
P is along the time axis of some reference frame, then W is in
along the corresponding space axis.)

and 4-spin (i.e. Pauli-Lubanski spin vector [1]). There-
fore we can describe the motion and spin of a particle by
using a pair of spinors, see figure 4. This connection will
be explored further in section V.
To summarize:

rank 1 spinor ↔ null 4-vector

rank 2 spinor ↔ arbitrary 4-vector

pair of non-orthogonal

rank 1 spinors
↔ pair of orthogonal

4-vectors

IV. CHIRALITY

We now come to the subject of chirality. This concerns
a property of spinors very much like the property of con-
travariant and covariant applied to 4-vectors. In other
words, chirality is essentially about the way spinors trans-
form under Lorentz-transformations. Unfortunately, the
name itself does not suggest that. It is a bad name. In
order to understand this we shall discuss the transforma-
tion properties first, and then return to the terminology
at the end.
First, let us notice that there is another way to con-

struct a contravariant 4-vector from a spinor. Suppose
that instead of (45) we try

V
µ =

(

〈ṽ| − I |ṽ〉
〈ṽ|σ |ṽ〉

)

= 〈ṽ|σµ |ṽ〉 , (46)

for a spinor-like object ṽ. It looks at first as though we
have constructed a covariant 4-vector and put the index

‘upstairs’ by mistake. However, what if we insist that
this V really is contravariant? This amounts to saying
that ṽ is a new type of object, not like the spinors we
talked about up till now. To explore this, observe that
the same assignment can also be written

Vµ = 〈ṽ|σµ |ṽ〉 . (47)

Index notation does not lend itself to the proof that (47)
and (46) imply each other, but it can be seen readily
enough by using a rectangular coordinate system and
writing out all the terms, since there the Minkowski met-
ric has the simple form gab = diag(−1, 1, 1, 1) and its
inverse is the same, gab = diag(−1, 1, 1, 1). We deduce
that the difference between v and ṽ is that when com-
bined with σµ, the former gives a contravariant and the
latter gives a covariant 4-vector. Everything is consistent
if we introduce the rule for a Lorentz transformation of
ṽ as

if v
′ = Λv (48)

then ṽ
′ = (Λ†)−1

ṽ. (49)

This is because, for a pure rotation Λ† = Λ−1 so the
two types of spinor transform the same way, but for a
pure boost Λ† = Λ (it is Hermitian) so we have precisely
the inverse transformation. This combination of prop-
erties is exactly the relationship between covariant and
contravariant 4-vectors.
The two types of spinor may be called contraspinor and

cospinor. However, they are often called right-handed
and left-handed. The idea is that we regard the Lorentz
boost as a kind of ‘rotation in spacetime’, and for a given
boost velocity, the contraspinor ‘rotates’ one way, while
the cospinor ‘rotates’ the other. They are said to possess
opposite chirality. However, given that we are also much
concerned with real rotations in space, this terminology
is regretable because it leads to confusion.
Equation (47) can be ‘read’ as stating that the presence

of ṽ acts to lower the index on σµ and give a covariant
result.
The rule (46) was here introduced ad-hoc: what is to

say there may not be further rules? This will be explored
below; ultimately the quickest way to show this and other
properties is to use Lie group theory on the generators, a
method we have been avoiding in order not to assume fa-
miliarity with groups, but it is briefly sketched in section
(VII).

A. Chirality, spin and parity violation

It is not too surprising to suggest that a spinor may
offer a useful mathematical tool to handle angular mo-
mentum. This was the context in which spinors were
first widely used. A natural way to proceed is simply to
claim that there may exist fundamental particles whose
intrinsic nature is not captured purely by scalar prop-
erties such as mass and charge, but which also have an
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angular-momentum-like property called spin, that is de-
scribed by a spinor.
Having made the claim, we might propose that the

4-vector represented by the spinor flagpole is the Pauli-
Lubanski spin vector [1]. The Pauli-Lubanski vector has
components

W
µ = (s · p, (E/c)s) (50)

for a particle with spin 3-vector s, energy E and momen-
tum p. If this 4-vector can be extracted from a rank
1 spinor, then it must be a null 4-vector. This in turn
implies the particle is massless, because

W
µ
Wµ = 0 =⇒ E2 = p2c2 cos2 θ (51)

where θ is the angle between s and p in some reference
frame. But, for any particle, E ≥ pc, so the only possi-
bility is E = pc and θ = 0 or θ = π. Therefore we look
for a massless spin-half particle in our experiments. We
already know one: it is the neutrino[15].
Thus we have a suitable model for intrinsic spin, that

applies to massless spin-half particles. It is found in prac-
tice that it describes accurately the experimental obser-
vations of the nature of intrinsic angular momentum for
such particles.
Now we shall, by ‘waving a magic wand’, discover a

wonderful property of massless spin-half particles that
emerges naturally when we use spinors, but does not
emerge naturally in a purely 4-vector treatment of angu-
lar momentum (as, for example, in chapter 15 of [1]). By
‘waving a magic wand’ here we mean noticing something
that is already built in to the mathematical properties
of the objects we are dealing with, namely spinors. All
we need to do is claim that the same spinor describes
both the linear momentum and the intrinsic spin of a
given neutrino. We claim that we don’t need two spinors
to do the job: just one is sufficient. There is a prob-
lem: since we can only allow one rule for extracting the
4-momentum and Pauli-Lubanski spin vector for a given
type of particle, we shall have to claim that there is a
restriction on the allowed combinations of 4-momentum
and spin for particles of a given type. For massless par-
ticles the Pauli-Lubanski spin and the 4-momentum are
aligned (either in the same direction or opposite direc-
tions, as we showed after eqn (51)), so there is already one
restriction that emerges in either a 4-vector or a spinor
analysis, but now we shall have to go further, and claim
that all massless spin-half particles of a given type have
the same helicity (equations (57) and (63)).
This is a remarkable claim, at first sight even a crazy

claim. It says that, relative to their direction of motion,
neutrinos are allowed to ‘rotate’ one way, but not the
other! To be more precise, it is the claim that there exist
in Nature processes whose mirror reflected versions never
occur. Before any experimenter would invest the effort to
test this (it is difficult to test because neutrinos interact
very weakly with other things), he or she would want
more convincing of the theoretical background, so let us
investigate further.

Notation. We now have 3 vector-like quantities in
play: 3-vectors, 4-vectors, and rank 1 spinors. We
adopt three fonts:

entity font examples

3-vector bold upright Roman s, u, v, w

4-vector sans-serif capital S, U, V, W

spinor bold italic s, u, v, w

Processes whose mirror-reflected versions run differ-
ently (for example, not at all) are said to exhibit parity
violation. We can prove that there are no such processes
in classical electromagnetism, because Maxwell’s equa-
tions and the Lorentz force equation are unchanged un-
der the parity inversion operation. The ‘parity-invariant’
behaviour of the last two Maxwell equations, and the
Lorentz force equation, involves the fact that B is an
axial vector.
To investigate the possibilities for spinors, consider the

Lorentz invariant

WλS
λ = Wλs

†σλ
s

where s is contravariant. Since, in the sum, each term
Wλ is just a number, it can be moved past the s† and we
have

WλS
λ = s

†
Wλσ

λ
s. (52)

The combination Wλσ
λ = −W0I + w · σ is a matrix.

It can usefully be regarded as an operator acting on a
spinor. We can prove that one effect of this kind of ma-
trix, when multiplying a spinor, is to change the trans-
formation properties. For, s transforms as

s → Λs

and therefore

s
† → s

†Λ†.

SinceWλS
λ is invariant, we deduce from (52) thatWλσ

λ
s

must transform as

(Wλσ
λ
s) → (Λ†)−1(Wλσ

λ
s). (53)

Therefore, for any W, if s is a contraspinor then (Wλσ
λ
s)

is a cospinor, and vice versa.
If the 4-vector W is null, then it can itself be repre-

sented by a spinor w. Let’s see what happens when the
matrix Wλσ

λ multiplies the spinor representing W:

Wλσ
λ
w =

(

−2|b|2 2ab∗

2a∗b −2|a|2

)(

a

b

)

=

(

0

0

)

(54)

where for convenience we worked in terms of the compo-
nents (w = (a, b)T ) in some reference frame. The result
is

(−W
0 +w · σ)w = 0 (55)
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(N.B. in this equation w is a 3-vector whereas w is a
spinor). This equation is important because it is (by
construction) a Lorentz-covariant equation, and it tells
us something useful about 1st rank spinors in general.
Suppose the 4-vector W is the 4-momentum of some

massless particle. Then the equation reads

(E/c− p · σ)w = 0. (56)

This equation is called the first Weyl equation and in
the context of particle physics, the rank 1 spinors are
called Weyl spinors. The presence of σ in this equa-
tion invites us to guess that the equation might be in-
terpreted also as a statement about intrinsic spin. This
guess is very natural if we suppose that a single spinor
can serve to encode both the 4-momentum and the 4-spin,
for massless spin-half particles, and this is the interpre-
tation proposed by Weyl. To adopt this interpretation, it
is necessary to use a polar version of the vector σ when
using (45) to relate w to linear momentum, and an axial
version to extract the spin (which, being a form of an-
gular momentum, must be axial). Therefore when the
Weyl equation (56) is used in this context, p is polar
but σ is axial. This means the equation transforms in
a non-trivial way under parity inversion. In short, it is
not parity-invariant. This was enough to make particle
physicists very dubious of the claim that the equation
could describe real physical behaviour—but it turns out
that Nature does admit this type of behaviour, and neu-
trinos give an example of it.
For a massless particle, we have E = pc, so (56) gives

(p · σ)
p

w = w. (57)

This says that w is an eigenvector, with eigenvalue 1, of
the spin operator pointing along p. In other words, the
particle has positive helicity.
Now let’s explore another possibility: suppose the

spinor representing the particle has the other chirality.
Then the energy-momentum is obtained as

Pµ = ṽ
†σµ

ṽ. (58)

where the use of a different letter (v) indicates that we
are talking about a different particle, and the tilde acts
as a reminder of the different transformation properties.
The invariant is now

P
λ
Sλ = s̃

†
P
λσλ

s̃ = s̃
†(ṽ†σλṽ)σ

λ
s̃ (59)

and the operator of interest is

(

ṽ
†σλṽ

)

σλ = E/c+ p · σ. (60)

The version on the right hand side does not at first sight
look like a Lorentz invariant, because of the absence of
a minus sign, but as long as we use the operator with
cospinors (left handed spinors) then Lorentz covariant

s p s p

positive helicity

right handed:
�anti-neutrino�

negative helicity

left handed:
�neutrino�

implication: each particle type has fixed helicity

2 types of spinor chirality

model: for a given particle, a single spinor gives    andp s

FIG. 5: The black and white circles represent two particle-
like entities. Both are massless leptons with spin 1/2 and zero
charge. Are they two examples of the same type of particle
then, merely having the spin in opposite directions? The se-
quence of statements shown in the figure gives the logic. The
black entity is found to have different chirality from the white
entity. This is a subtle property, not easily illustrated by any
diagram, since it refers to how the spinor transforms under a
boost. However this property suffices to distinguish one en-
tity from the other, and it is legitimate to give them different
names (“neutrino” and “anti-neutrino”) and draw them with
different colours. The theoretical model asserts that the in-
formation about 4-spin and energy-momentum is contained
in a single spinor for each entity. It then follows that the he-
licity is single-valued: always negative for the one we called
“neutrino” and always positive for the one we called “anti-
neutrino”. Similar reasoning applied to electrons reaches a
different conclusion. Each electron is not described by a sin-
gle spinor, but by a pair of spinors, one of each chirality.
Consequently the helicity of an electron can be of either sign,
and is not Lorentz-invariant.

equations will result. For example, the argument in (54)
is essentially unchanged and we find

(

ṽ
†σα

ṽ

)

σαṽ = 0 (61)

i.e. (E/c+ p · σ)ṽ = 0. (62)

This is called the 2nd Weyl equation. Since the particle
is massless it implies

(p · σ)
p

ṽ = −ṽ. (63)

Therefore now the helicity is negative.
Overall, the spinor formalism suggests that there are

two particle types, possibly related to one another in
some way, but they are not interchangeable because they
transform in different ways under Lorentz transforma-
tions. We are then forced to the ‘parity-breaking’ conclu-
sion that one of these types of particle always has positive
helicity, the other negative. This is born out in exper-
iments. An experimental test involving the β-decay of
cobalt nuclei was performed in 1957 by Wu et al., giv-
ing clear evidence for parity non-conservation. In 1958
Goldhaber et al. took things further in a beautiful ex-
periment, designed to allow the helicity of neutrinos to
be determined. It was found that all neutrinos produced
in a given type of process have the same helicity. This
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What is the difference between chirality and helicity?
Answer: helicity refers to the projection of the spin along the direction of motion, chirality refers to the way the
spinor transforms under Lorentz transformations.
The word ‘chirality’ in general in science refers to handedness. A screw, a hand, and certain types of molecule may
be said to possess chirality. This means they can be said to embody a rotation that is either left-handed or
right-handed with respect to a direction also embodied by the object. When Weyl spinors are used to represent spin
angular momentum and linear momentum, they also possess a handedness, which can with perfect sense be called
an example of chirality. However, since the particle physicists already had a name for this (helicity), the word
chirality came to be used to refer directly to the transformation property, such that spinors transforming one way
are said to be ‘right-handed’ or of ‘positive chirality’, and those transforming the other way are said to be
‘left-handed’ or of ‘negative chirality.’ This terminology is poor because (i) it invites (and in practice results in)
confusion between chirality and helicity, (ii) spinors can be used to describe other things beside spin, and (iii) the
transformation rule has nothing in itself to do with angular momentum. The terminology is acceptable, however, if
one understands it to refer to the Lorentz boost as a form of ‘rotation’ in spacetime.

is evidence that all neutrinos have one helicity, and anti-
neutrinos have the opposite helicity. By convention those
with positive helicity are called anti-neutrinos. With this
convention, the process

n → p + e + ν̄ (64)

is allowed (with the bar indicating an antiparticle), but
the process n → p + e + ν is not. Thus the proper-
ties of Weyl spinors are at the heart of the parity-non-
conservation exhibited by the weak interaction.

B. Reflection and Lorentz transformation

Recall the relationship between a spinor s and the 3-
vector of its flagpole:

r = s
†σs.

Taking the complex conjugate yields

r∗ = r = (s∗)†σ∗
s
∗.

Now, since σx and σz are real while σy is imaginary,
σ∗ = (σx, −σy, σz). Therefore

(s∗)†σs∗ = (x, −y, z).

In other words, taking the complex conjugate of a spinor
corresponds to a reflection in the xz plane. An inversion
through the origin (parity inversion) is obtained by such a
reflection followed by a rotation about the y axis through
180◦, i.e. the transformation

s → ei(π/2)σys
∗ =

(

0 1

−1 0

)

s
∗ = ǫs∗ (65)

where the last version uses the spinor Minkowski metric
ǫ introduced in eq. (42).
We now have four possibilities: for a given s we can

construct three others by use of complex conjugation and
multiplication by the metric. These are s

∗, ǫs and ǫs∗.

They transform under a general Lorentz transformation
as:

s → Λs

s
∗ → Λ∗

s
∗

(ǫs) → (ΛT )−1(ǫs)

(ǫs∗) → (Λ†)−1(ǫs∗) (66)

The second result follows immediately from the first
by complex conjugation. The third result uses ǫΛ =
(ΛT )−1ǫ from (43); the fourth then follows by complex
conjugation. The last result shows that parity inversion
changes the chirality. That is, under parity inversion, a
right handed spinor changes into a left handed one, and
vice versa.
A pure boost such as exp(−(ρ/2)σz) is Hermitian.

From (40) we have

e(−ρ/2)σz = cosh(ρ/2)I − sinh(ρ/2)σz

and therefore

(

e(−ρ/2)σz

)−1

= e(ρ/2)σz . (67)

This confirms, as expected, that the inverse Lorentz
boost is obtained by reversing the sign of the velocity.
Thus we deduce that ǫs∗ transforms the same way as s

under rotations, but it transforms the inverse way (i.e.
with opposite velocity sign) under boosts. This confirms
that it is the covariant partner to s. Sometimes ǫs∗ is
called the dual of s and is written s ≡ ǫs∗.
The results are summarized in table II. The Lorentz

transformation for the ǫs∗ case can also be written

(Λ†)−1 = ǫΛ∗ǫ−1 (68)

(this is quickly proved for arbitrary Λ ∈ SL(2,C) using
(42).)
In short, we have discovered that there are four types of

spinor, distinguished by how they behave under a change
of inertial reference frame. These are best described as
two types, plus their mirror inversions:



14

spinor any transformation pure rotation pure boost chirality

u Λu Uu Lu +

v = (ǫu∗) (Λ†)−1
v Uv L−1

v −
s = u

∗ Λ∗
s U∗

s LT
s +

t = (ǫu) (Λ−1)T t U∗
t (L−1)T t −

TABLE II: Four types of spinor and their transformation. In principle, any expression can be written using just one of these
types of spinor, by including explicit use of ǫ and complex conjugation (see exercise 4). In practice, a notation such as u and
ṽ or φR, χL is more convenient to write the first two types, then complex conjugation suffices to express the other two types
where needed.

1. Type I, called ‘right handed spinor’ or ‘positive chi-
rality spinor’

φR → ΛφR = exp

(

i
σ · θ
2

− σ · ρ
2

)

φR

2. Type II, called ‘left handed spinor’ or ‘negative chi-
rality spinor’

φL → (Λ†)−1φL = exp

(

i
σ · θ
2

+
σ · ρ
2

)

φL

C. Index notation*

Suppose we take a 2nd rank spinor X obtained from a
four-vector following the prescription in eq. (38), and a
first rank spinor u transforming as u → Λu. We might be
tempted to evaluate the product Xu (i.e. a 2× 2 matrix
multiplying a column vector), but we must immediately
check whether or not the result is a spinor. It is not.
Proof: X → ΛXΛ† and u → Λu so Xu → ΛXΛ†Λu
which is not equal to ΛXu nor does it correspond to any
of the other transformations listed in table II.
A similar issue arises with 4-vectors and tensors, and

it is handled by involving the metric tensor g. The index
notation signals the presence of g by a lowered index; the
matrix notation signals the presence of g by the dot no-
tation for an inner product. When using index notation,
a contraction is only a legal tensor operation if it involves
a pair consisting of one upper and one lower index. For
spinor manipulations, a similar notation is available, but
we have a further complication: there are four kinds of
basic spinor, not just two. This leads to 16 kinds of 2nd
rank spinors, 64 kinds of 3rd rank spinors, and so on.
Fortunately, just as with tensors, the higher rank spinors
all transform in the same way as outer products of lower
rank spinors, so the whole system can be ‘tamed’ by the
use of index notation.
We show in table III all the possible types of 2nd rank

spinor, in order to convey the essential idea. We intro-
duce • and ⋆ symbols attached to a letter M to serve as
a ‘code’ to show what type of spinor is represented by
the matrix M . For example, consider the entry in the
first row, second column: M•

• = u(ǫv)T = uv
T ǫT . When

u → Λu and v → Λv we have

M•
• → ΛuvTΛT ǫT = ΛuvT ǫTΛ−1 = ΛM•

•Λ
−1

where the second step used the complex conjugate of eq.
(43), namely

ΛT ǫTΛ = ǫT .

By similar arguments you can prove any other entry in
the table. In practice one does not need all the different
types of spinor, and we shall be mostly concerned with
the typesM•⋆ andM•

•. When we go over to index nota-
tion, the • will be replaced by a generic greek letter such
as µ, and the ⋆ by a barred letter such as ν̄.
The important result of this analysis is that to ensure

we only carry out legal spinor manipulations, it is suf-
ficient to follow the rule that only indices of the same
type can be summed over, and they must be one up,
one down. That this is true in general, for spinors of
all ranks, follows immediately from (43) and its complex
conjugate (Λ†ǫΛ∗ = ǫ) as long as we arrange (as we have
done) that the index lowering operation is achieved by
premultiplying by ǫ or postmultiplying by ǫT , and the
index raising operation is achieved by premultiplying by
ǫ−1 = ǫT or postmultiplying by ǫ. This applies to either
type of index:

M•• = ǫM•
• =M •

• ǫT , M⋆• = ǫM⋆
•,

etc. and

M•• = ǫTM •
• =M•

•ǫ, M⋆• = ǫTM •
⋆ ,

etc. The proof that contraction can be applied to spinors
of higher rank is simple: we define spinors of arbitrary
rank to be entities that transform in the same way as
outer products of rank 1 spinors.
We have seen how to raise and lower indices. One may

also want to ask, can we convert a spinor with one type
of index to a spinor with another type? For example, can
we convert betweenM•• andM•⋆? The answer is that it
is not possible to do this. There is no simple relationship
between these two types of spinor. However, it is possible
to change the type of all the indices at once: the matrix
M⋆⋆, for example, is the complex conjugate of the matrix
M••, and M•⋆ is the complex conjugate of M⋆•.
Although the Lorentz transformation Λ is not itself a

spinor (it cannot be written in any given reference frame,
it is a bridge between reference frames), it is convenient
to write it in index notation as Λµ

ν . Then the trans-
formation of the standard right-handed spinor can be
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M•• v• v• v⋆ v⋆

= uv
T

v (ǫv) v∗ (ǫv∗)

u• = u ΛM••ΛT ΛM•
•Λ

−1 ΛM•⋆Λ† ΛM•
⋆(Λ

∗)−1

u• = ǫu (ΛT )−1M •
• ΛT (ΛT )−1M••Λ

−1 (ΛT )−1M ⋆
• Λ† (ΛT )−1M•⋆(Λ

∗)−1

u⋆ = u
∗ Λ∗M⋆•ΛT Λ∗M⋆

•Λ
−1 Λ∗M⋆⋆Λ† Λ∗M⋆

⋆(Λ
∗)−1

u⋆ = ǫu∗ (Λ†)−1M •
⋆ ΛT (Λ†)−1M⋆•Λ

−1 (Λ†)−1M ⋆
⋆ Λ† (Λ†)−1M⋆⋆(Λ

∗)−1

TABLE III: Transformation rules for 2nd rank spinors. The first row and column show the four types of rank-1 spinor. In
the table, the M symbols are 2nd rank spinors formed from the outer product of the rank-1 spinor of each row and column.
For example, M•

• = u(ǫv)T . The dots and stars attached to M symbols serve as generic indices of one of two types. The
entries in the table show how each M transforms under a change of reference frame (see text). The table shows, for example,
that a matrix product such as X•

•Y
•⋆ is legal because the transformation carries it to ΛX•

•Λ
−1ΛY •⋆Λ† = ΛX•

•Y
•⋆Λ† and

furthermore the object that results is one which transforms as W •⋆. Thus legal operations and the class of the result are easily
identified by paying attention to the placement and type of index. A spinor of type M•⋆ would be written in index notation as
Mµν̄ .

written u′µ = Λµ
αu

α. The standard left-handed spinor
would be written vµ̄ so its transformation rule should be
v′µ̄ = Λ ᾱ

µ̄ vᾱ. The relationship between these two Lorentz
transformations is

Λ ν̄
µ̄ = (ǫµαΛ

α
βǫ

βν)∗. (69)

This is eq (68), so everything is consistent (the overall
complex conjugation on the right hand side causes the
indices to change from unbarred to barred).

D. Invariants

The most basic spinor invariant is

uµuµ = 0. [= u
T ǫu

That is, the ‘length’ of a spinor, as indicated by this type
of scalar product, is zero. This is consistent with the fact
that the flagpole of a spinor is a null 4-vector. To prove
the result you can use uµuµ = u

T ǫu = u1u2 − u2u1 = 0
or use the general property that the scalar product of
spinors is anticommutative:

uµvµ = uµǫµαv
α = ǫµαu

µvα

= −ǫαµuµvα = −uαvα.

Note that this shows we have a ‘see-saw rule’ as long as
a minus sign is introduced whenever a see-saw is per-
formed. The minus sign comes from the fact that the
metric spinor ǫµν is antisymmetric (it is a Levi-Civita
symbol). Setting vµ = uµ we find

uµuµ = −uµuµ
and therefore uµuµ = 0 as before.
We should expect the scalar invariant uµvµ to be some-

thing to do with the scalar product of the associated 4-
vectors, and you can confirm using (45) that

|uµvµ|2 = −1

2
U · V. [= |uT ǫv|2 (70)

A Hermitian matrix formed from a 4-vector as in (38)
is of type Xµν̄ . Therefore the trace is not a Lorentz
scalar (that is, we can’t set the two indices equal and

sum). To obtain a Lorentz scalar we can use Xαβ̄Xαβ̄ .
More generally, for a pair of such spinors, you are invited
to verify that

Xαβ̄Yαβ̄ = −2X · Y. (71)

This result makes it easy to convert some familiar tensor
results into spinor notation. For example, the continuity
equation is

∂αβ̄Jαβ̄ = 0 (72)

where

∂µν̄ =
∑

λ

∂λσλ =

(

− ∂
c∂t +

∂
∂z ,

∂
∂x − i ∂

∂y
∂
∂x + i ∂

∂y , − ∂
c∂t − ∂

∂z

)

(73)

and

Jµν̄ =

(

ρc+ jz jx − ijy
jx + ijy ρc− jz

)

. (74)

Using (71) again, the D’Alembertian can be written

�
2 = −1

2
∂αβ̄∂αβ̄ .

You wouldn’t ever want to write it like that, of course,
since it is a scalar so you may as well just write �

2 and
convert it to −(∂/c∂t)2 + (∂/∂x)2 + (∂/∂y)2 + (∂/∂z)2

when needed.

V. APPLICATIONS

We illustrate the application of spinors to something
other than spin by writing down Maxwell’s equations in
spinor notation. This is merely to demonstrate that it
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can be done. We won’t pursue whether or not much can
be learned from this, it is just to demonstrate that spinors
are a flexible tool.
To this end, introduce the quantity F = E−icB where

E and B are the electric and magnetic fields. Form the
mixed 2nd rank spinor

F ν̄
µ̄ =

(

Fz Fx − iFy

Fx + iFy −Fz

)

, (75)

then Maxwell’s equations can be written

∂µᾱF ν̄
ᾱ = cµ0J

µν̄ . (76)

For example, the µ = 1, ν = 1 term on the left hand
side is

−∂Fz

c∂t
+
∂Fz

∂z
+
∂Fx

∂x
+
∂Fy

∂y
+ i

(

∂Fy

∂x
− ∂Fx

∂y

)

= ∇ ·F−
(

∂F

c∂t
− i∇ ∧ F

)

z

.

The real and imaginary parts of this are

∇·E+c(∇∧B)z−
∂Ez

∂t
and −c∇·B+(∇∧E)z+

∂Bz

∂t
.

Eq (76) says the first of these is equal to cµ0(ρc + jz),
and the second is equal to zero (since the 1, 1 term of the
right hand side is real). By evaluating the 2, 2 term you
can find similarly that

∇ · E− c(∇ ∧B)z +
∂Ez

∂t
= cµ0(ρc− jz)

and − c∇ ·B− (∇ ∧E)z −
∂Bz

∂t
= 0. (77)

By taking sums of these simultaneous equations we find
∇ · B = 0 and ∇ · E = ρ/ǫ0. By taking differences we
find the z-component of the other two Maxwell equations.
You can check that the 1, 2 and 2, 1 terms of the spinor
equation yield the x and y components of the remaining
Maxwell equations.
We now have a spinor-based method to obtain the

transformation law for electric and magnetic fields: just
transform F ν̄

µ̄ . The result is exactly the same as one may
obtain by using tensor analysis to transform the Faraday
tensor. It follows that any antisymmetric second rank
tensor can similarly be ‘packaged into’ a 2nd rank spinor
whose indices are both of the same type.
A spinor for the 4-vector potential can also be intro-

duced, and it is easy to write the Lorenz gauge condition
and wave equations, etc. The Lorentz force equation is
slightly more awkward—see exercises. Some solutions of
Maxwell’s equations can be found relatively easily us-
ing spinors. An example is the radiation field due to
an accelerating charge: something that requires a long
calculation using tensor methods.

VI. DIRAC SPINOR AND PARTICLE PHYSICS

We already mentioned in section (III A) that a pair
of spinors can be used to represent a pair of mutually
orthogonal 4-vectors. A good way to do this is to use
a pair of spinors of opposite chirality, because then it
is possible to construct equations possessing invariance
under parity inversion. Such a pair is called a bispinor
or Dirac spinor. It can conveniently be written as a 4-
component complex vector, in the form

Ψ =

(

φR
χL

)

(78)

where it is understood that each entry is a 2-component
spinor, φR being right-handed and χL left-handed. (Fol-
lowing standard practice in particle physics, we won’t
adopt index notation for the spinors here, so the sub-
script L and R is introduced to keep track of the chi-
rality). Under change of reference frame Ψ transforms
as

Ψ →
(

Λ(v) 0

0 Λ(−v)

)

Ψ (79)

where each entry is understood to represent a 2× 2 ma-
trix, and we wrote Λ(v) for exp (iσ · θ/2− σ · ρ/2) and
Λ(−v) for (Λ(v)†)−1 = exp (iσ · θ/2 + σ · ρ/2). It is easy
to see that the combination

(

φ†R, χ
†
L

)

(

0 I

I 0

)(

φR
χL

)

= φ†RχL + χ†
LφR (80)

is Lorentz-invariant.
We will show how Ψ can be used to represent the

4-momentum and 4-spin (Pauli-Lubanski 4-vector) of a
particle. First extract the 4-vectors given by the flagpoles
of φR and χL:

A
µ = 〈φR|σµ |φR〉 , Bµ = 〈χL|σµ |χL〉 . (81)

Note that Bµ has a lower index. This is because, in view
of the fact that χL is left-handed (i.e. negative chirality),
under a Lorentz transformation its flagpole behaves as a
covariant 4-vector. We would like to form the difference
of these 4-vectors, so we need to convert the second to
contravariant form. This is done via the metric tensor
gµν :

U
µ = (Aµ − B

µ) = 〈φR|σµ |φR〉 − gµα 〈χL|σα |χL〉 .

(The notation is consistent if you keep in mind that the

L’s have lowered the index on σ in the second term). In
terms of the Dirac spinor Ψ, this result can be written as

U
0 = Ψ†

(

I 0

0 I

)

Ψ = φ†RφR + χ†
LχL (82)
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for the time component, and

U
i = Ψ†

(

σ 0

0 −σ

)

Ψ (83)

for the spatial components.
Now introduce the 4 × 4 matrices, called Dirac ma-

trices:

γ0 =

(

0 I

I 0

)

, γi =

(

0 −σi

σi 0

)

. (84)

Here we are writing these matrices in the ‘chiral’ basis
implied by the form (78); see exercise 13 for another rep-
resentation. Using these, we can write (82) and (83) both
together, as

U
µ = Ψ†γ0γµΨ. (85)

We now have a 4-vector extracted from our Dirac spinor.
It can be of any type—it need not be null. If in some
particular reference frame it happens that φR = ±χL

(this equation is not Lorentz covariant so cannot be true
in all reference frames, but it can be true in one), then
from eqn (81) we learn that in this reference frame the
components of Aµ are equal to the components of Bµ so
the spatial part of U is zero, while the time part is not.
Such a 4-vector is proportional to a particle’s 4-velocity
in its rest frame. In other words, the Dirac spinor can
be used to describe the 4-velocity of a massive particle,
and in this application it must have either φR = χL or
φR = −χL in the rest frame. In other frames the 4-
velocity can be extracted using (85).
Next consider the sum of the two flagpole 4-vectors.

Let

W = mcS (A+ B) (86)

where S is the size of the intrinsic angular momentum of
the particle, and introduce

γ5 =

(

I 0

0 −I

)

. (87)

By using

Σµ = γ0γµγ5 =

((

I 0

0 −I

)

,

(

σ 0

0 σ

))

, (88)

we can write

W
µ = mcSΨ†ΣµΨ. (89)

This 4-vector is orthogonal to U. It can therefore be the
4-spin, if we choose φR and χL appropriately. What is
needed is that the spinor φR be aligned with the direction
of the spin angular momentum in the rest frame. We
already imposed the condition that either φR = χL or
φR = −χL in the rest frame, so it follows that either both

spinors are aligned with the spin angular momentum in
the rest frame, or one is aligned and the other opposed.
We now have a complete representation of the 4-

velocity and 4-spin of a particle, using a single Dirac
spinor. A spinor equal to (1, 0, 1, 0)/

√
2 in the rest frame,

for example, represents a particle with spin directed along
the z direction. A spinor (0, 1, 0, 1)/

√
2 represents a

particle with spin in the −z direction. More generally,
(φ, φ)/

√
2 is a particle at rest with spin vector φ†σφ.

Table IV gives some examples.
The states having φR = χL in the rest frame cover

half the available state space; the other half is covered
by φR = −χL in the rest frame. The spinor formalism is
here again implying that there may exist in Nature two
types of particle, similar in some respects (such as having
the same mass), but not the same. In quantum field the-
ory, it emerges that if the first set of states are particle
states, then the other set can be interpreted as antipar-
ticle states. This interpretation only emerges fully once
we look at physical processes, not just states, and for
that we need equations describing interactions and the
evolution of the states as a function of time—the equa-
tions of quantum electrodynamics, for example. How-
ever, we can already note that the spinor formalism is
offering a natural language to describe a universe which
can contain both matter and anti-matter. The structure
of the mathematics matches the structure of the physics
in a remarkable, elegant way. This inspires wonder and
a profound sense that there is more to the universe than
a merely adequate collection of ad-hoc rules.
As long as the spin and velocity are not exactly or-

thogonal, in the high-velocity limit it is found that one
of the two spinor components dominates. For example,
if we start from φR = χL = (1, 0) in the rest frame, then
transform to a reference frame moving in the positive z
direction, then φR will shrink and χL will grow until in
the limit v → c, φR → 0. This implies that a massless
particle can be described by a single (two-component)
spinor, and we recover the description we saw in section
IV in connection with the Weyl equations. In particular,
we find that a Weyl spinor has helicity of the same sign as
its chirality. (The example we just considered had nega-
tive helicity because the spin is along z but the particle’s
velocity is in the negative z direction in the new frame.)
A parity inversion ought to change the direction in

space of U (since its spatial part is a polar vector) but
leave the direction in space of W unaffected (since its
spatial part is an axial vector). You can verify that this
is satisfied if the parity inversion is represented by the
matrix

P =

(

0 I

I 0

)

. (90)

The effect of P acting on Ψ is to swap the two parts,
φR ↔ χL. You can now verify that the Lorentz invari-
ant given in (80) is also invariant under parity so it is

a true scalar. The quantity Ψ†γ0γ5Ψ = φ†RχL − χ†
LφR
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Ψ U 2W/(mcS)

(1, 0, 1, 0)/
√
2 (1, 0, 0, 0) (0, 0, 0, 1) at rest, spin up

(0, 1, 0, 1)/
√
2 (1, 0, 0, 0) (0, 0, 0,−1) at rest, spin down

(1, 1, 1, 1)/2 (1, 0, 0, 0) (0, 1, 0, 0) at rest, spin along +x

(1,−1, 1,−1)/2 (1, 0, 0, 0) (0,−1, 0, 0) at rest, spin along −x

(1, 0, 0, 0) (1, 0, 0, 1) (1, 0, 0, 1) vz = c, +ve helicity

(0, 1, 0, 0) (1, 0, 0,−1) (1, 0, 0,−1) vz = −c, +ve helicity

(0, 0, 1, 0) (1, 0, 0,−1) (−1, 0, 0, 1) vz = −c, −ve helicity

(0, 0, 0, 1) (1, 0, 0, 1) (−1, 0, 0,−1) vz = c, −ve helicity

TABLE IV: Some example Dirac spinors and their associated
4-vectors.

Ψ†γ0Ψ scalar

Ψ†γ0γ5Ψ pseudoscalar

Ψ†γ0γµΨ 4-vector U, difference of flagpoles

Ψ†γ0γµγ5Ψ axial 4-vector W, sum of flagpoles

Ψ†γ0(γµγν − γνγµ)Ψ antisymmetric tensor

TABLE V: Various tensor quantities associated with a Dirac
spinor. The notation Ψ = Ψ†γ0 (called Dirac adjoint) can
also be introduced, which allows the expressions to be written
ΨΨ, Ψγ5Ψ, and so on.

is invariant under Lorentz transformations but changes
sign under parity, so is a pseudoscalar. The results are
summarised in table V.

A. Moving particles and classical Dirac equation

So far we have established that a Dirac spinor rep-
resenting a massive particle possessing intrinsic angular
momentum ought to have φR = χL in the rest frame,
with both spinors aligned with the intrinsic angular mo-
mentum. We have further established that under Lorentz
transformations the Dirac spinor will continue to yield
the correct 4-velocity and 4-spin using eqs (85) and (89).

Now we shall investigate the general form of a Dirac
spinor describing a moving particle. All we need to do
is apply a Lorentz boost. We assume the Dirac spinor
Ψ = (φR(v), χL(v)) takes the form φR(0) = χL(0) in the
rest frame, and that it transforms as (79). Using (41) the
Lorentz boost for a Dirac spinor can be written

Λ = cosh
(ρ

2

)

(

I − n · σ tanh(ρ/2) 0

0 I + n · σ tanh(ρ/2)

)

.

Now (in units where c = 1) cosh ρ = γ = E/m where E is
the energy of the particle, and cosh ρ = 2 cosh2(ρ/2)−1 =

2 sinh2(ρ/2) + 1 so

cosh(ρ/2) =

(

E +m

2m

)1/2

,

sinh(ρ/2) =

(

E −m

2m

)1/2

, (91)

tanh(ρ/2) =

(

E −m

E +m

)1/2

=
p

E +m
.

Therefore we can express the Lorentz boost in terms of
energy and momentum (of a particle boosted from its
rest frame):

Λ =

√

E +m

2m

(

I + σ·p
E+m 0

0 I − σ·p
E+m

)

(92)

where the sign is set such that p is the momentum of the
particle in the new frame.
For example, consider the spinor Ψ0 = (1, 0, 1, 0)/

√
2,

i.e. spin up along z in the rest frame. Then in any other
frame,

Ψ =
1

√

4m(E +m)











E +m+ pz
px + ipy

E +m− pz
−px − ipy











(93)

(with c = 1). Suppose the boost is along the x direc-
tion. Then, as px grows larger, px → E, so the positive
chirality part has a spinor more and more aligned with
+x, and the negative chirality part has a spinor more
and more aligned with −x. For a boost along z, one of
the chirality components vanishes in the limit |v| → c.
This is the behaviour we previously discussed in relation
to table IV.
Next we shall present the result of a Lorentz boost an-

other way. We will construct a matrix equation satisfied
by Ψ that has the same form as the Dirac equation of
particle physics. Historically, Dirac obtained his equa-
tion via a quantum mechanical argument. However, the
classical version can prepare us for the quantum version,
and help in the interpretation of the solutions.
We already noted that the Lorentz boost takes the

form

φR(v) = (I cosh(ρ/2)− σ · n sinh(ρ/2))φR(0),

χL(v) = (I cosh(ρ/2) + σ · n sinh(ρ/2))χL(0).

Using eq. (91), and multiplying top and bottom by (E+
m)1/2, we find

φR(p) =
E +m+ σ · p
[2m(E +m)]1/2

φR(0),

χL(p) =
E +m− σ · p
[2m(E +m)]1/2

χL(0).

where p = −γmv is the momentum of the particle in the
new frame. (The same result also follows immediately
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from eqn (92).) Introducing the assumption φR(0) =
χL(0) we obtain from these two equations, after some
algebra[16],

(E − σ · p)φR(p) = mχL(p),

(E + σ · p)χL(p) = mφR(p).

The left hand sides of these equations are the same as in
the Weyl equations; the right hand sides have the requi-
site chirality. As a set, this coupled pair of equations is
parity-invariant, since under a parity inversion the sign
of σ · p changes and χ and φ swap over. In matrix form
the equations can be written

(

E − σ · p −m
−m E + σ · p

)(

φR(p)

χL(p)

)

= 0. (94)

This equation is very closely related to the Dirac equa-
tion. One may even go so far as to say that (94) “is”
the Dirac equation in free space, if one re-interprets the
terms, letting E and p be the frequency and wave-vector
of a plane wave, up to factors of ~. In the present context
the equation represents a constraint that must be satis-
fied by any Dirac spinor that represents 4-momentum
and intrinsic spin of a given particle.
If we premultiply (94) by γ0 then we have the form

(

−m E + σ · p
E − σ · p −m

)(

φR(p)

χL(p)

)

= 0. (95)

This can conveniently be written

(−γλPλ −m)Ψ = 0 (96)

(see also exercise 12.)
Our discussion has been entirely classical (in the sense

of not quantum-mechanical). In quantum field theory the
spinor plays a central role. One has a spinor field, the
excitations of which are what we call spin 1/2 particles.
The results of this section reemerge in the quantum con-
text, unchanged for energy and momentum eigenstates,
and in the form of mean values or ‘expectation values’
for other states.

B. The standard representation

In order to present Dirac spinors, we found it helpful
to write them in component form as in eqn (78). This
amounts to choosing a basis. The choice we made is
called the chiral basis. It is the most natural choice in
which to discuss chirality, and it gives the convenient
fact that in this basis the Lorentz transformation ma-
trix ((79) and (92)) is block-diagonal. In the applica-
tion to particle physics, especially in the case of slow-
moving particles, another basis is convenient. This is
called the ‘standard representation’ or ‘Dirac representa-
tion’, whose basis vectors are related to the chiral basis

by the transformation

U =
1√
2

(

I I

I −I

)

.

For example, in the standard representation, Ψ as given
in eqn (78) would be written

Ψ =
1√
2

(

φR + χL

φR − χL

)

.

For a particle with spin described by a spinor ψ in the
rest frame, we have φR = χL = ψ/

√
2 in the rest frame,

and therefore in other frames,

φR = (E +m+ σ · p)ψ(4m(E +m))−1/2,

χL = (E +m− σ · p)ψ(4m(E +m))−1/2,

using eqn (92). Thus, when expressed in the standard
representation, the resulting Dirac spinor is

Ψ =
1

√

2m(E +m)

(

(E +m)ψ

p · σψ

)

. (97)

For low velocities, v ≪ c, we have E = m + O(v2) and
hence, to first order in v,

Ψ ≃
(

ψ

v · σψ/2

)

. (98)

C. Electromagnetic interactions and g = 2

Introduce the matrices β ≡ γ0 and αi ≡ γ0γi. A useful
way to write the Dirac equation (95) is (exercise 12)

HΨ = EΨ (99)

where H = α ·p+βm. Eqn (99) suggests that we should
regard H as a Hamiltonian. The standard way to treat
the motion of a charged particle in an electromagnetic
field in special relativity is to add a potential energy term
qφ to the Hamiltonian, and replace p in the Hamiltonian
by p̃ − qA where A is the vector potential and p̃ is the
canonical momentum [1]. It is standard practice, in quan-
tum mechanics and particle physics, to use the symbol
p for canonical momentum, so we shall adopt that nota-
tion, and use the symbol pk for the kinetic momentum,
such that

pk = p− qA = γmv.

We thus obtain the Hamiltonian

H = α · (p− qA) + βm+ qφ. (100)

In the standard representation, eqn (99) now reads
(

E − V −m −σ · (p− qA)

−σ · (p− qA) E − V +m

)(

ψ+

ψ−

)

= 0 (101)
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where we introduced ψ± ≡ (φR±χL)/
√
2 and the poten-

tial energy V = qφ.
Let us treat motion in a pure magnetic field, so V = 0.

The second row of (101) tells us that

ψ− =
σ · pk

E +m
ψ+ ≃ σ · pk

2m
ψ+

where the second version is valid at low speeds (c.f. eqn
(98)). Since p ≃ mv at v ≪ 1, we then have that |φ−| ≃
(v/2)|ψ+|. For this reason ψ+ and ψ− are called the
‘large’ and ‘small’ components in this context. The first
row of (101) gives

(E −m)ψ+ = σ · pkψ− ≃ (σ · pk)(σ · pk)

2m
ψ+. (102)

Now using the identity

(σ · a)(σ · b) = a · b+ iσ · a ∧ b (103)

we have

(σ · pk)(σ · pk) = p2k + iσ · (p− qA) ∧ (p− qA). (104)

In classical physics, the second term here would be zero,
but in quantum physics it is not. Although our whole
presentation has been classical up till now, we will now
make a small foray into quantum mechanics. We regard
p has an operator, which in the position representation
is expressed p = −i~∇, and now the spinor ψ+ has to be
thought of as a function of position—it is a wavefunction
with two components. We have

[(p− qA) ∧ (p− qA)]ψ+

= −i~q (∇ ∧ (Aψ+) +A ∧ (∇ψ+))

= −i~q(∇ ∧A)ψ+ (105)

so eqn (102) reads

(E −m)ψ+ =

(

(p− qA)2

2m
+

~q

2m
σ ·B

)

ψ+. (106)

This is the time-independent Schrödinger equation for a
particle interacting with a magnetic field, such that the
operator (−~q/2m)σ represents the magnetic dipole mo-
ment of the particle. One finds that the angular momen-
tum of the particle is represented by the operator σ~/2
(exercise 14), so the gyromagnetic ratio is g = 2. Thus
the value of the g-factor of a spin half particle described
by the Dirac equation is not an independent variable but
is constrained to take the value 2.

VII. SPIN MATRIX ALGEBRA (LIE
ALGEBRA)*

We introduced the Pauli spin matrices abruptly at the
start of section II, by giving a set of matrices and their
commutation relations. By now the reader has some idea
of their usefulness.

In group theory, these matrices are called the genera-
tors of the group SU(2), because any group member can
be expressed in terms of them in the form exp(iσ · θ/2).
More precisely, the Pauli matrices are the generators of
one representation of the group SU(2), namely the repre-
sentation in terms of 2×2 complex matrices. Other repre-
sentations are possible, such that there is an isomorphism
between one representation and another. Each represen-
tation will have generators in a form suitable for that
representation. They could be matrices of larger size,
for example, or even differential operators. In every rep-
resentation, however, the generators will have the same
behaviour when combined with one another, and this be-
haviour reveals the nature of the group. This means that
the innocent-looking commutation relations (9) contain
much more information than one might have supposed:
they are a ‘key’ that, through the use of exp(iσ ·θ/2), un-
locks the complete mathematical behaviour of the group.
In Lie group theory these equations describing the gen-
erators are called the ‘Clifford algebra’ or ‘Lie algebra’ of
the group.
If a Lie group does not have a matrix representation it

can be hard or impossible to give a meaningful definition
to exp(M) where M is a member of the group. In this
case one uses the form I + ǫM to write a group member
infinitesimally close to the identity for ǫ → 0. The gen-
erators are a subgroup such that any member close to I
can be written I+ ǫG where G is in the generator group.
This is the more general definition of what is meant by
the generators.
The generators of rotations in three dimensions (30)

have the commutation relations

[Jx, Jy] = iJz and cyclic permutations. (107)

By comparing with (9) one can immediately deduce the
relationship between SU(2) and SO(3), including the an-
gle doubling!
The restricted Lorentz group has generators Ki (for

boosts) and Ji (for rotations). A matrix representation
(suitable for a rectangular coordinate system) is

Jx =











0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0











, Kx =











0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0











, (108)

Jy =











0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0











, Ky =











0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0











, (109)

Jz =











0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0











, Kz =











0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0











. (110)

The commutation relations are (with cyclic permuta-
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tions)

[Jx, Jy] = iJz

[Kx, Ky] = −iJz
[Jx, Kx] = 0

[Jx, Ky] = iKz

[Jx, Kz] = iKy.

The second result shows that the Lorentz boosts on their
own do not form a closed group, and that two boosts can
produce a rotation: this is the Thomas precession. If we
now form the combinations

A = (J+iK)/2, B = (J−iK)/2,

then the commutation relations become

[Ax, Ay] = iAz

[Bx, By] = iBz

[Ai, Bj] = 0, (i, j = x, y, z).

This shows that the Lorentz group can be divided into
two groups, both SU(2), and the two groups commute.
This is another way to deduce the existence of two types
of Weyl spinor and thus to define chirality.
The Clifford algebra satisfied by the Dirac matrices γ0,

γ1, γ2, γ3 is

{γµ, γν} = −2ηµνI (111)

where ηµν is the Minkowski metric and I is the unit ma-
trix. That is, γ0 squares to I and γi (i = 1, 2, 3) each
square to −I, and they all anticommute among them-
selves. These anti-commutation relations are normally
taken to be the defining property of the Dirac matrices.
A set of quantities γµ satisfying such anti-commutation
relations can be represented using 4× 4 matrices in more
than one way—c.f. exercise 13. If the metric of signature
(1,−1,−1,−1) is used, then the minus sign on the right
hand side of (111) becomes a plus sign.

A. Dirac spinors from group theory*

We conclude with a demonstration of how to estab-
lish the main properties of Dirac spinors by using group
theory.
First let’s take a fresh perspective on the six generators

of the Lorentz group in 4-dimensional spacetime, i.e. the
Ji andKi matrices defined in eqs. (108)–(110). There are
six entities, three of which are used to form a polar vector,
and three an axial vector. You guessed it: we can gather
them together into antisymmetric tensor Mµν . This is a
tensor of matrices, or, to be more general, of objects that
behave like matrices having given commutation relations.
You can check that the Ji and Ki matrices can all be
written

(Mab)cd = ηbcδad − ηacδbd

where by picking the 6 combinations (a, b) =
(0, 1), (0, 2), (0, 3), , (1, 2), (1, 3), (2, 3) the expression
gives the 6 matrices. For example, M01 is −iKx, M12 is
−iJz, etc. We can now write any Lorenz transformation
as

Λ = exp ( 1

2
θµνMµν)

where, don’t forget, each Mab is a 4× 4 matrix. θab pro-
vides 6 numbers telling which transformation we want.
These generators of the Lorentz group obey the fol-

lowing Clifford algebra, which is called the Lorentz Lie
algebra:

[Mµν ,Mρσ] = ηµρMνσ− ηνρMµσ+ ηνσMµρ− ηµσMνρ.

(112)

Now we can connect the Clifford algebra to the Lorentz
group. Let

S
µν =

1

4
[γµ, γν ] =

1

4
(γµγν − γν , γµ),

then the matrices Sµν form a representation of the
Lorentz algebra:

[Sµν , Sρσ ] = ηνρSµσ − ηµρSνσ + ηµσSνρ − ηνσSµρ.

Proof: exercise for the reader! You may find it helpful
first to obtain

S
ab = 1

2
(γaγb + ηab),

[

S
ab, γc

]

= γbηca − γaηbc.

It follows that if we introduce an object ψ that can be
acted upon by the matrices S, then we shall be able to
Lorentz-transform it using

ψ → exp ( 1

2
θµνS

µν)ψ.

The object ψ can be a set of four complex numbers. It
is a Dirac spinor.
Let

Λ̃ ≡ exp ( 1

2
θµνS

µν)

(the tilde is to distinguish this from the Lorentz trans-
formation of 4-vectors). You can prove that

Λ̃† = γ0Λ̃−1γ0.

Then with some further effort one can obtain central
properties such as the Lorentz invariance of ψ†γ0ψ, and
that ψ†γ0γµψ is a 4-vector, etc.

VIII. EXERCISES

1. Show that the Pauli matrices all square to 1, i.e.
σ2
x = σ2

y = σ2
z = I. Hence, using exp(M) ≡

∑

nM
n/n!, prove eq. (14).
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2. (a) Prove that any SU(2) matrix can be written
aI + ibσx + icσy + idσz where a, b, c, d are real and
a2 + b2 + c2 + d2 = 1. [e.g. start from an arbitrary
2 × 2 matrix M and show that if M−1 = M † and
|M | = 1 then M11 =M∗

22 and M12 = −M∗
21].

(b) Show that any SU(2) matrix can be written
exp(iθ · σ/2). [e.g. prove that this form always
gives an SU(2) matrix and spans the space].

3. Show that gµα(u
†σα

u) = (ǫu∗)†σµ(ǫu∗) and inter-
pret this result (c.f. eqs (45) and (47), and the
caption to table II). [Method: either manipulate
the matrices, or just write u = (a, b) and evaluate
all the terms].

4. Find the flagpole 4-vectors for the follow-
ing spinors, and confirm that they are null:
(1, 1), (−2, 1), (2, 1 + i).
Ans (2,2,0,0); (5,−4, 0, 3); (6, 4, 4, 2).

5. Prove the statement after eqn (40).

6. Starting from eqs. (85) and (89), show that the
effect of swapping φR and χL is to change the sign
of the spatial part of U and the time part of W.

7. Starting from eqs. (85) and (89), confirm that U

and W are orthogonal.

8. Bearing in mind the commutation relations for
Pauli matrices, show that, for any 3-vector w,
(σ ·w)2 = w2, and hence complete the steps leading
to the Dirac equation (94).

9. An electron moving along the x axis with speed 0.8c
has its spin in the (1, 0, 1) direction in the lab frame.
Adopting units where c = 1 and the size of the
spin is 1/2, construct a Dirac spinor appropriate to
describe this electron in the lab frame. [Method:
first obtain the 4-velocity U and 4-spin W, hence
obtain the two flagpoles and hence the two spinors].
Transform this spinor to the rest frame, and find
the direction of the spin in the rest frame.

10. Find the two null 4-vectors (flagpoles)
associated with the Dirac spinor Ψ =
(1.17005, 0.204124, 0.462943, −0.204124).

Assuming this spinor represents the motion of a
particle, find the 4-velocity and the direction of
the spin in the rest frame.

11. Investigate qFµ
αU

αν̄ where F is the electromag-
netic field spinor and Uαν̄ is the 4-velocity spinor.
The result is not simply the Lorentz force, but can
be understood in terms of the Lorentz force and a
force obtained from the dual of the Faraday tensor:

icfµν̄ + cf̃µν̄ = −qFµ
αU

αν̄

[To obtain Fµ
ν from F ν̄

µ̄ , first take the complex
conjugate then raise and lower indices. One finds
that the matrix is unchanged except the sign of E
is reversed.]

12. Let β ≡ γ0 and αi ≡ γ0γi. Show that, using these
matrices, the Dirac equation (95) may be written
HΨ = EΨ where H = α · p+ βm.

13. Show that, in the standard representation, the
Dirac matrices take the form

γ0 =

(

I 0

0 −I

)

, γi =

(

0 σi

−σi 0

)

.

14. In quantum mechanics, the Dirac equation forces
us to conclude that the operator representing spin
angular momentum is (~/2)σ, not some other mul-
tiple. Prove this, as follows. Treat the Dirac
equation in free space, so H = α · p + βm. Let
J ≡ L+S be the total angular momentum operator,
with L ≡ r ∧ p and S to be discovered. Show that
[L, H ] = i~α ∧ p (e.g. treat just the z component
and the others follow). Clearly, this is non-zero so
we do not have overall rotational invariance of the
energy unless S also contributes to the angular mo-
mentum, such that [S, H ] = −i~α∧ p. Verify that
the solution is

S =
~

2

(

σ 0

0 σ

)

.
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