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Abstract

Both the topics of entanglement and particle statistics have aroused enor-

mous research interest since the advent of quantum mechanics. Using two

pairs of entangled particles we show that indistinguishability enforces a trans-

fer of entanglement from the internal to the spatial degrees of freedom without

any interaction between these degrees of freedom. Moreover, sub-ensembles

selected by local measurements of the path will in general have different

amounts of entanglement in the internal degrees of freedom depending on

the statistics (either fermionic or bosonic) of the particles involved.
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Since the advent of quantum mechanics, entanglement has been identified as one of its

most peculiar features [1–3]. This ”excess correlation” has recently become an important

resource in quantum information processing [4]. Entanglement is believed to be at the root

of the speed-up of quantum computers over their classical counterparts [5], and it also leads

to an unconditionally secure quantum cryptographic key exchange [6]. Another fundamen-

tal aspect of quantum physics, somewhat neglected in the field of quantum information, is

the distinction between two different types of particles, fermions and bosons, manifested

through particle statistics (although see [7] and for fermions see [8–10]). There are at first

sight two seemingly “conflicting” views regarding the role of indistinguishability and particle

statistics in quantum information processing. On the one hand, these two notions appear

to combine to offer “natural” entanglement through forcing the use of symmetrised and

anti-symmetrised states (for bosons and fermions respectively), and as we mentioned be-

fore, entanglement is generally an advantage for quantum information processing (although

see [11]). On the other hand, indistinguishability prevents us from addressing the particles

separately which seems to be disadvantage in information processing. In this article we ana-

lyze the role of indistinguishability and particle statistics in a simple information processing

scenario.

Consider the following situation. Suppose that we have two pairs of qubits (quantum

two-level systems), each pair maximally entangled in some internal degree of freedom. If

the particles carrying the qubits are of the same type – say bosons – but distinguishable

as a result of spatial separation, then we have two units of entanglement (e-bits) in total.

All of this entanglement is in the internal degrees of freedom. If we now consider bringing

the particles close together and then separating them again, without the internal degrees of

freedom ever interacting with the spatial ones, we should expect the whole entanglement to

remain in the internal degrees of freedom. Surprisingly, as we demonstrate in this paper,

a fraction of the initial entanglement is transferred to the path degrees of freedom of the

particles. The fascinating implication is that the transfer of entanglement is imposed by par-

ticle indistinguishability and does not involve any controlled operation between the internal
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and external degrees of freedom (i.e. spin-path interaction), in contrast with the standard

entanglement swapping scheme [12]. The prevalent setting for local manipulations of en-

tanglement in quantum information processing either involves explicit interactions between

the internal degrees of freedom of two particles, or an interaction of the internal degrees of

freedom with some apparatus. Here we introduce a completely different setting in which

particle paths are locally mixed without ANY interaction of the internal degrees of freedom

with anything else.

Now we turn to describing the exact details of our thought experiment. Imagine the

following setup, described in Fig. 1. We have two pairs of identical particles, each pair being

maximally entangled in some internal degree of freedom, e.g. the spin, or polarization. In

our case, we consider systems with spin one-half, or isomorphic to it. We assume that our

setup is symmetrical both horizontally and vertically, where the dotted lines in Fig. 1 show

the axis of symmetry. We have to ensure that particles arrive at the beam splitter at the

same time. The initial entanglement is between sides 1 and 2. In each pair, the particles

fly apart and meet a particle from the other pair at a beam splitter. The paths on the left

hand side are labeled A and C respectively before and after the beam splitter. Similarly,

paths on the right hand side are labeled B and D.

The output states of this setup represent particles in paths C1, D1, C2 and D2 with a

particular spin state (we note, for instance, that we can have two particles in C1 and none

in D1). Now we show that, although the initial entanglement is only in the internal degrees

of freedom, in the final state some of the entanglement has been transferred to the paths.

We will refer to this effect as the Spin-Space Entanglement Transfer by local actions only.

In order to calculate what happens in the above setup, we write our initial state in the

second quantization formalism:

1√
2
(a†A1↑a

†
A2↓ ± a†A1↓a

†
A2↑)

1√
2
(a†B1↑a

†
B2↓ ± a†B1↓a

†
B2↑)|0〉, (1)

where |0〉 is the vacuum state and, for instance, a†A1↑ is a creation operator describing a

particle in path A1 and with spin up. The positive and negative signs in the above equation
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are necessary in order to take into account all the possible initial states (the singlet and

the entangled triplet of spin). We restrict our attention to analyzing one mode per particle

only, but our results can be generalized to any number of modes. Due to the symmetry of

the problem we only analyze two cases: when the two signs in equation (1) are the same,

the (+,+) case, and when they are different, the (+,−) case. Note that initially there is

no left-right correlation between spin and space. This is because there is no uncertainty in

either the spin or space in the initial state, so by measuring the spatial state one cannot gain

any information about the spin state (and vice-versa) in addition to what we knew before

the measurement.

The operation of the beam splitter is described by any unitary transformation in U(2)

[13]. However, since the overall phase factor has no relevance for entanglement, we can

without any loss of generality consider a transformation in SU(2):

U =









α β

−β∗ α∗









, (2)

where |α|2 + |β|2 = 1. Since we consider entanglement only between sides 1 and 2, the

beam splitters in fact perform local unitary operations. Hence they cannot change the total

entanglement present initially. Also, they only affect the spatial degrees of freedom and

are not intrinsically dependent on spin (or polarization). Therefore they are incapable of

swapping entanglement from spin (polarization) to space by performing a controlled not

operation in the usual fashion [12]. Although the transformation law will be the same for

fermions and bosons, they obey different statistics which is why there will be an observable

difference in their behaviour in our experiment. For fermions we have the following anti-

commutation relation:

[a†i , a
†
j]+ = 0, (3)

while for bosons we have the commutation relation:

[a†i , a
†
j]− = 0, (4)
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where i and j are sets of labels. Figs. 2 to 5 present diagramatically the output states for

both fermions and bosons. For instance, the first diagram in Fig. 4 represents the following

term:

(|α|2 + |β|2)2 (a†C1↑a
†
D1↑a

†
C2↓a

†
D2↓)|0〉. (5)

Note that for each output pair, i.e. both on sides 1 and 2, the total spin (or polarization)

S can take the values 0 or 1. If we consider, without any loss of generality, that the spin is

aligned with the z axis, then |Sz| – the absolute value of the projection of S along z – can

also only take the values 0 or 1. We can then divide the total output wave function into

these two components, where the spins of the particles in each output pair are respectively

anti-aligned or aligned along z.

|Sz| = 0 component: there is no difference between fermions and bosons (bearing in

mind that the corresponding operators obey different commutation relations). However,

there is a difference between the (+,+) case, where we have all possible output terms (see

Fig. 2), and the (+,−) case, where some terms never appear (see Fig. 3).

|Sz| = 1 component: there is a difference between the output states for fermions (see

Fig. 4) and bosons (see Fig. 5). For both types of particles, the (+,−) case will only

introduce a phase difference in some terms.

As a consequence of applying only local unitary operations, the total output wave func-

tion should have also two e-bits of entanglement. For clarity, let us consider for the rest of

the paper the particular case of 50/50 beam splitters (α = 1/
√
2, β = −i/

√
2). To illustrate

the spin-space entanglement transfer effect, we look at the (+,+) case for fermions (Figs.

2 and 4). Here, it is clear that the |Sz| = 1 terms give one e-bit of entanglement, solely in

the internal degrees of freedom, as the path states are identical. The |Sz| = 0 case gives the

other e-bit of entanglement, but this time involving both the internal and external degrees of

freedom. Thus we have spin-space entanglement transfer, without any controlled operation

between spin and space.

We now show how we can extract space-only entanglement from the total wave function
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by doing particular measurements on the internal degrees of freedom without revealing any

knowledge about the external ones (this is perfectly allowed by quantum mechanics and can

be accomplished by passing the particles on each side through a cavity which extends over

both the left and the right paths). For example, we can measure the total spin S on both

sides (1 and 2) along the x axis and then select the Sx = 0 results. For fermions, the entire

wave function is then projected onto:

1√
2

[

1√
2
(|L〉1 + |R〉1)

1√
2
(|L〉2 + |R〉2)−

1√
2
|A〉1

1√
2
|A〉2

]

, (6)

where |L〉1,2 means left bunching of the particles, respectively for sides 1 and 2, |R〉1,2 right

bunching and |A〉1,2 represents anti-bunching (unormalized state). The bosonic counterpart

of the above state is:

1√
2

[

1√
2
(|L〉1 + |R〉1)

1√
2
(|L〉2 + |R〉2) +

1√
2
|A〉1

1√
2
|A〉2

]

. (7)

Both these states have 1 e-bit of entanglement in space and the same outcome probability

of 1/2. Note that since these two states are orthogonal they can be perfectly discriminated,

offering an operational way of distinguishing fermions and bosons.

If on the other hand we measure the spatial components of the total wave function, we

will find different amounts of entanglement in the internal degrees of freedom of fermions

and bosons. For instance, if we select the anti-bunching results, we will obtain the following

state for fermions:

1√
3

[

1√
2
(a†C1↑a

†
D1↓ + a†C1↓a

†
D1↑)

1√
2
(a†C2↑a

†
D2↓ + a†C2↓a

†
D2↑)

−(a†C1↑a
†
D1↑a

†
C2↓a

†
D2↓)− (a†C1↓a

†
D1↓a

†
C2↑a

†
D2↑)

]

|0〉, (8)

with an outcome probability of 2/3 and log2 3 units of entanglement, whereas for bosons we

will get:

1√
2
(a†C1↑a

†
D1↓ − a†C1↓a

†
D1↑)

1√
2
(a†C2↑a

†
D2↓ − a†C2↓a

†
D2↑)|0〉, (9)

with probability 1/3 and 0 units of entanglement.
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If we select the bunching results, for fermions we will obtain the state:

1√
2
(a†C1↑a

†
C1↓ + a†D1↑a

†
D1↓)

1√
2
(a†C2↑a

†
C2↓ + a†D2↑a

†
D2↓)|0〉, (10)

with an outcome probability of 1/3 and 0 units of entanglement, and for bosons we will get:

1√
3

[

1√
2
(a†C1↑a

†
C1↓ + a†D1↑a

†
D1↓)

1√
2
(a†C2↑a

†
C2↓ + a†D2↑a

†
D2↓)

+
1

2
(a†C1↑a

†
C1↑ + a†D1↑a

†
D1↑)(a

†
C2↓a

†
C2↓ + a†D2↓a

†
D2↓)

+
1

2
(a†C1↓a

†
C1↓ + a†D1↓a

†
D1↓)(a

†
C2↑a

†
C2↑ + a†D2↑a

†
D2↑)

]

|0〉, (11)

with probability 2/3 and log2 3 units of entanglement. We observe that for a given path

selection one type of particles exhibits some entanglement in the internal degrees of freedom,

whereas the other exhibits none. In other words, under the same situation, fermions and

bosons show a difference in their information processing behaviour. Moreover, measuring this

degree of entanglement in the internal degrees of freedom could thus also be an operational

way of distinguishing between fermions and bosons.

In this article we have shown that it is possible to transfer entanglement from the internal

to the spatial degrees of freedom through local actions using only the effects of particle

indistinguishability and quantum statistics, without any interaction between the spin and

the path. Moreover, sub-ensembles selected by local measurements of the path will in general

have different amounts of entanglement in the internal degrees of freedom depending on the

statistics (either fermionic or bosonic) of the particles involved. This establishes a connection

between two fundamental notions of quantum physics: entanglement and particle statistics.

We intend to present a more detailed and systematic analysis of this setup in a subsequent

longer work.

Our analysis suggests further investigation of the consequences and applications of par-

ticle statistics in quantum information processing. For example, in some protocols using

spin-space entanglement the statistical effects make it unnecessary to have controlled oper-

ations, such as using polarization-dependent beam splitters [14]. Other types of statistics
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(e.g. anyons) can similarly be addressed within our framework. Recent experiments such as

[15,16] suggest that it would be possible to test our results in the near future.
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FIGURES

Side 2

Side 1

C1

D2C2

D1

A1

B2A2
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FIG. 1. This figure presents our setup for spin-space entanglement transfer. Each black circle

represents a source of a pair of particles maximally entangled in the internal degrees of freedom

(not explicitly shown in the figure). The rectangles represent beam splitters.
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FIG. 2. Spin |Sz| = 0 component of the total output wave function for the (+,+) case, both

for fermions and bosons.
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FIG. 3. Spin |Sz| = 0 component of the total output wave function for the (+,−) case, both

for fermions and bosons.
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FIG. 4. Spin |Sz| = 1 component of the total output wave function for the (+,±) cases, for

fermions.
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FIG. 5. Spin |Sz| = 1 component of the total output wave function for the (+,±) cases, for

bosons.
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