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General relativity is reformulated in a way which indicates gravity may be viewed as a three-dimensional spin system. 
This presents a new bamiltonian approach to quantum gravity. 

The idea that gravitation may be viewed as a col- 
lective phenomenon is an attractive one and has been 
pursued by some [ 1 ], inspired by the BCS theory of  
superconductivity and the N a m b u - J o n a - L a s i n i o  
model. But there is little evidence supporting this 
view. In this note,  we propose a new approach which 
favors the interpretat ion of  gravity as an effective 
theory.  We show that general relativity can be re- 
garded as a spin system * a in three dimensions, thus 
providing another approach to quantum gravity. We 
shall only present the main ideas here. Details will be 
published elsewhere. 

In the hamiltonian description of  general relativity, 
due to Dirac and Arnowi t t -Dese r -Misne r  (ADM) * 2, 
the basic field is taken to be the riemannian metric on 
a spacelike three-manifold. Our motive is to replace 
this metric by some other "basic" variables from 
which the metric will be a derived concept. We start 
with a few crucial observations about the initial value 
formulation of  general relativity. 

Consider a spacetime with a metric satisfying the 
vacuum Einstein equations. The initial data on a 
spacelike hypersurface S is the pair of  symmetric 
tensor fields (qab, nab) which are the induced metric 
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and the second fundamental  form respectively. And 
the pair must satisfy two constraints: 

H a : Da(nab - nq ab) = O, (1) 

H = - R  - 7rabTrab + ,2  = 0 ,  (2) 

where R is the scalar curvature o f (S ,  qab) and n 
= nmnqm n ; indices are raised and lowered with qab ,3 

Since we have a riemannian metric qab on S, we 
can consider SU(2) spinor fields on S and, in particular, 
represent tensor fields by equivalent spinors. Thus, for 
example, we shall write T a = T (AB) obtained by re- 
placing the tensor index by a pair of  symmetric SU(2) 
spinor indices, such that T t(AB) = - T  (AB) where t is 
the SU(2) adjoint. Spinor indices are raised and 
lowered with the skew spinor e[AB1 ,4 

Next we define two spinor connections Va ± 

( - v ±  (AB)) by 

7a± XA = Da~, A +- 2 -1 /2naABX B , (3) 

where D a is the derivative operator defined by qab 
and h A a smooth spinor field. Their action on spinors 
of  higher valence is extended by Leibnitz rule. In par- 

ticular, Va±eAB = 0. Furthermore,  

(V+( MN) ~kA )t = -- V -  (MN) ~ tA , (4) 

i.e., they are SU(2) connections. The curvature 
F±[a b]M N of  \7a± can be regarded as a tensor field 

,3 We choose signature ( - ,  - ,  -) .  
,4 See ref. [5] for notations. We use ( ) and [ ] for symmet- 

ric and skew symmetric indices respectively. 
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F+" Iab] c (lowering the spinor index N)  or equivalently 
the tensor field C+'ab .--- eaton F+'mn b. (Cab c is the alter- 
nating tensor defined by qab') 

These connections have the following remarkable 
property. Constraints (1) and (2) respectively imply 
t h a t  C+'ab is trace free and symmetric. In spinor form 
C+'ab - C±(ABCD), i.e., a pure spin2 object. Thus the 
constraints are coded as symmetry conditions on the 
curvature, leaving only its spin 2 part. Moreover, 
C+(ABCD) and C-(ABCD) are respectively self-dual 
and anti self-dual. Finally, one can recover the metric 
[6] and nab from the pair (Va +, 7a -  ). 

Based on the above observations we propose the 
following framework. Fix a smooth three-manifold Z 
(of arbitrary topology) and consider SU(2) spinor 
fields, denoted h A and hfA, on it and (complex) 
spinor connections V+(AB) and ~7-(AB) acting on 
them. Since we do not have a metric on Z we cannot 
now freely replace tensor indices with equivalent 
spinor ones. We therefore work entirely with spinor 
fields. 

Consider next the (complex, affine) space of all 
pairs of connections (7 +, V- ) ,  not necessarily satis- 
fying eq. (4). The space of interest for quantum grav- 
ity is the subspace P consisting of only those pairs 
whose curvatures have only the spin 2 information. 
That is, if the curvature 

F+'(AB)(CD)(MN) = C+'(MNAC) eBD + C+'(MNBD) eAC • 

P can be viewed as the product of two spaces, {(V +, 
~ - ) }  and ((Vo+ , V-)}  where Vo +- has zero curvature. 
These "left" and "right" flat spaces are precisely the 
spaces consisting of non-linear gravitons constructed 
by Penrose using twistor theory * s 

P is a complex space of connections while the 
phase space P* of general relativity is real. What is the 
relation between the two? P should be thought of as 
a complex phase space equipped with a real structure: 
the pair (V +, V-)wil l  be called real if they satisfy (4). 
P* is the real subspace of P. 

We would now like to construct a hamiltonian us- 
ing the spinor connections as the basic variables. 
From the index structure of the connections a candi- 
date for a quadratic hamiltonian is 

*s See the article by Penrose and Ward in ref. [3]. 

P 
H = i[2 J[(V-(MN)hA)(V+(pQ)htB) 

z 

+ (V+(MN)hA)(V-(eQ)htB)] ds(AB)(gin(co-), (5) 

where h A is an arbitrary spinor field on Z * 6 
That (5) is indeed the correct hamiltonian for gen- 

eral relativity comes from an observation first made by 
Ashtekar and Horowitz [7] in a different context. In 
the ADM framework, the hamfltonian is of the form 

HAD M = f ( N H  - 2NaHa ) dS +M,  

where N and N a are smooth functions (called lapse 
and shift) on S and M is a boundary term giving the 
ADM mass + 7. It is easy to check that H = HAD M by 
integrating (5) by parts. The boundary term is precise- 
ly the form of ADM mass given by Nester [8]. The 
spinor field entering in H is to be interpreted as the 
"square root" of the lapse and shift functions defined 
b y N  = 2-1/2 htA)t.A ' andN (AB) = h"f(AhB)" 

A more convenient form of eq. (5) is 

f [(V-(MNhtA))(V+(MN'AA)) 
Y. 

-- ~ ( V - A M  h~fM)(V+AMhM) 

+ ( v+(MNhtA) ) (V -  (MN hA)) 

-- ](V+AM h~fM)(v-AMkM)] dS,  (6) 

which manifests the spin system structure with h A as 
a spin variable "gauge" coupled to the connections. 

Observe that when h A satisfies the zero-mode equa- 
tion [5] 

v±ABh s = 0 ,  (7) 

the hamiltonian is positive definite (noted also by 
Ashtekar and Horowitz) on P* and takes the non- 
linear sigma model form. Two of its features are pe- 
culiar to general relativity. One is the mixing of 
"internal" and "space" indices in V+(ABhC) , giving a 

,6  In units c = 1 and 16~rG = 1. 
,7  We are considering asymptotically flat spaces here requir- 

ing N and N a to have a certain fall off at infinity but 
otherwise arbitrary. We ignore these subtleties here. See 
ref. [41. 
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pure spin 3/2 field. The other is the nature of the con- 
straint on XA imposed by (7). It should perhaps be 
viewed as a Gauss law constraint which generates 
spinor gauge transformations. 

Several aspects of this formalism needs to be better 
understood, most important being the precise role of 
the spinor field h A and the choice of the SU(2) norm 
(given by t )  both of which seem to have coded in 
them the notion of "time" and causal structure in 
quantum gravity. 

From its similarities with the sigma model, together 
with the ideas suggested in [9], one might expect to 
probe the ultraviolet structure of the theory. More- 
over, our formalism suggests a lattice version of the 
theory similar to the one discussed by Lewis [10] for 
three-dimensional gravity using the relation between 
Regge calculus and 6/" symbols. 

Some broad directions of enquiry are also sug- 
gested by the approach presented here. It gives a dif- 
ferent "square root" of general relativity than that 
suggested by supergravity theory ,8. Furthermore, it 
also seems to provide a natural bridge between quan- 
tum gravity and twistor theory which has hitherto 
remained obscure. 

The ideas of A. Ashtekar, R. Geroch and R. Penrose 
have greatly influenced this work. I am especially in- 
debted to Abhay Ashtekar for his suggestions and en- 
couragement. I would also like to thank Steve Lewis 
and Charles Misner for discussions. 
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