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Representation Analysis of Magnetic Structures
Rafik Ballou, Bachir Ouladdiaf, in Neutron Scattering from Magnetic Materials,
2006

Axial vector matrix representation: Γ .
The magnetic moment, being an axial vector, transforms as a polar vector
under rotation but remains invariant under the inversion so that if α is a
symmetry operation and I the inversion then Γ  (α I) = Γ  (α). We show in
Table 6 the transformation properties of the magnetic moments S , S  and S ,
along x, y and z, under the 24 symmetry operators of the group O using the
method described in Section 3.1. We deduce from the table that the nonzero
traces of the axial representation are only the following:

Table 6. Transformation of the S , S , S  moments under the symmetry
operations of the group O

We can then identify Γ  with Γ  from the character table of the group O .
This result can also be obtained by reducing the representation Γ  over the
Γ  of O .

The transformation-induced matrix representation  can
then be written as the direct product 

. This is decomposed into
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using the following simpler decompositions: 

. We easily check that the dimension of the direct sum of the matrix
representations in the right-hand side of (76) is (1 + 2 + 2 • 3 + 3 + 1 + 2 + 3 +
2 • 3) = 24 = 3 • 8 as expected. Equation (76) indicates that the basis functions
for the irreducible matrix representations not contained in the reduction of Γ

, that is, Γ  and Γ , are necessary null.
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Anomalies
S.L. Adler, in Encyclopedia of Mathematical Physics, 2006

Neutral Pion Decay π  → γγ
As a result of the abelian chiral anomaly, the partially conserved axial-vector
current (PCAC) equation relevant to neutral pion decay is modified to read

with µ  the pion mass, f  ≃ 131 MeV the charged-pion decay constant, and S
a constant determined by the constituent fermion charges and axial-vector
couplings. Taking the matrix element of eqn [6a] between the vacuum state
and a two-photon state, and using the fact that the left-hand side has a
kinematic zero (the Sutherland–Veltman theorem), one sees that the π  → γγ
amplitude F is completely determined by the anomaly term, giving the formula

For a single set of fractionally charged quarks, the amplitude F is a factor of
three too small to agree with experiment; for three fractionally charged quarks
(or an equivalent Han–Nambu triplet), eqn [6b] gives the correct neutral pion
decay rate. This calculation was one of the first pieces of evidence for the
color degree of freedom of quarks.
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THE THEORY OF SYMMETRY
L.D. LANDAU, E.M. LIFSHITZ, in Quantum Mechanics (Third Edition), 1977

PROBLEMS
Problem 1. Find the selection rules for the matrix elements of the electric and
magnetic dipole moments d and µ when symmetry O is present.

Solution. The group O includes no reflections; the polar vector d and the axial
vector µ are therefore transformed by the same irreducible representation, F .
The decompositions of the direct products of F  with the other representations
of the group O are

Hence the non-zero non-diagonal (with respect to energy) matrix elements are
those for the transitions

The symmetric and antisymmetric products of the irreducible representations
of the group O are

1

1



(2)

(3)

(4)

The symmetric products do not contain F ; hence there are no diagonal (with
respect to energy) matrix elements of the vector d (which is invariant under
time reversal). The magnetic moment, which changes sign under time
reversal, has diagonal matrix elements for the states F  and F .

Problem 2. The same as Problem 1, but for symmetry D .

Solution. The vectors d and µ have different transformation laws in the group
D :

here and in the Problems below, the symbol ∼ stands for the words “is
transformed by the representation”. We have

Hence the non-diagonal matrix elements of d , d  are non-zero for the
transitions . In the same way we find
the selection rules

The symmetric and antisymmetric products of the irreducible representations
of the group D  are

Hence we see that there are no diagonal (with respect to energy) matrix
elements for any of the components d; for the vector µ, there are diagonal
matrix elements of µ  for transitions between states belonging to a degenerate
level of the type E  or E .

Problem 3. Find the selection rules for the matrix elements of the electric
quadrupole moment tensor Q  when symmetry O is present.

Solution. The components of the tensor Q  (a symmetrical tensor with the sum
Q  equal to zero) with respect to group O are transformed by the laws

Decomposing the direct products of F  and E with all the representations of
the group, we find the selection rules for the non-diagonal matrix elements:

The diagonal matrix elements exist (as we see from (2)) in the following states:

Problem 4. The same as Problem 3, but for symmetry D .

Solution. The transformation laws of the components Q  with respect to the
group D  are
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Q  behaves as a scalar. Decomposing the direct products of E  with all the
representations of the group, we find the selection rules for the non-diagonal
matrix elements of the remaining components Q :

The diagonal elements are non-zero (as we see from (4)) only for the states E
and E .
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MOTION IN A MAGNETIC FIELD
L.D. LANDAU, E.M. LIFSHITZ, in Quantum Mechanics (Third Edition), 1977

§111. Schrödinger's equation in a magnetic field
A particle that has a spin also has a certain “intrinsic” magnetic moment µ. The
corresponding quantum-mechanical operator is proportional to the spin
operator , and can therefore be written as

where s is the magnitude of the particle spin and µ a constant characterizing
the particle. The eigenvalues of the magnetic moment component are µ  =
µσ/s. Hence we see that the coefficient µ (which is usually called just the
magnitude of the magnetic moment) is the maximum possible value of µ ,
reached when the spin component σ = s.

The ratio µ/ħs gives the ratio of the intrinsic magnetic moment and the intrinsic
angular momentum of the particle (when both are along the z-axis). For the
ordinary (orbital) angular momentum, this ratio is e/2mc (see Fields, §44). The
coefficient of proportionality between the intrinsic magnetic moment and the
spin of the particle is not the same. For an electron it is −|e|/mc, i.e. twice the
usual value, as is found theoretically from Dirac's relativistic wave equation
(see RQT, §33). The intrinsic magnetic moment of the electron (spin ) is
consequently −µ , where

This quantity is called the Bohr magneton.

The magnetic moment of heavy particles is customarily measured in nuclear
magnetons, defined as eħ/2m c, with m  the mass of the proton. The intrinsic
magnetic moment of the proton is found by experiment to be 2·79 nuclear
magnetons, the moment being parallel to the spin. The magnetic moment of
the neutron is opposite to the spin, and is 1·91 nuclear magneton.

It should be noted that the quantities µ and s on the two sides of (111.1) are
the same type of vector, as they should be: both are axial vectors. A similar
equation for the electric dipole moment d (= constant × s) would contradict the
symmetry under inversion of the coordinates: the relative sign of the two sides
would be changed by inversion.†

In non-relativistic quantum mechanics, the magnetic field may be regarded as
an external field only. The magnetic interaction between the particles is a
relativistic effect, and a consistent relativistic theory is needed to take it into
account.

In the classical theory, the Hamilton's function of a charged particle in an
electromagnetic field is

where ϕ is the scalar and A the vector potential of the field, and p the
generalized momentum of the particle; see Fields, §16. If the particle has no
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(111.3)

(111.4)

(111.5)

(111.6)

(111.7)

(111.8)

(111.9)

(111.10)

spin, the transition to quantum mechanics can be made in the usual manner:
the generalized momentum must be replaced by the operator ,
and we obtain the Hamiltonian†

If, on the other hand, the particle has a spin, this procedure does not suffice.
This is because the intrinsic magnetic moment of the particle interacts directly
with the magnetic field. In the classical Hamilton's function, this interaction
does not appear, since the spin, which is a purely quantum effect, vanishes in
the limit of classical mechanics. The correct expression for the Hamiltonian is
obtained by including in (111.3) an extra term— .H corresponding to the
energy of the magnetic moment µ in the field H. Thus the Hamiltonian of a
particle having a spin is‡

In expanding the square , we must bear in mind that  dose not
in general commute with the vector A, which is a function of the coordinates.
Hence we must write

According to the rule (16.4) for the commutation of the momentum operator
with any function of the coordinates, we have

Thus  and A commute if div A ≡ 0. This holds, in particular, for a uniform
field, if its vector potential is expressed in the form

The equation  with the Hamiltonian (111.4) is a
generalization of Schrödinger's equation to the case where a magnetic field is
present. The wave functions on which the Hamiltonian acts in this equation are
symmetrical spinors of rank 2s.

The wave functions of a particle in an electromagnetic field are not uniquely
defined, because the choice of the field potentials is not unique: they are
defined (see Fields, §18) only to within a gauge transformation

where f is an arbitrary function of the coordinates and the time. This
transformation does not affect the values of the field strengths, and it is
therefore clear that it cannot essentially alter the solutions of the wave
equation; in particular, it must leave |Ψ|  unchanged, since it is easy to see
that the original equation is restored if we make the changes (111.8) in the
Hamiltonian and at the same time change the wave function according to

This non-uniqueness of the wave function does not affect any quantity having
a physical significance (in whose definition the potentials do not appear
explicitly).

In classical mechanics, the generalized momentum of a particle is related to its
velocity by

In order to find the operator  in quantum mechanics, we have to commute the
vector r with the Hamiltonian. A simple calculation gives the result

which is exactly analogous to the classical expression. For the operators of the
velocity components we have the commutation rules

2



(111.11)

which are easily verified directly. We see that, in a magnetic field, the
operators of the three velocity components of a (charged) particle do not
commute. This means that the particle cannot simultaneously have definite
values of the velocity components in all three directions.

In motion in a magnetic field, the symmetry with respect to time reversal
occurs only if the sign of the field H (and of the vector potential A) is changed.
This means (see §§18 and 60) that Schrodinger's equation Ĥψ = Eψ must
keep the same form when we take complex conjugates and change the sign of
H. This is immediately evident for all terms in the Hamiltonian (111.4) except 

. The term  in Schrodinger's equation becomes s∗.Hψ∗ under
the transformation in question, and at first sight this destroys the required
invariance, since the operator  is not the same as . It must be
remembered, however, that the wave function is in reality a spinor ψ , and
on time reversal a contravariant spinor must be replaced by a covariant one
(see §60), so that in Schrodinger's equation the term  is
replaced by . It is easily seen by means of the definitions
(57.4), (57.5) that the result of the action of the operator  on the
components of the covariant spinor has the opposite sign to that of the
operator  on the components of the contravariant spinor. The operation of
time reversal therefore leads to a Schrodinger's equation for the components
ψ  which is of the same form as the original equation for the components
ψ .
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SPIN
L.D. LANDAU, E.M. LIFSHITZ, in Quantum Mechanics: A Shorter Course of
Theoretical Physics, 1974

§43. A particle in a magnetic field
A particle that has a spin also has a certain “intrinsic” magnetic moment µ. The
corresponding quantum-mechanical operator is proportional to the operator ,
and can therefore be written as

where s is the magnitude of the particle spin and µ a constant characterising
the particle. The eigenvalues of the magnetic moment component are µ  =
µσ/s. Hence we see that the coefficient µ (which is usually called just the
magnitude of the magnetic moment) is the maximum possible value of µ ,
reached when σ = s.

The ratio µ/ħs gives the ratio of the intrinsic magnetic moment and the intrinsic
angular momentum of the particle (when both are along the z-axis). For the
ordinary (orbital) angular momentum, this ratio is e/2mc (see Mechanics and
Electrodynamics, §66). The coefficient of proportionality between the intrinsic
magnetic moment and the spin of the particle is not the same. For an electron
it is – |e|/mc, i.e. twice the usual value; we shall see later that this value can be
obtained theoretically from Dirac's relativistic wave equation. The intrinsic
magnetic moment of the electron (spin ) is consequently – µ , where

This quantity is called the Bohr magneton.

The magnetic moment of heavy particles is customarily measured in nuclear
magnetons, defined as eħ/2m c with m  the mass of the proton. The intrinsic
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magnetic moment of the proton is found by experiment to be 2.79 nuclear
magnetons, the moment being parallel to the spin. The magnetic moment of
the neutron is opposite to the spin, and is 1.91 nuclear magnetons.

It should be noted that the quantities µ and s on the two sides of (43.1) are the
same type of vector, as they should be: both are axial vectors (both being
given by vector products of two polar vectors). A similar equation for the
electric dipole moment d(d = constant × s) would contradict the symmetry
under inversion of coordinates: the relative sign of the two sides would be
changed by the inversion.

Let us ascertain the form of Schrödinger's equation for a particle moving in
external electric and magnetic fields. In the classical theory, the Hamilton's
function for a charged particle in an electromagnetic field has the form

where Φ and A are the scalar and vector potentials of the field, and p is the
generalised momentum of the particle (see Mechanics and Electrodynamics,
§43). If the particle has no spin, the transition to quantum mechanics can be
made in the usual manner; the generalised momentum must be replaced by
the operator , and we obtain the Hamiltonian

If the particle has a spin, this procedure does not suffice. This is because the
intrinsic magnetic moment of the particle interacts directly with the magnetic
field. In the classical Hamilton's function this interaction does not appear, since
the spin itself, which is a purely quantum effect, vanishes when we pass to the
limit of classical mechanics. The correct expression for the Hamiltonian is
obtained by adding to (43.3) a term , which corresponds to the energy
of the magnetic moment µ in the field H . Thus the Hamiltonian of a particle
having a spin and in a magnetic field is

The equation Ĥψ = Eψ for the eigenvalues of this operator is the required
generalisation of Schrödinger's equation to the case of motion in a magnetic
field. The wave function ψ in this equation is a spinor of rank 2s+1.

Read full chapter
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Magnetic Point Groups and Space Groups
R. Lifshitz, in Encyclopedia of Condensed Matter Physics, 2005

Generalizations of Magnetic Groups
There are two natural generalizations of magnetic groups. One is to color
groups with more than two colors, and the other is to spin groups where the
spins are viewed as classical axial vectors free to rotate continuously in any
direction.

An n-color point group G  is a subgroup of O(d) × S , where S  is the
permutation group of n colors. Elements of the color point group are pairs (g,
γ) where g is a d-dimensional (proper or improper) rotation and γ is a
permutation of the n colors. As before, for (g, γ) to be in the color point group
of a finite object it must leave it invariant, and for (g, γ) to be in the color point
group of a crystal it must leave it indistinguishable, which in the special case of
a periodic crystal reduces to invariance to within a translation. To each element
(g, γ) ∈ G  corresponds a phase function , satisfying a generalized
version of the group compatibility condition [6]. The color point group contains
an important subgroup of elements of the form (e, γ) containing all the color
permutations that leave the crystal indistinguishable without requiring any
rotation g.

C n n
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A spin point group G  is a subgroup of , where SO(d )
is the group of d -dimensional proper rotations operating on the spins, and 1′ is
the time inversion group as before. Note that the dimension of the spins need
not be equal to the dimension of space (e.g., one may consider a planar
arrangement of 3D spins). Also note that because the spins are axial vectors
there is no loss of generality by restricting their rotations to being proper.
Elements of the spin point group are pairs (g, γ), where g is a d-dimensional
(proper or improper) rotation and γ is a spin-space rotation possibly followed
by time inversion. Here as well, elements of the form (e, γ) play a central role
in the theory, especially in determining the symmetry constraints imposed by
the corresponding phase functions  on the patterns of magnetic Bragg
peaks, observed in elastic neutron diffraction experiments.
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Neutron Scattering - Magnetic and Quantum
Phenomena
V. Ovidiu Garlea, Bryan C. Chakoumakos, in Experimental Methods in the
Physical Sciences, 2015

4.3.3.1 Shubnikov Space Groups
To describe the invariance of magnetic structure, a new “spin-reversal”
operator (aka antisymmetry, antiidentity, or time-inversion) that defines the
current loop type symmetry of an axial vector is used. The antiidentity
operation was introduced by Heesch [101], but magnetic symmetry is usually
termed Shubnikov symmetry, after the crystallographer Shubnikov who
rediscovered the antisymmetry concept as a way to expand the classical
symmetry groups. This antisymmetry operator, identified by 1′, can be
combined with any conventional symmetry operator h to form a new “primed”
operator h′. The effect of such symmetry operators on a magnetic moment
described as axial vectors associated with a current loop is exemplified in
Figure 9. It is important to emphasize that the magnetic moment µ  is
transformed only by the rotational part of the operator g = {h|t}. The resulting
moment  can be mathematically expressed as:

Figure 9. Transformations of magnetic moments described as axial vectors
associated with a current loop, under the action of inversion, spin-reversal,
mirror, and antimirror operators.

where the determinant det(h) describes the current loop type symmetry, while
the term δ takes the value 1 for unprimed symmetry elements and −1 for the
primed ones. The position in the zeroth cell of the transformed moment
changes according to the equation:

j



The vector a  is called the “returning vector” because it links the transformed
position  outside the zeroth cell to a symmetry equivalent r  inside the zeroth
cell. For the operator g to be a magnetic symmetry operator, it should leave
the moment invariant such as . Following the above formulas, notice
that the moment is not reversed by the inversion operation  (see Figure 9).
Furthermore, the mirror operator m leaves the moment invariant only if it aligns
perpendicular to the plane of the mirror, whereas the m′ leaves invariant only
the moment lying within the mirror.

By adding the spin reversal operator to any of the standard rotational
operators the number of crystallographic point groups increases from 32 to
122. If one defines the time-reversal group as formed by two elements
Θ = {1,1′}, a magnetic group M can be obtained as a subgroup of the direct
product of R with the crystallographic group G: M ⊂ G ⊗ Θ. The magnetic
point groups can be classified into three types. The first type is made by those
identical to the 32 crystallographic point groups, not involving the 1′ operation,
termed “single-color” or “colorless.” Note that the group nomenclature uses the
analogy between the concept of spin-reversal and color change, however, as
noted above, color and spin differ in the way the regular group operations act
upon them.

The second type, named “gray” groups, consist of the 32 groups containing
symmetry elements h in both pure and prime forms, from the construction
M = G ∪ G1′. The presence of a spin-reversal operator in each such group
precludes nonzero magnetic moments, and consequently they are also known
as “paramagnetic” groups. The third type involves unprimed elements of the
subgroup H of index 2 of G (H is a so-called “halving subgroup” of G), and the
remaining operators G\H (read G “not” H) that are being primed, from the
construction M = H ∪ (G\H)1′. These resulting 58 magnetic groups are called
“black-white” or Heesch groups. A lucid presentation on how to expand the
crystallographic point groups to include antisymmetry operations is given by
Boisen [102]. Because H is a halving subgroup, M = H ∪ (G\H)1′ has the same
number of symmetry elements as G, and exactly half are antisymmetry
operations.

It is quite evident that not all of the colorless and black-white magnetic point
groups defined above can be realized in a magnetically ordered system. In
that sense, a point group is called admissible if all its operators leave at least
one spin component invariant. There are 31 admissible magnetic point groups
that are listed together with their admissible moment direction in Table 2
[85,97].

Table 2. Magnetic Point Groups and Corresponding Moment Directions That
Enable magnetic Order

1 Any direction

2′ 2′/m′ m′m2′ Perpendicular to the twofold axis,
and to the unprimed plane for
m′m2′

m′ Any direction within the plane

m Perpendicular to the plane

m′m′m Perpendicular to the unprimed
plane

2′2′2 Along the unprimed axis

2 2/m m′m′2 Along the twofold axis

4 4/m 42′2′ Along the fourfold axis

gj

i

Admissible Magnetic Point Groups Admissible Moment Directions



Reproduced from Ref. [97].

To derive the magnetic lattices, the concept of translation group is generalized
to the case of Shubnikov symmetry by considering the antitranslation
operation t′ = t1′. Note that this concept replaces in a way the propagation
vector formalism defined in the previous section, causing a limitation of the
Shubnikov symmetry to the commensurate structures with k = (0,0,0) and τ/2.
The single color magnetic lattices coincide with the 14 conventional Bravais
lattices, while the “paramagnetic” lattices do not need to be considered
because in that case the crystal is not magnetically ordered. The derivation of
black-white translation groups can be done in a similar way as done for the
magnetic point groups, by using the subgroups of index 2, H  of translation
group T: M  = H  + (T − H )1′. These result in 34 black-white Bravais lattices
which are listed in Refs [85,98].

In direct correlation with the magnetic point groups and translational groups,
one can obtain a total of 1651 Shubnikov space groups that consist of 230
single-color, 230 paramagnetic, and 1191 black-white groups. The latter type
of magnetic space groups can in turn be grouped in two categories: 674
Shubnikov groups of the “first kind” where the subgroup of translation is the
same as that of the space group, and 517 of “second kind” where the
translation subgroup contains antitranslations leading to primitive magnetic
unit cells larger than the primitive crystal cells. Such magnetic lattices
correspond to those defined by the propagation vector k = τ/2.

Representations for space-group symmetry operations can be given by the
following 4 × 4 matrix,

where

is the point-group operation, and the vector t embodies the location and
translation of the space-group operation. The ±1 in the (4,4) entry denotes
either a regular operation (+1) or an antisymmetry operation (−1). The
meaning of the vector t is not always obvious by inspection, yet a simple
recipe for constructing and interpreting space group symmetry operations is
given in Ref. [103]. The various shorthand notations for space-group symmetry
operations, and those adopted in the International Tables, are given by Litvin
and Kopský (2011).

There are two notations used in the literature for describing magnetic space
groups following Belov–Neronova–Smirnova (BNS) [84] and Opechowski–
Guccione (OG) [85]. Both notations are identical for the major part of magnetic
space groups except for the second kind black-white magnetic space groups.
A list of all magnetic space groups using the OG notation has been compiled
by Litvin [87], followed by a reinterpretation in terms of the BNS notation by
Grimmer [88]. Other excellent resources are the ISOTROPY Software Suite
[104] and Bilbao Crystallographic Server [105–107] that host databases and
programs related to crystallographic and magnetic symmetry.

4m′m′ 4/mm′m′ Along the fourfold axis

3 32′ 3m′ Along the threefold axis

6 6/m 62′2′ Along the sixfold axis

6m′m′ 6/mm′m′ Along the sixfold axis

L
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Advances in Atomic, Molecular, and Optical Physics
Andrei Derevianko, Sergey G. Porsev, in Advances In Atomic, Molecular, and
Optical Physics, 2011

5 Hyperfine-Induced Vector Light Shift in the P  State
The second-order light shift involves two interactions with the laser field. The
product of two interactions  may be recoupled into the scalar,
vector (axial), and tensor components of the dynamic polarizability (these are
irreducible tensors of rank 0, 1, and 2 acting in the electronic space). Because
of the angular selection rules, for the J = 0 clock states, only the scalar
polarizability is of relevance and it was the focus of our discussion in Section
3. The hyperfine interaction, nevertheless, removes the spherical symmetry of
the atoms and leads to residual vector, , and tensor,  a.c.,
polarizabilities. These may affect the performance of the clock: the vector light
shift may cause a small Stark-shift dependence on the polarization of the
trapping light.

To determine the effect of the HFI on the a.c. polarizability, we carry out an
analysis in the third-order perturbation theory. We apply the Floquet formalism
(Section 3.1) with respect to a combined operator

The third-order energy shift of the atomic energy level reads

where matrix elements are evaluated with respect to the dressed basis and
inner products involve time-averaging. The relevant terms (involving two E1
laser-atom interactions and one HFI coupling) are

Notice that we work in the dressed atom picture, i.e., the states a, b, c are
products of atomic and photonic states. Also (V )  = 0 because of the
parity/angular/photon number selection rules leading to a simplification of the
last term. Explicitly, after the time averaging, Equation (13), (now a, b, c are
the “bare” atomic states and the matrix elements are computed using the
traditional inner products)
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If we represent these contributions diagrammatically, then T  (ω), C  (ω), and
B  (ω) can be treated as the top, center, and bottom diagrams, respectively.
The naming convention reflects the position of the HFI in the diagram. O  (ω)
combines other corrective terms; for the case at hand, the O  (ω) term is
irrelevant since the expectation value (V )  = 0 for J = 0 states.

We carry out the angular reduction of these diagrams. We find that the
magnetic-dipole HFI does not bring in neither the scalar nor the tensor
contribution: there is only the vector component of the a.c. polarizability. In
principle, the tensor contribution to J = 0 polarizability might appear because of
the electric-quadrupole moment of the nucleus; the strength of this interaction
is typically two orders of magnitude smaller than that of the magnetic HFI and
we neglect this effect. The final result simplified for the J = 0 states reads

M  being the projection of F (i.e., the projection of the nuclear spin I for J = 0).
The degree of the circular polarization is defined in terms of  for
an electromagnetic wave 

. The shift is
expressed in terms of the vector polarizability

where the dynamic reduced sums are expressed in terms of the reduced
matrix elements of the dipole operator and the HFI coupling

a a

a

a

a

HFI aa
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In these formulas, E is the energy of the state of interest. Notation (−1)  (ω →
−ω) means that the preceding term is multiplied by (−1)  and ω is replaced by
−ω. For J = 0, the selection rules require J′ = J″ = 1 for both reduced sums.

Analyzing these expressions numerically in the CI + MBPT approach, we find
that the vector polarizability of the 6 P  state of Yb is much larger than that for
the ground state, as in the case of Sr (Katori et al., 2003). For Sr, Katori et al.
(2003) estimated the vector polarizability by adding HFS correction to the
energy levels of intermediate states. Our analysis is more complete and we
find that the dominant effect is not because of corrections to the energy levels,
but it is rather because of perturbation of the 6 P  state by the HFS operator.
The resulting values of  are −0.10 a.u. for Yb and 0.075 a.u. for

Yb. Recently, the value  for Yb was experimentally found to

be −0.08 (Lemke et al., 2009) in very good agreement with the theoretical
result. In practice, this translates to requiring  at laser intensities of
10 kW/cm  for keeping the induced clock shifts below the mHz level.
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Axial Vector Nuclear Sum Rules and Exchange Effects
MAGDA ERICSON, in Nuclear, Particle and Many Body Physics, 1972

Publisher Summary
The nuclear pionic vertex and its relation to the π-nuclear scattering length are
discussed in this chapter using dispersion techniques. This chapter explains
the information on mesonic effects in the pionic vertex and in the axial vector
current matrix element, which can be extracted using these techniques. The
result thus obtained is that the sum of pionic vertices between the ground state
and all excited nuclear states is connected to an integral of the total 7r-nuclear
cross section in the (3,3) resonance energy and above. It describes that the
exchange current effects are related in a model-independent way to shadow
phenomenon in the cross section. The Goldberger-Treiman relation extends
the result presented in the chapter to Gamow-Teller matrix elements, which is
also called nuclear Adler-Weisberger sum rule. Estimates are given for the
renormalization of the axial coupling constant in some nuclei. The chapter
additionally presents the many-body effects of the pionic vertex.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780125082013500338

(9)

SYMMETRIES: SOME RECENT THEORETICAL
WORK*
Ernest M. Henley, in Few Particle Problems, 1972

E Second Class Axial Currents
The normal strangeness non-changing weak current, j  of Eq. (2) has definite
properties under isospin rotations and thus under G-parity conjugation, where

For the vector and axial vector currents of Eq. (3)

Such currents are referred to as first class currents. Weinberg ) suggested
the possible existence of second class currents with the opposite G-parity
transformation properties.

µ
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(10)

(11a)

(11b)

Are these second class currents responsible for the CP- and T-violations
observed in the kaon system? Indeed, either first or second class currents may
be regular or irregular under time reversal transformations. In the second case
the resulting interaction Hamiltonian will be odd under time-reversal
transformations. As discussed in section B, the beta decay time reversal tests
carried out so far do not rule out a sizeable irregular second class current
because they occur between mirror nuclei. ) Furthermore, since decay rates
do not detect T-odd parts of an interaction Hamiltonian, the measurements of δ
also do not bear on this point. However, possible tests of the
presence /irregular second class currents have been suggested by Holstein
and others. )

Although both the conserved vector current theory and experiments bearing on
it rule out second class vector currents, there were until recently few
experiments which bore on the existence of second class axial vector currents.
The careful measurements of Alburger and Wilkinson ) and of Wilkinson and
other collaborators ) of the ratios of ft values for Gamow-Teller mirror beta
decays showed evidence for 10–20% deviations of this ratio from unity.
Although we just heard from Professor Wilkinson that the evidence for these
deviations in even-even nuclei (except for A=8) has largely disappeared over
the past year, the experiments attracted widespread theoretical interest.

In terms of an impulse approximation treatment of beta-decay, the simplest
interpretation of the deviation of δ

from 0 is the existence of a second class axial current. The free nucleon matrix
element of this current can be written as

with q = p'-p, P = p+p', h'  = h , g'  ≈ g . The terms proportional to h  and h'
are second class ones.

In Eqs. (11) f, g, and h are form factors which can depend on q  as well as p' ,
and p  when the nucleons are not on their mass shells. Although the two forms
(11a) and (11b) are equivalent for nucleons on the mass shell (neglecting
electromagnetic mass differences), they lead to different results when
extrapolated to off-mass shell matrix elements such as those which occur in
beta decay. )

The impulse approximation is useful for obtaining an understanding of nuclear
phenomena in terms of the basic weak interaction. However, one can also
treat nuclei as “elementary” particles with form factors, and this formulation is
more appropriate for general symmetry arguments. ) Comparisons of the two
methods have recently been made; ) they lead to essentially equivalent
results for allowed beta decays, for instance. Any differences should be
ascribed to off-mass shell extrapolations and to meson exchange effects.

The importance of meson exchange effects in the second class current
problem was stressed by Lipkin ) and by Delorme and Rho. ) Lipkin, in
particular, pointed out that the ω-π  exchange graph shown in Fig. 4 could
give rise to an energy-independent δ unlike the impulse approximation
treatment of Eqs. (11) which yields an asymmetry proportional to the beta
decay energy releases.
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(12)

Fig. 4. The ω-π exchange current contribution to beta decay.

In a recent analysis of the second class current problem for mirror beta decay
asymmetries, Kubodera, Delorme, and Rho ) include an arbitrary fraction of
both forms of Eqs. (11) as well as exchange current contributions. For the
asymmetry δ they find an energy dependent term, b(W  + W ), which is
proportional to the sums of the contributions from Eqs. (11a) and (11b), an
energy dependent term, aK(W  + W ), which is determined by the ω-π
exchange current, and an energy-independent part aJ which comes only from
Fig. 4

In Eq. (12), W  is the energy release in the positron/electron β-decay. The
exchange current terms J, K depend on nuclear structure factors whereas a
and b are constants. As pointed out by Professor Wilkinson, the almost
complete absence of energy dependence of δ required by the nuclear mass
A=8 data ) must be considered accidental if the above theoretical description
is correct. Energy independence of δ would not be expected for other nuclei;
this prediction should be tested. In order to fit the large mass eight beta decay
asymmetry δ, the authors find that a large (unmeasured) beta decay rate 

, proportional to G  of Fig. 4, is required. By fixing the two
adjustable parameters a and b in Eq. (12) from the A=8 (ft)  asymmetry
measurements, Kubodera, Delorme, and Rho predict asymmetries in other
nuclei which are generally smaller than those observed.

Of course, an important question is whether the beta decay mirror
asymmetries found by Wilkinson, Alburger, and collaborators can be explained
by other means than the assumption of second class currents. For instance,
electromagnetic corrections to beta decay matrix elements can give effects
which mimic second class currents. However, such corrections would not be
expected to give rise to asymmetries δ of the order of 10% but rather 1% or
less. But there are other origins of charge asymmetries. The major one of
these is probably the binding energy differences between proton in e  and
neutron in e  decays; ) other possibilities are effects due to a charge
asymmetry of nuclear forces, and different nuclear deformations in the mirror
nuclei. ) The estimates made to-date do not appear to be able to account for
δ in some odd-A nuclei and for A=8. On the other hand, the recent results
summarized by D. H. Wilkinson for the mirror ft-values in even nuclei
(excluding A=8) suggest that these corrections be examined further. More
accurate tests of the ratio of the beta decay rates 

 would also be helpful.

Measurements of the asymmetry δ in mirror beta decays is not a unique
indicator of second class currents. Equally or more difficult tests have been
suggested not only in beta decays, but also in muon capture and in ν
scatterings from nuclei. ) When some of these tests have been carried out,
we may be able to reach a more definite conclusion about the existence or
non-existence of second class currents.

I have tried to summarize recent theoretical work on some symmetries, and
have attempted to outline some remaining problems. They are legion. For
instance, despite considerable effort we still do not understand parity violation
in nuclei, or for that matter the basic PV nuclear force. Nor do we know the
cause of the time reversal violation seen in the kaon decays. The definite
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existence of a charge asymmetry of the nuclear force has yet to be
established. Lastly, although exotic currents can be, and have been, called
upon to explain asymmetries observed in nature, the correct interpretations
appear to be more subtle. Despite these shortcomings, the research on
symmetries has improved our understanding of basic phenomena.
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