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A classical model for a spinning electron is described. It has been obtained 
within a kinematical formalism proposed by the author to describe spinning par-
ticles. The model satisfies Dirac’s equation when quantized. It shows that the 
charge of the electron is concentrated at a single point but is never at rest. The 
charge moves in circles at the speed of light around the centre of mass. The cen-
tre of mass does not coincide with the position of the charge for any classical 
elementary spinning particle. It is this separation and the motion of the charge 
that gives rise to the dipole structure of the electron. The spin of the electron 
contains two contributions. One comes from the motion of the charge, which 
produces a magnetic moment. It is quantized with integer values. The other is 
related to the angular velocity and is quantized with half integer values. It is ex-
actly half the first one and points in the opposite direction. When the magnetic 
moment is written in terms of the total observable spin. one obtains the g = 2 gy-
romagnetic ratio. A short range interaction between two classical spinning elec-
trons is analysed. It predicts the formation of spin 1 bound states provided some 
conditions on their relative velocity and spin orientation are fulfilled, thus sug-
gesting a plausible mechanism for the formation of a Bose-Einstein condensate. 

1. Introduction 
The spin of the electron has for many years been considered a relativistic and 
quantum mechanical property, mainly due to the success of Dirac’s equation 
describing a spinning relativistic particle in a quantum context. Nevertheless, in 
textbooks and research works one often reads that the spin is neither a relativis-
tic nor a quantum mechanical property of the electron, and that a classical in-
terpretation is also possible. The work by Levy-Leblond [1] and subsequent 
papers by Fushchich et al. [2], which show that it is possible to describe spin ½ 
particles in a pure Galilean framework, with the same g = 2 gyromagnetic ratio, 
spin-orbit coupling and Darwin terms as in Dirac’s equation, lead to the idea 
that spin is not strictly a relativistic property of the electron. 

The spin is the angular momentum of the electron, and the classical and 
quantum mechanical description of spin is the main subject of the kinematical 
formalism of elementary spinning particles published by the author [3]. This 
work presents the main results of this formalism and, in particular, an analysis 
of a model of a classical spinning particle whose states are described by 
Dirac’s spinors when quantized. Other contributions are also discussed. 
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2. Classical elementary particles 
To understand what a classical elementary particle is from the mathematical 
point of view, we consider first the example of a point particle. It is the sim-
plest geometrical object with which we can build any other geometrical body 
of any size and shape. The point particle is the classical elementary particle of 
Newtonian mechanics and has no spin. Yet we know today that spin is one of 
the intrinsic properties of all known elementary particles. The description of 
spin is related to the representation of the generators of the rotation group, and 
we know it is an intrinsic property since it is related to one of the Casimir op-
erators of the Galilei and Poincaré groups. 

From the Lagrangian point of view, the initial (and final) state of the point 
particle is a point on the continuous space-time manifold. In fact what we fix as 
boundary conditions for the variational problem are the position 1r  at time 1t  
and the position 2r  at the final time 2t . We call kinematical variables of any 
mechanical system the variables which define the initial (and final) configura-
tion of the system in this Lagrangian description, and kinematical space the 
manifold covered by these variables. The point particle is a system of three de-
grees of freedom with a four-dimensional kinematical space.  

In group theory, a homogeneous space of any Lie group is the quotient 
structure between the group and any of its continuous subgroups. The impor-
tant property of the kinematical space of a point particle, from the mathemati-
cal viewpoint, is that it is a homogeneous space of the Galilei and Poincaré 
groups. 

In the example of the point particle, the kinematical space manifold is the 
quotient structure between the Poincaré group and the Lorentz group in the 
relativistic case, and also the quotient between the Galilei group and the homo-
geneous Galilei group in the non-relativistic one. 

We use this idea to arrive at the following definition. 

Definition: A classical elementary particle is a mechanical system whose 
kinematical space is a homogeneous space of the kinematical group. 

The spinless point particle fulfils this definition, but it is not the most 
general elementary particle that can be described, because we have larger ho-
mogeneous spaces with a more complex structure. The largest structured parti-
cle is the one for which the kinematical space is either the Galilei or Poincaré 
group or any of its maximal homogeneous spaces. 

With this definition we have a new formalism, based upon group theory, 
to describe elementary particles from a classical point of view. It will be quan-
tized by means of Feynman’s path integral method, where the kinematical vari-
ables are precisely the common end points of all integration paths. The wave 
function of any mechanical system will be a complex function defined on the 
kinematical space. In this way, the structure of an elementary particle is basi-
cally related to the kinematical group of space-time transformations that im-
plements the Special Relativity Principle. It is within the kinematical group of 
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symmetries that we must look for the independent and essential classical vari-
ables to describe an elementary object. 

When we consider a larger homogeneous space than the space-time mani-
fold, for both Galilei and Poincaré groups, we have variables additional to time 
and space to describe the states of a classical elementary particle. These addi-
tional variables will produce a classical description of spin. 

3. Main features of the formalism 
When we write the Lagrangian of any mechanical system in terms of the intro-
duced kinematical variables, and the dynamics is expressed in terms of some 
arbitrary evolution parameter τ (not necessarily the time parameter), we get the 
following properties: 
• The Lagrangian is independent of the evolution parameter τ. The time evo-

lution of the system is obtained by choosing ( )t τ τ= . 
• The Lagrangian is only a function of the kinematical variables ix  and their 

first τ derivatives ix� . 
• The Lagrangian is a homogeneous function of first degree in terms of the 

derivatives of the kinematical variables ix�  and therefore Euler’s theorem 
implies that it can be written as ( , ) ( , ) ,i iL x x F x x x=� � �  where i iF L x= ∂ ∂� . 

• If some kinematical variables are time derivatives of any other kinematical 
variables, then the Lagrangian is necessarily a generalised Lagrangian de-
pending on higher order derivatives when expressed in terms of the essen-
tial or independent degrees of freedom. Therefore, the dynamical equations 
corresponding to these variables are no longer of second order, but, in gen-
eral, of fourth or higher order. This will be the case for the charge position 
of a spinning particle. 

• The transformation of the Lagrangian under a Lie group that leaves the dy-
namical equations invariant is ( , ) ( , ) ( ; ) ,L gx gx L x x d g x dα τ= +� �  where 

( ; )g xα  is a gauge function for the group G and the kinematical space X. It 
only depends on the parameters of the group element and on the kinemati-
cal variables. It is related to the exponents of the group [4]. 

• When the kinematical space X is a homogeneous space of G, then 
( ; ) ( , )xg x g gα ξ= , where 1 2( , )g gξ  is an exponent of G. 

• When quantizing the system, Feynman’s kernel is the probability ampli-
tude for the mechanical process between the initial and final state. It will 
be a function, or more precisely a distribution, over the X X×  manifold. 
Feynman’s quantization establishes the link between the description of the 
classical states in terms of the kinematical variables and its corresponding 
quantum mechanical description in terms of the wave function. 

• The wave function of an elementary particle is thus a complex square inte-
grable function defined on the kinematical space. 

• The Hilbert space structure of this set of functions is achieved by a suitable 
choice of a group invariant measure defined over the kinematical space. 
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• The Hilbert space of a classical system, whose kinematical space is a ho-
mogeneous space of the kinematical group, carries a projective, unitary, ir-
reducible representation of the group. In this way, the classical definition 
of an elementary particle has a correspondence with Wigner’s definition of 
an elementary particle in the quantum case. 

4. The classical electron model 
The latest LEP experiments at CERN suggest that the electron charge is con-
fined within a region of radius 1910 meR −< . Nevertheless, the quantum me-
chanical effects of the electron appear at distances of the order of its Comp-
ton’s wavelength 13/ 10 mC mcλ −= ≅= , which are six orders of magnitude lar-
ger. 

One possibility to reconcile these features is the assumption, from the 
classical viewpoint, that the charge of the electron is a point, but at the same 
time this point is never at rest and it is affected by an oscillating motion in a 
confined region of size Cλ . This motion is known in the literature as zitter-
bewegung. This is the basic structure of spinning particle models that will be 
obtained within the proposed kinematical formalism, and also suggested by 
Dirac’s analysis of the internal motion of the electron [5]. It is shown that the 
charge of the particle is at a single point r, but this point is not the centre of 
mass of the particle. Furthermore, the charge of the particle is moving at the 
speed of light, as shown by Dirac’s analysis of the electron velocity operator. 
Here, the velocity corresponds to the velocity of the point r, which represents 
the position of the charge. In general, the point charge satisfies a fourth-order 
differential equation, which is the most general differential equation satisfied 
by any three-dimensional curve. 

We shall see that the charge moves around the centre of mass in a kind of 
harmonic or central motion. It is this motion of the charge that gives rise to the 
spin and dipole structure of the particle. In particular, the classical relativistic 
model that when quantized satisfies Dirac’s equation shows, for the centre of 
mass observer, a charge moving at the speed of light in circles of radius 

0 / 2R mc= =  and contained in a plane orthogonal to the spin direction [6,7]. 
This classical model of electron is what we will obtain when analysing the rela-
tivistic spinning particles. 

To describe the dynamics of a classical charged spinning particle, we 
must therefore follow just the charge trajectory or, alternatively, the centre of 
mass motion and the motion of the charge around the centre of mass. In general 
the centre of mass satisfies second-order, Newton-like dynamical equations, in 
terms of the total external force. But this force has to be evaluated not at the 
centre of mass position, but rather at the position of the charge. We will dem-
onstrate all these features by considering different examples. 
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5. Non-relativistic elementary particles 
Let us first consider the non-relativistic formalism because the mathematics in-
volved is simpler. In the relativistic case the method is exactly the same, [3,6,7] 
and we limit ourselves here to giving only the main results. We start with the 
description of the Galilei group to show how we obtain the variables that de-
termine a useful group parameterization. These variables associated with the 
group will later be transformed into the kinematical variables of the elementary 
particles. We end this section with an analysis of some different kinds of clas-
sical elementary particles. 

5.1 Galilei group 
The Galilei group is a group of space-time transformations characterised by ten 
parameters ( , )g b a,v,α≡ GG G . The action of a group element g on a space-time 
point ( , )x t r≡ G , represented by x gx′ = , is considered in the following form 
 exp( )exp( )exp( ) exp( )x bH a P v K J xα′ = ⋅ ⋅ ⋅

G G GGG G  
It is a rotation of the point, followed by a pure Galilei transformation, and fi-
nally a space and time translation. Explicitly, the above transformation be-
comes 
 ,t t b′ = +  (1) 
 ( ) .r R r vt aα′ = + +G G G G  (2) 
The group action (1)-(2) represents the relationship between the coordinates 
( , )t rG  of a space-time event, as measured by the inertial observer O, and the 
corresponding coordinates ( , )t r′ ′G  of the same space-time event as measured by 
another inertial observer O′. Parameter b is a time parameter, aG  has dimen-
sions of space, vG of velocity and αG  is dimensionless, and these dimensions 
will be shared by the corresponding variables of the different homogeneous 
spaces of the group. 

The variables b and aG  are the time and position of the origin of frame O 
at time t = 0 as measured by observer O′. The variables vG  and αG  are respec-
tively the velocity and orientation of frame O as measured by O′. 

The composition law of the group g′′ = g′g is: 
 b′′ = b′+b, (3) 
 ( ) ,a R a v b aα′′ ′ ′ ′= + +GG G G G  (4) 
 ( ) ,v R v vα′′ ′ ′= +GG G G  (5) 
 ( ) ( ) ( ).R R Rα α α′′ ′=G G G  (6) 
The generators of the group in the realization (1, 2) are the differential opera-
tors 
 ,      ,      ,      i i l i

i i k kliH t P x K t x J x xε= ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂  (7) 
and the commutation relations of the Galilei Lie algebra are 
 [ , ] ,     [ , ] ,     [ , ] ,     [ , ] 0,J J J J P P J K K J H= − = − = − =

G G G G G G G G G G
 (8) 
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 [ , ] 0,     [ , ] ,     [ , ] 0,     [ , ] 0.H P H K P P P K P= = = =
G G G G G G G

 (9) 
The Galilei group has the non-trivial exponents [4] 

 21( , ) ( ) ' .
2

g g m v b v R aξ α⎛ ⎞′ ′= + ⋅⎜ ⎟⎝ ⎠
GG G G  (10) 

They are characterised by the non-vanishing parameter m. The gauge functions 
for the Lagrangians defined on the different homogeneous spaces of the Galilei 
group are of the form 

 21( ; ) ( )
2

g x m v t v R rα α⎛ ⎞= + ⋅⎜ ⎟⎝ ⎠
GG G G  

They all vanish if the boost parameter vG  vanishes. This implies that a Galilei 
Lagrangian for an elementary particle is invariant under rotations and transla-
tions, but not under Galilei boosts. In the quantum case this means that the Hil-
bert space for this system carries a unitary representation of a central extension 
of the Galilei group. In the classical case, the generating functions of the ca-
nonical Galilei transformations, with the Poisson bracket as the Lie operation, 
satisfy the commutation relations of the Lie algebra of the central extension of 
the Galilei group [4]. 

The central extension of the Galilei group [8] is an 11-parameter group 
with an additional generator I which commutes with the other ten, 
 [ , ] [ , ] [ , ] [ , ] 0,I H I P I K I J= = = =

G G G
 (11) 

while the remaining commutation relations are the same as above (8, 9), the 
only exception being the last, which now appears as 
 [ , ] .i j ijK P m Iδ= −  (12) 

If the following polynomial operators are defined on the group algebra 

 21 1,          ,
2

W IJ K P U IH P
m m

= − × = −
G G G G G

 (13) 

we see that U commutes with all generators of the extended Galilei group and 
that W

G
 satisfies the commutation relations 

 [ , ] ,     [ , ] ,     [ , ] [ , ] [ , ] 0.W W IW J W W W P W K W H= − = − = = =
G G G G G G G G G G G

 
We find that 2W

G
 also commutes with all generators. It turns out that the ex-

tended Galilei group has three functionally independent Casimir operators. In 
those representations in which the operator I becomes the unit operator, for in-
stance, in the irreducible representations they are, respectively, interpreted as 
the mass, M = mI, the internal energy 2

0 / 2H H P m= − , and the absolute 
value of the spin 

 
2

21 1,       .S J K P S J K P
m m

⎛ ⎞= − × ⇒ = − ×⎜ ⎟⎝ ⎠

G G G G G G G
 (14) 

In what follows we take the above definition (14) as the definition of the spin 
of a nonrelativistic particle. In those representations in which I is the unit op-
erator, the spin operator S

G
 satisfies the commutation relations: 
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 [ , ] ,       [ , ] ,       [ , ] [ , ] [ , ] 0,S S S J S S S P S K S H= − = − = = =
G G G G G G G GG G G

 
i.e., it is an angular momentum operator, transforms like a vector under rota-
tions and is invariant under space and time translations and under Galilei 
boosts, respectively. 

Furthermore, it reduces to the total angular momentum operator J
G

 in 
those frames in which 0P K= =

G G
. 

5.2 The spinless point particle 
The kinematical variables of the point particle are { , }t rG , time and position, re-
spectively. The nonrelativistic Lagrangian written in terms of the τ derivatives 
of the kinematical variables is the first order homogeneous function 

 
2

,
2NR
m rL Tt R r

t
= = + ⋅

G� G G��
�  

where we define /T L t= ∂ ∂�  and / i
iR L r= ∂ ∂ � . The constants of motion ob-

tained through the application of Noether’s theorem to the different subgroups 
of the Galilei group are 

 
2

energy     ,
2
m drH T

dt
⎛ ⎞= − = ⎜ ⎟⎝ ⎠

G
 

 linear  momentum     ,drP R m
dt

= =
GG G

 

 kinematical  momentum     ,K mr Pt= −
G GG  

 angular  momentum     .J r P= ×
G GG  

The spin for this particle is / 0S J K P m= − × =
G G G G

. 

5.3 A spinning elementary particle 
According to the definition, the most general nonrelativistic elementary particle 
[9] is the mechanical system whose kinematical space X is the whole Galilei 
group G . The kinematical variables are, therefore, the ten real variables 

( ) { ( ),  ( ),  ( ),  ( )}x t r uτ τ τ τ ρ τ≡ GG G , with domains 3 3,  ,  t r u∈ ∈ ∈G G
R R R  and 

(3)SOρ ∈G . The latter, with tan / 2ρ α= , is a particular parameterization of the 
rotation group. In this parameterization the composition law of rotations is al-
gebraically simple, as shown below. All these kinematical variables have the 
same geometrical dimensions as the corresponding group parameters. The rela-
tionship between the values ( )x τ′  and ( )x τ  take, at any instant τ, for two arbi-
trary inertial observers  
 ( ) ( ) ,t t bτ τ′ = +  (15) 
 ( ) ( ) ( ) ( ) ,r R r vt aτ µ τ τ′ = + +G G G G G  (16) 
 ( ) ( ) ( ) ,u R u vτ µ τ′ = +G G G G  (17) 

 ( ) ( )( ) .
1 ( )

µ ρ τ µ ρ τρ τ
µ ρ τ

+ + ×′ =
− ⋅

G GG GG
GG  (18) 
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The way the kinematical variables transform allows us to interpret them, re-
spectively, as the time (15), position (16), velocity (17) and orientation (18) of 
the particle. 

There exist three differential constraints among the kinematical variables: 
( ) ( ) / ( )u r tτ τ τ=G G� � . These constraints, and the homogeneity condition on the La-

grangian L in terms of the derivatives of the kinematical variables, reduce from 
ten to six the essential degrees of freedom of the system. These degrees of 
freedom are the position ( )r tG  and the orientation ( )tρG . Since the Lagrangian 
depends on the derivative of uG  it thus depends on the second derivative of 

( )r tG . For the orientation variables the Lagrangian only depends on the first de-
rivative of ( )tρG . It can be written as 
 ,L Tt R r U u V ρ= + ⋅ + ⋅ + ⋅

G G G GG G �� ��  (19) 
where the functions written in capital letters are defined as before as 

/ ,   / ,   / ,   /i i i
i i iT L t R L r U L u V L ρ= ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂� �� � . In general they will be 

functions of the ten kinematical variables ( ,  ,  ,  )t r u ρGG G  and homogeneous func-
tions of zero degree of the derivatives ( ,  ,  ,  )t r u ρGG G �� �� . 

If we introduce the angular velocity ωG  as a linear function of ρG� , then the 
last term of the expansion of the Lagrangian (19), V ρ⋅

G G� , can also be written as 
W ω⋅
G G , where / i

iW L ω= ∂ ∂ . 
The different Noether constants of motion are related to the invariance of 

the dynamical equations under the Galilei group, and are obtained by the usual 
Lagrangian methods. They are the following observables: 

 energy     ,dUH T u
dt

= − − ⋅
G

G  (20) 

 linear  momentum     ,dUP R
dt

= −
GG G

 (21) 

 kinematical  momentum     ,K mr Pt U= − −
G G GG  (22) 

 angular  momentum     .J r P u U W= × + × +
G G G GG G  (23) 

From 0K =
G� , comparing with (21), we find R mu=

G G , and the linear momentum 
has the form /P mu dU dt= −

G GG . We see that the total linear momentum does 
not coincide with the direction of the velocity uG . The functions U

G
 and W

G
 are 

what distinguishes this system from the point particle case. The spin structure 
is thus directly related to the dependence of the Lagrangian on the acceleration 
and angular velocity. 

We see that K
G

 in (22) differs from the point particle case K mr Pt= −
G GG , 

in the term U−
G

. If we define the vector /k U m=
G G

, with dimensions of length, 
then 0K =

G�  leads to the equation: 

 ( ) .d r kP m
dt
−=
GGG
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The vector q r k= −
GG G , defines the position of the centre of mass of the particle. 

It is a different point from rG , whenever k
G

 (and thus U
G

) is different from zero. 
In terms of qG  the kinematical momentum takes the form 
 ,K mq Pt= −

G GG  
which looks like the result in the case of the point particle, where the centre of 
mass and centre of charge are the same point. 

The total angular momentum (23) has three terms. The first term r P×
GG  

resembles an orbital angular momentum, and the other two Z u U W= × +
G G GG  can 

be taken to represent the spin of the system. In fact, the latter observable is an 
angular momentum. It is related to the new kinematical variables and satisfies 
the dynamical equation /dZ dt P u= ×

G G G . Because P
G

and uG are not collinear vec-
tors, Z

G
 is not a conserved angular momentum. This is the dynamical equation 

satisfied by Dirac’s spin operator in the quantum case. The observable Z
G

 is the 
classical spin observable equivalent to Dirac’s spin operator.  

One important feature of the total angular momentum is that the point rG  
is not the centre of mass of the system, and therefore the r P×

GG  part can no 
longer be interpreted as the orbital angular momentum of the particle. The an-
gular momentum Z

G
 is the angular momentum of the particle with respect to 

the point rG , but not with respect to the centre of mass. 
The spin of the system is defined as the difference between the total angu-

lar momentum J
G

 and the orbital angular momentum of the centre of mass mo-
tion L q P= ×

G GG . It can assume the following different expressions: 

 1 .dkS J q P J K P Z k P mk W
m dt

= − × = − × = + × = − × +
GG GG G G G G G G G GG  (24) 

The second form of the spin S
G

 in (24) is exactly expression (14) which leads 
to one of the Casimir operators of the extended Galilei group. It is expressed in 
terms of the constants of the motion ,  J K

G G
 and P

G
, and it is therefore another 

constant of motion. Because the particle is free and there are no external 
torques acting on it, it is clear that the spin of the system is represented by this 
constant angular momentum and not by the other angular momentum observ-
able Z

G
, which is related to Dirac’s spin operator. 

The third expression in (24) is the sum of two terms, one Z
G

, coming from 
the new kinematical variables, and another k P×

G G
, which is the angular mo-

mentum, of the linear momentum located at point rG , with respect to the centre 
of mass. Alternatively we can describe the spin according to the last expression 
in (24) in which the term /k mdk dt− ×

G G
 suggests a contribution of (anti) orbital 

type coming from the motion around the centre of mass. It is related to the zit-
terbewegung, or more precisely to the function U mk=

GG
, which comes from the 

dependence of the Lagrangian on acceleration. The term W
G

 comes from the 
dependence on the other three degrees of freedom iρ , and thus on the angular 
velocity. This zitterbewegung is the motion of the centre of charge around the 
centre of mass, as we shall see in an example in section 5.6. That the point rG  
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represents the position of the centre of charge has also been suggested in previ-
ous works for the relativistic electron [10]. 

To analyse the different contributions to the spin of the most general ele-
mentary particle we shall consider now two simpler examples. In the first one, 
the spin is related to the existence of orientation variables, and in the second, to 
the dependence of the Lagrangian on the acceleration. 

5.4 Spinning particle with orientation 
The kinematical space is / KGG , where KG  is the three-dimensional subgroup 
which consists of the commutative Galilei boosts, or pure Galilei transforma-
tions at a constant velocity. The kinematical variables are now { ,  ,  }t r αGG , time, 
position and orientation, respectively. The possible Lagrangians are not unique 
in this case. They must be functions only of the velocity /u dr dt=G G  and of the 
angular velocity ωG . They have the general form 
 ,L Tt R r W ω= + ⋅ + ⋅

G G GG��  
where / ,  / ,  /T L t R L r W L ω= ∂ ∂ = ∂ ∂ = ∂ ∂

G G GG�� . 
The basic conserved observables are: 

 energy     ,H T= −  

 linear  momentum     ,P mu=
G G  

 kinematical  momentum     ,K mr Pt= −
G GG  

 angular  momentum     .J r P W= × +
G G GG  

For such a particle r q=G G , the centre of mass and centre of charge coincide and 
the spin 0S W= ≠

G G
. A particular Lagrangian which describes this system is the 

Lagrangian of a spherically symmetric body: 

 
2

21 ,
2 2

dr IL m
dt

ω⎛ ⎞= +⎜ ⎟⎝ ⎠
 

where the spin is S W Iω= =
G G G . 

5.5 Spinning particle with Zitterbewegung 
The kinematical space is the manifold / (3)SOG , where (3)SO , is the three-
dimensional subgroup of rotations. The kinematical variables are 

( ) { ,  ,  }x t r uτ = G G , time, position and velocity, respectively. The possible La-
grangians are not unique as in the previous case, and must be functions of the 
velocity /u dr dt=G G  and the acceleration /a du dt=G G . 

The Lagrangians have the general form when expressed in terms of the 
kinematical variables and their τ-derivatives 
 ,L Tt R r U u= + ⋅ + ⋅

G GG G� ��  
where / ,  / ,  /T L t R L r U L u= ∂ ∂ = ∂ ∂ = ∂ ∂

G GG G� �� . A particular Lagrangian could be, 
for example 

 
2 2

2 ,
2 2
m r m uL

t tω
= −

G G� �
� �  (25) 
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If we consider that the evolution parameter is dimensionless, all terms in the 
Lagrangian have dimensions of action. The parameter m represents the mass of 
the particle while the parameter ω, with dimension 1time− , represents an inter-
nal frequency: it is the frequency of the internal zitterbewegung. In terms of the 
essential degrees of freedom, which reduce to the three position variables rG , 
and using the time as the evolution parameter, the Lagrangian can also be writ-
ten as 

 
22 2

2 2 .
2 2
m dr m d rL

dt dtω
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

G G
 (26) 

The dynamical equations obtained from the Lagrangian (26) are: 

 
4 2

2 4 2
1 0,d r d r

dt dtω
+ =
G G

 (27) 

whose general solution is 
 ( ) cos sin ,r t A Bt C t D tω ω= + + +

G GG GG  (28) 
in terms of the 12 integration constants ,  ,  A B C

G GG
 and D

G
. 

We see that the kinematical momentum K
G

 in (22) differs from the point 
particle case in the term U−

G
. The definition of the vector /k U m=

G G
, implies 

that 0K =
G�  leads to the equation ( ) /P md r k dt= −

GG G , as before, and q r k= −
GG G  

represents the position of the centre of mass of the particle. It is defined in this 
example as 

 
2

2 2
1 1 .d rq r U r
m dtω

= − = +
GGG G G  (29) 

In terms of the center of mass, the dynamical equations (27) can be separated 
into the form 

 
2

2 0,d q
dt

=
G

 (30) 

 
2

2
2 ( ) 0,d r r q

dt
ω+ − =

G G G  (31) 

where (30) is just equation (27) after twice differentiation of (29), and equation 
(31) is (29) after all terms on the left hand side have been collected. 

From (30) we see that the point qG  moves in a straight trajectory at con-
stant velocity while the motion of point rG , given in (31), is an isotropic har-
monic motion of angular frequency ω around the point qG . 

The spin of the system S
G

 is defined as 

 1 ,S J q P J K P
m

= − × = − ×
G G G G G GG  (32) 

and since it is written in terms of constants of motion it is clearly another con-
stant of motion. Its magnitude 2S  is also a Galilei invariant quantity which 
characterizes the system. From its definition we get 
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 ( ) ( ) ,d dkS u U k P m r q r q k m
dt dt

= × + × = − − × − = − ×
GG GG G GG G G G G  (33) 

which appears as the (anti)orbital angular momentum of the relative motion of 
the point rG  around the centre of mass position qG  at rest, so that the total angu-
lar momentum can be written as 
 .J q P S L S= × + = +

G GG G GG  (34) 
The total angular momentum is the sum of the orbital angular momentum L

G
, 

associated with the motion of the centre of mass, and the spin part S
G

. For a 
free particle both L

G
 and S

G
 are separate constants of motion. We use the term 

(anti)orbital to suggest that if the vector k
G

 represents the position of a point of 
mass m, the angular momentum of its motion is in the opposite direction from 
what we obtain here for the spin observable. But, as we shall see in a moment, 
the vector k

G
 represents not the position of the mass m, but the position of the 

charge of the particle. 

5.6 Interaction with an external electromagnetic field 
If the point qG  represents the position of the centre of mass of the particle, then 
what position does point rG  represent? The point rG  represents the position of 
the charge of the particle. This can be seen by considering interaction with an 
external field. The homogeneity condition of the Lagrangian in terms of the de-
rivatives of the kinematical variables suggests an interaction term of the form 
 ( , ) ( , ) ,IL e t r t eA t r rφ= − + ⋅

GG G G��  (35) 
which is linear in the derivatives of the kinematical variables t and rG , and 
where the external potentials are only functions of t and rG . 

The dynamical equations obtained from the Lagrangian IL L+  are 

 ( )
4 2

2 4 2
1 ( , ) ( , ) ,d r d r e E t r u B t r

dt dt mω
+ = + ×
G G G GG G G  (36) 

where the electric field E
G

 and magnetic field B
G

 are expressed in terms of the 
potentials in the usual form / ,   E A t B Aφ= −∇ − ∂ ∂ = ∇ ×

G GG G
. Because the inter-

action term does not depend on uG� , the function U mk=
GG

 has the same expres-
sion as in the free particle case. Therefore the spin and the centre of mass defi-
nitions, (33) and (29) respectively, remain the same as in the previous free 
case. Dynamical equations (36) can again be separated into the form 

 ( )
2

2 ( , ) ( , ) ,d q e E t r u B t r
dt m

= + ×
G G GG G G  (37) 

 
2

2
2 ( ) 0.d r r q

dt
ω+ − =

G G G  (38) 

The centre of mass qG  satisfies Newton’s equations under the action of the total 
external Lorentz force, while the point rG  still satisfies the isotropic harmonic 
motion of angular frequency ω around the point qG . But the external force and 
the fields are defined at the point rG  and not at point qG . It is the velocity uG  of 
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the point rG  which appears in the magnetic term of the Lorentz force. The point 
rG  clearly represents the position of the charge. In fact, this minimal coupling 
we have considered is the coupling of the electromagnetic potentials with the 
particle current, which, in the relativistic case, can be written as j Aµ

µ . The 
current jµ  is associated with the motion of a charge e at the point rG . 

The charge has an oscillatory motion of very high frequency ω, which in 
the case of the relativistic electron will be 2 21 12 / 1, 55 10 smcω −= ≈ ×= , as 
shown later. The average position of the charge is the centre of mass, but it is 
this internal orbital motion which gives rise to the spin structure and also to the 
magnetic properties of the particle. 

When analysed in the centre of mass frame (see Fig. 1), 0,  q r k= =
GG G , and 

the system reduces to a point charge whose motion is in general an ellipse. If 
we choose C = D, and 0C D⋅ =

G G
, it reduces to a circle of radius r = C = D, or-

thogonal to the spin. Because the particle has a charge e, it produces a magnetic 
moment, which according to the usual classical definition is [11] 

 31 ,
2 2 2

e dk er jd r k S
dt m

µ = × = × = −∫
GG GGG G G  (39) 

where 3 ( ) /j e r k dk dtδ= −
G GG G  is the vector current associated with the motion of 

a charge e located at the point k
G

. The magnetic moment is orthogonal to the 
zitterbewegung plane and opposite to the spin if e > 0. The particle also has a 
non-vanishing electric dipole moment with respect to the centre of mass 
d ek=
G G

. It oscillates and is orthogonal to µG , and therefore to S
G

, in the centre 
of mass frame. Its time average value vanishes for times larger than the natural 
period of this internal motion. Although this is a nonrelativistic example, it is 
interesting to compare this analysis with Dirac’s relativistic analysis of the 
electron, [5] in which both momenta µG  and d

G
 appear, giving rise to two pos-

sible interacting terms in Dirac’s Hamiltonian. 

 
Figure 1: Charge motion in the C.M. frame. 
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6. Relativistic elementary particles 
The Poincaré group can be parameterised in terms of exactly the same ten pa-
rameters { ,  ,  ,  }b a v αGG G  as the Galilei group and with the same dimensions as 
before. We therefore maintain the interpretation of these variables respectively 
as the time, position, velocity and orientation of the particle. The homogeneous 
spaces of the Poincaré group can be classified in the same manner, but with 
some minor restrictions. For instance, the kinematical space of the example of 
the spinning particle with orientation as in section 5.4, / KX G= G , can no 
longer be defined in the Poincaré case, because the three dimensional set KG  
of Lorentz boosts is not a subgroup of G; but the most general structure of a 
spinning particle still holds. 

The Poincaré group has three different maximal homogeneous spaces 
spanned by the variables { ,  ,  ,  }b a v αGG G , which are classified according to the 
range of the velocity parameter vG . If v c<  we have the Poincaré group itself. 
When v c> , this homogeneous space describes particles whose charge is mov-
ing faster than light. Finally, if v c= , we have a homogeneous space which de-
scribes particles whose position rG  is always moving at the speed of light. This 
is the manifold which defines the kinematical space of photons and electrons 
[6,7]. The first manifold gives, in the low velocity limit, the same models as in 
the nonrelativistic case. It is the Poincaré group manifold, which is transformed 
into the Galilei group by the limiting process c → ∞ . But this limit cannot be 
applied to the other two manifolds. Accordingly, the Poincaré group describes 
a larger set of spinning objects. 

6.1 Spinning relativistic elementary particles 
We shall review the main points of the relativistic spinning particles whose 
kinematical space is the manifold spanned by the variables { ,  ,  ,  }t r u αGG G , inter-
preted as the time, position, velocity and orientation of the particle, but with 
u c= . This is a homogeneous space homomorphic to the manifold G/V, where 
V is the one-dimensional subgroup of pure Lorentz transformations in a fixed 
arbitrary direction. 

For these systems the most general form of the Lagrangian is 
 ,L Tt R r U u W ω= + ⋅ + ⋅ + ⋅

G G G GG G� ��  
where / ,  / ,  /i i

i iT L t R L r U L u= ∂ ∂ = ∂ ∂ = ∂ ∂� � �  and / i
iW L ω= ∂ ∂  will be, in gen-

eral, functions of the ten kinematical variables { ,  ,  ,  }t r u αGG G  and homogeneous 
functions of zero degree in terms of the derivatives { ,  ,  ,  }t r u αGG G �� �� . 

The Noether constants of motion are now the following conserved ob-
servables: 

 energy     ,dUH T u
dt

= − − ⋅
G

G  (40) 

 linear  momentum     ,dUP R
dt

= −
GG G

 (41) 
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 2 2kinematical  momentum     / / ,K Hr c Pt S u c= − − ×
GG GG G  (42) 

 angular  momentum     J r P S= × +
GG GG , (43) 

where 
 .S u U W= × +

G G GG  (44) 
The difference from the Galilei case comes from the different behaviour 

of the Lagrangian under the Lorentz boosts when compared with the Galilei 
boosts. In the nonrelativistic case the Lagrangian is not invariant. However, the 
relativistic Lagrangian is invariant and the kinematical variables transform in a 
different way. This gives rise to the term 2/S u c×

G G  instead of the term U
G

 
which appears in the kinematical momentum (42). The angular momentum ob-
servable (44) is not properly speaking the spin of the system, if we define spin 
as the difference between the total angular momentum and the orbital angular 
momentum associated with the centre of mass. It is the angular momentum of 
the particle with respect to the point rG , as in the nonrelativistic case. Neverthe-
less, the observable S

G
 is the classical equivalent of Dirac’s spin observable be-

cause in the free particle case it satisfies the same dynamical equation, 

 ,dS P u
dt

= ×
G G G  

as Dirac’s spin operator does in the quantum case. It is only a constant of mo-
tion for the centre of mass observer. This can be seen by taking the time deriva-
tive of the constant total angular momentum J

G
 given in (43). We shall keep 

the notation S
G

 for this angular momentum observable, because when the sys-
tem is quantized it gives rise to the usual quantum mechanical spin operator in 
terms of the Pauli spin matrices. 

6.2 Dirac’s equation 
Dirac’s equation is the quantum mechanical expression of the Poincaré invari-
ant linear relationship [6,7] between the energy H and the linear momentum P

G
 

 0,duH P u S u
dt

⎛ ⎞− ⋅ − ⋅ × =⎜ ⎟⎝ ⎠

GGG G G  

where uG  is the velocity of the charge (u = c), /du dtG  the acceleration and 
uS S Sα= +

G G G
 Dirac’s spin observable (see Figure 2). This expression can be ob-

tained from (42) by making the time derivative of that constant observable and 
a final scalar product with the velocityuG . The Dirac spin has two parts: one 

uS u U= ×
G GG , is related to the orbital motion of the charge, and S Wα =

G G
 is due to 

the rotation of the particle and is directly related to the angular velocity, as it 
corresponds to a spherically symmetric object. 

The centre of mass observer is defined as the observer for whom 
0,K P= =

G G
 because this implies that 0q =G  and / 0dq dt =G . By analysing the 

observable (42) in the centre of mass frame where H = mc2, we get the dy-
namical equation of the point rG , 
 2/r S u mc= ×

GG G  
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where S
G

 is a constant vector in this frame. The solution is the circular motion 
depicted in Figure 2. 

The radius and angular velocity of the internal classical motion of the 
charge are, respectively, /R S mc= , and 2 /mc Sω = . The energy of this sys-
tem is not definite positive. The particle of positive energy has the total spin S

G
 

oriented in the same direction as the uS
G

 part while the orientation is the oppo-
site for the negative energy particle. This system corresponds to the time re-
versed motion of the other. When the system is quantized, the orbital compo-
nent uS

G
, which is directly related to the magnetic moment, quantizes with inte-

ger values, while the rotational part Sα

G
 requires half integer values. For these 

particles of spin ½, the total spin is half the value of the uS
G

 part. When ex-
pressing the magnetic moment in terms of the total spin, we thus obtain a pure 
kinematical interpretation of the g = 2 gyromagnetic ratio [12]. 

For the centre of mass observer this system appears as a system of three 
degrees of freedom. Two represent the x and y coordinates of the point charge, 
and the third is the phase of its rotational motion. However this phase is exactly 
the same as the phase of the orbital motion of the charge. Because the motion is 
at constant radius at constant speed c, only one independent degree of freedom 
is left—say the x variable. Therefore the system is reduced to a one-
dimensional harmonic oscillator of angular frequency ω. When the system is 
quantized, the stationary states of a one-dimensional harmonic oscillator have 
the energy 

 1 ,          0,1,2,...
2nE n nω⎛ ⎞= + =⎜ ⎟⎝ ⎠
=  

But if the system is elementary, then it has no excited states, and in the C.M. 
frame it is reduced to the ground state of energy 

 
Figure 2. Motion of the centre of charge of the electron 
around its centre of mass in the C.M. frame. 
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 2
0

1 .
2

E mcω= ==  

If we compare this with the classical result 2 /mc Sω =  we see that the con-
stant classical parameter S  takes the value / 2S = =  when quantized. The ra-
dius of the internal motion is / 2CR λ= , half Compton’s wavelength. 

We see that all Lagrangian systems with the same kinematical space as 
the one considered in this model have exactly the same dynamics for the point 
r, describe spin ½ particles and satisfy Dirac’s equation when quantized. The 
formalism describes an object whose charge is located at a single point rG , but 
it is nevertheless moving in a confined region of radius of order Cλ . It has a 
magnetic moment produced by the motion of the charge, and also an oscillating 
electric dipole moment, with respect to the centre of mass, of average value 
zero. 

To end this section, and with the above model of the electron in mind, it is 
convenient to remember some of the features that Dirac obtained for the mo-
tion of a free electron [5]. Let the point rG  be the position vector in terms of 
which Dirac’s spinor ( , )t rψ G  is defined. When computing the velocity of the 
point rG , Dirac arrives at: 

1. The velocity / [ , ]u i H r cα= = GG G= , is expressed in terms of the αG  ma-
trices and he writes, ... “a measurement of a component of the velocity 
of a free electron is certain to lead to the result c± .” 

2. The linear momentum does not have the direction of this velocity uG , 
but must be related to some average value of it: ... “the 1x  component 
of the velocity, 1cα , consists of two parts, a constant part 2 1

1c p H − , 
connected with the momentum by the classical relativistic formula, 
and an oscillatory part, whose frequency is at least 22 /mc h ,.....” 

3. About the position rG : “The oscillatory part of 1x  is small... which is 
of order of magnitude / mc= ....” 

And when analyzing the interaction of the electron with an external elec-
tromagnetic field in his original 1928 paper [13], after taking the square of 
Dirac’s operator, he obtains two new interaction terms: 

 ,
2 2
e ieB E
mc mc

αΣ ⋅ + ⋅
G GG G= =  

Here Dirac’s spin operator is written as / 2S = Σ
G G
=  where 

 
0

,
0
σ

σ
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

GG
G  

in terms of σ-Pauli matrices. E
G

 and B
G

 are the external electric and magnetic 
fields, respectively. He says, “The electron will therefore behave as though it 
has a magnetic moment ( / 2 )e mc Σ=  and an electric moment ( / 2 )ie mc αG= . The 
magnetic moment is just that assumed in the spinning electron model” (Pauli 
model). “The electric moment, being a pure imaginary, we should not expect to 
appear in the model.” 
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In the last sentence it is difficult to understand why Dirac, who did not re-
ject the negative energy solutions, disliked the existence of this electric dipole, 
which was obtained from the formalism on an equal footing with the magnetic 
dipole term. Properly speaking this electric dipole does not represent the exis-
tence of a particular positive and negative charge distribution for the electron. 
The negative charge of the electron is at a single point but because this point is 
not the centre of mass, there exists a non-vanishing electric dipole moment 
with respect to the centre of mass even in the centre of mass frame. This is the 
observable Dirac disliked. It is oscillating at very high frequency and basically 
plays no role in low energy electron interactions because its average value van-
ishes, but it is important in high energy processes or in very close electron-
electron interactions. 

All real experiments to determine very accurately the gyromagnetic ratio 
are based on the determination of precession frequencies. But these precession 
frequencies are independent of the spin orientation. However, the difficulty 
separating electrons in a Stern-Gerlach type experiment suggests polarization 
experiments have to be done to determine in a direct way whether the spin and 
magnetic moment for elementary particles are either parallel or antiparallel to 
each other. One of the predictions of this formalism is that for both particle and 
the corresponding antiparticle the spin and magnetic moment have to have the 
same relative orientation, either parallel or antiparallel. 

6.3 Dynamical equation of the relativistic spinning electron 
We recall from elementary differential geometry some basic properties of any 
arbitrary three-dimensional curve ( )r sG . If it is expressed in parametric form in 
terms of the arc length s as the parameter, it has associated the three orthogonal 
unit vectors ,  1, 2,3iv i =G  called respectively tangent, normal and binormal. 
These unit vectors satisfy the so called Frenet-Serret differential equations: 

 
1 2

2 1 3

3 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

v s s v s
v s s v s s v s
v s s v s

κ
κ τ

τ

=
=− +
= −

G G�
G G G�
G G�

, 

where κ and τ are respectively the curvature and torsion. Since the unit tangent 
vector is (1)

1v r r= ≡G G G� , when successive derivatives are taken it yields 

 

(1)
1

(2)
2

(3) 2
2 2 1 2 3

(4) 3 2
1 2 3

,

,

,

3 ( ) (2 ) .

r v

r v

r v v v v v

r v v v

κ

κ κ κ κ κτ

κκ κ κ κτ κτ κτ

=

=

= + = − + +

= − + − − + +

G G
G G
G G G G G G�� �
G G G G� �� � �

 

The elimination of the ivG  vectors between these equations implies that the most 
general curve in three-dimensional space satisfies the fourth-order ordinary dif-
ferential equation: 
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2
(4) (3) 2 2 (2) 2 (1)

2
2 2 0.r r r rκ τ κτ κ κκ κ τκ τ κ
κ τ κτ κ κ τ

⎛ ⎞−⎛ ⎞ ⎛ ⎞− + + + + + + − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

� � � �� �� � �G G G G  

All the coefficients in brackets, in front of the s-derivatives ( )irG , can be ex-
pressed in terms of the scalar products ( ) ( ) ,  , 1, 2,3i jr r i j⋅ =G G . For helical mo-
tions there is a constant relationship /κ τ = constant, and therefore the coeffi-
cient of (1)rG  vanishes. 

Our example of the nonrelativistic spinning particle also satisfies the 
fourth order differential equation (27). Similarly, the point rG  of the relativistic 
spinning electron also satisfies a fourth order ordinary differential equation 
which has been calculated from invariance principles [14]. It takes the follow-
ing form for any arbitrary inertial observer: 

 

(2) (3)
(4) (3)

(2) (2)

(3) (3) (2) (3) 2
(2) (2) 1/2 (2)

(2) (2) (2) (2) 2

3( )
( )

2( ) 3( ) ( ) 0.
( ) 4( )

r r
r r

r r

r r r r r r r
r r r r

⋅
− +

⋅

⎛ ⎞⋅ ⋅− − ⋅ =⎜ ⎟⋅ ⋅⎝ ⎠

G GG G
G G

G G G G G G G
G G G G

 (46) 

It corresponds to a helical motion since the term in the first derivative (1)rG  is 
lacking, and it reduces to circular central motion at constant velocity c in the 
centre of mass frame. Here we use space-time units such that the internal radius 
R = 1 and the zitterbewegung frequency 1ω = . 

The centre of mass position is defined by 

 
(2) (2) (2)

(2) (3) 2
(2) (2) 3/ 2 (3) (3)

(2) (2)

2( ) .
3( )( ) ( )
4( )

r r rq r
r rr r r r
r r

⋅= +
⋅⋅ + ⋅ −
⋅

G G GG G
G GG G G G
G G

 (47) 

We can check that both qG  and (1)qG  vanish for the centre of mass observer. The 
fourth order dynamical equation for the position of the charge (46) can also be 
rewritten as a system of two second order ordinary differential equations for 
the positions of the points qG  and rG  

 
(1) (1)

(2) (2)
2

10,       ( ),
( )

q rq r q r
q r

− ⋅= = −
−

G GG G G G
G G  (48) 

i.e., a free motion for the centre of mass qG  and a kind of central motion for the 
charge position rG  around the centre of mass. Equation (46) emerges from (47) 
after differentiation twice with respect to time. The last equation of (48) is just 
(47) written in terms of qG  and (1)qG . 

For the relativistic electron, when the centre of mass velocity is small,  
(1) 0q →G , and because 1q r− =G G  in these units, we obtain the equations of the 

Galilei case 
 (2) (2)0,       q r q r= = −G G G G  (49) 
i.e., a free motion for the centre of mass and a harmonic motion around qG  of 
angular frequency 1ω = , for the position of the charge, as happened in the 
nonrelativistic example analysed in (30) and (31). 
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6.4 Interaction with an external field 
The free equation for the centre of mass motion (2) 0q =G  represents the conser-
vation of linear momentum / 0dP dt =

G
. But the linear momentum is written in 

terms of centre of mass velocity as (1) (1)( )P m q qγ=
G G , so that the free dynamical 

equation (48) in the presence of an external field should be replaced by 

 
(1) (1)

(1) (2)
2

1,       ( ),
( )

q rP F r q r
q r

− ⋅= = −
−

G GG G G G G
G G  (50) 

where F
G

 is the external force and the second equation is left unchanged. We 
consider the same definition of the centre of mass position (47) as in the free 
particle case, because it corresponds to the fact that the internal structure of an 
elementary particle is not modified by any external interaction, and the charge 
moves in the same way around the centre of mass as in the free case. Since 

 (1) (2) (1) 3 (1) (2) (1)( ) ( ) ( )dP m q q m q q q q
dt

γ γ= + ⋅
G

G G G G  

it yields 
 (1) 3 (1) (2) (1)( ) ( )m q q q F qγ ⋅ = ⋅

GG G G  
and by leaving the highest derivative (2)qG  on the left hand side we finally ob-
tain the differential equations that describe the evolution of a relativistic spin-
ning electron in the presence of an external electromagnetic field: 

 ( )(2) (1) (1) (1) (1)
(1) [ ] ,

( )
emq E r B q E r B q
qγ

⎡ ⎤= + × − + × ⋅⎣ ⎦
G G G GG G G G G  (51) 

 
(1) (1)

(2)
2

1 ( ).
( )

q rr q r
q r

− ⋅= −
−

G GG G G
G G  (52) 

7. Gyromagnetic ratio 
The Hilbert space which describes the wave functions of the spinning electron 
is a complex vector space of squared integrable functions ( , , , )t r uψ αGG G  of the 
kinematical variables. The general structure of the quantum mechanical angular 
momentum operator acting on this Hilbert space, in either the relativistic or 
nonrelativistic approach, is 

 ,J r S r P S
i

= × ∇ + = × +
G GG G=G G  (53) 

where the spin operator takes the form S = Z+W 

 .uS u W
i

= × ∇ +
G G=G  (54) 

The operator u∇  is the gradient operator with respect to the velocity variables 
and W

G
 is a linear differential operator which depends only on the orientation 

variables αG ; it therefore commutes with u∇ . For example, in the 
tan( / 2)nρ α=G G  parameterization W

G
 is written as 
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 [ ( )],
2

W
i ρ ρ ρρ ρ ρ= ∇ + ×∇ + ⋅∇

G G G G=  (55) 

where ρ∇  is the gradient operator with respect to the ρG  variables. 
The first part Z in (54) is related to the zitterbewegung spin and has only 

integer eigenvalues. This is because it has the form of an orbital angular mo-
mentum operator in terms of the uG  variables. Half-integer eigenvalues come 
only from the operator (55). This operator takes into account the change of ori-
entation, i.e., the rotation of the particle. 

We have seen, in both relativistic and non-relativistic examples, that if the 
only spin content of the particle S

G
 is related to the zitterbewegung part 

Z u U= ×
G GG , then the relationship between the magnetic moment and zitter-

bewegung spin is given by 

 ,
2 2
e dk ek Z

dt m
µ = × =

GG GG  (56) 

i.e., with a normal gyromagnetic ratio g = 1. If the electron has a gyromagnetic 
ratio g = 2, this necessarily implies that another part of the spin arises from the 
angular velocity of the body, but makes no contribution to the magnetic mo-
ment. 

For the electron, therefore, both parts W
G

 and Z
G

 contribute to the total 
spin. But the W

G
 part, which is related to the angular variables that describe its 

orientation in space, does not contribute to the separation k
G

 between the centre 
of charge and the centre of mass. It turns out that the magnetic moment of a 
general particle is still related to the motion of the charge by the expression 
(56), i.e., in terms of the Z

G
 part, but not to the W

G
 part. It is precisely when we 

express the magnetic moment in terms of the total spin S
G

 that the concept of 
gyromagnetic ratio arises. 

We now assume that both Z
G

 and W
G

 terms contribute to the total spin S
G

 
with their lowest admissible values. In the model of the spinning electron Z

G
 

and W
G

 have opposite orientation. 
For Dirac’s particles, the classical zitterbewegung is a circular motion at 

the speed of light of radius / 2R mc= =  and angular frequency 22 /mcω = = , 
on a plane orthogonal to the total spin. The total spin S

G
 and the Z

G
 part are 

both orthogonal to this plane, and parallel to each other. Let us define the gy-
romagnetic ratio by Z = gS. For the lowest admissible values of the quantized 
spins z = 1 and w = ½ in the opposite direction, this gives rise to a total s = ½ 
perpendicular to the zitterbewegung plane, and therefore g = 2. 

8. Bound motion of two electrons 
If we have relativistic and nonrelativistic differential equations satisfied by the 
spinning electrons we can analyze the interaction between them by assuming, 
for example, a Coulomb interaction between their charges. This leads to a sys-
tem of differential equations of the form (37-38) or (51-52) for each particle. 
For example, the external field acting on the charge 1e  is replaced by the in-
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stantaneous Coulomb field created by the other charge 2e  at the position of 1e , 
and similarly for the other particle. The integration is performed numerically 
by means of the numerical integration program Dynamics Solver [15]. 

Figure 3 represents the scattering of two spinning electrons analysed in 
their common centre of mass frame [14]. We send the particles with their spins 
parallel and with a non vanishing impact parameter. In addition to the helical 
motion of their charges, we can also depict the trajectories of their centre of 
mass. If we compare this motion with the Coulomb interaction of two spinless 
electrons coming from the same initial position and with the same velocity as 
the centre of mass of the spinning electrons, we obtain the solid trajectories 
marked with an arrow. Basically, this corresponds to the trajectory of the centre 
of mass of each spinning particle, provided the two particles do not approach 
each other below the Compton wavelength. This can be understood because the 
average position of the centre of charge of each particle approximately coin-
cides with its centre of mass, and if they do not approach each other too closely 
the average Coulomb force is the same. The difference comes out when we 
consider a very deep interaction or very close initial positions. 

Figure 4 represents the initial positions of a pair of particles with parallel 
spins. Recall that the radius of the internal motion is half the Compton wave-
length. The initial separation of their centres of mass a is a distance smaller 
than the Compton wavelength. The centre of mass of each particle is consid-
ered to be moving with a velocity vG , as depicted. 

That the spins of the two particles are parallel is reflected by the fact that 
the internal motions of the charges, represented by the oriented circles that sur-
round the corresponding centre of mass, have the same orientation. It must be 
remarked that the internal motion of the charge around its centre of mass can 
always be characterised by a phase. The phases of the particles are chosen op-
posite to one another. We also depict the repulsive Coulomb force F computed 
in terms of the separation of charges. This interaction force F has also been 
drawn attached to the corresponding centre of mass, so that the net force acting 
on the point 2m  is directed toward the point 1m , and conversely. This external 
force determines the motion of each centre of mass. We thus see that a repul-

 
Figure 3. Scattering of two spinning electrons with parallel spins, in their centre of mass 
frame. It is also depicted the scattering of two spinless electrons with the same energy and 
linear momentum. 
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sive force between the charges represents an attractive force between their cen-
tres of mass when located at such a short distance. 

In Figure 5 we depict the evolution of the charges and masses of this two-
electron system for 0, 4 Ca λ=  and 0, 004v c=  during a short time interval. 
Figure 6 represents only the motions of the centres of mass of both particles for 
a longer time. It shows that the centre of mass of each particle remains in a 
bound region. 

The evolution of the charges is not shown in this last figure because it 
blurs the picture, but it can be inferred from the previous figure. We have 
found bound motions at least for the range 0 0,8 Ca λ≤ ≤  and velocity 
0 0,01v c≤ ≤ . We can also obtain similar bound motions if the initial velocity 
v has a component along the OX axis. Bound motion can also be obtained for 
initial charge positions different from the ones depicted in Figure 4. This range 
for the relative phase depends on a and v, but in general bound motion is more 
likely if the initial phases of the charges are opposite to each other. If, instead 
of the instantaneous Coulomb interaction between the charges, we consider the 
retarded electromagnetic field of each charge, we obtain a similar behaviour for 

 
Figure 4: Initial position and velocity of the centre of mass and charges for a bound motion 
of a two-electron system with parallel spins. The circles would correspond to the trajecto-
ries of the charges if considered free. The interacting Coulomb force F is computed in 
terms of the separation distance between the charges. 

 
Figure 5: Bound motion of two electrons with parallel spins during a short period of time 
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the bound motion of this electron-electron interaction. 
We thus see that if the separation between the centre of mass and centre of 

charge of a particle (zitterbewegung) is responsible of part of the spin structure, 
then this attractive effect can be easily interpreted. 

A bound motion for classical spinless electrons is not possible. We can 
conclude that one of the salient features of the present formalism is the exis-
tence, from the classical viewpoint, of possible bound states for spinning elec-
tron-electron interaction. If the centres of mass of two electrons are separated 
by a distance greater than the Compton wavelength, they always repel each 
other as in the spinless case. But if the centres of mass of two electrons are 
separated by a distance less than the Compton wavelength, then from the clas-
sical viewpoint they can form bound states, provided certain initial conditions 
regarding their relative initial spin orientation, position of charges and centre of 
mass velocity are fulfilled. The difficulty may be to prepare a pair of electrons 
in the initial configuration depicted in Figure 4. A high-energy deep scattering 
can bring electrons to a very close approach. At low energy, if we consider the 
electrons in the conduction band of a solid, their interaction with the lattice 
could do this job. If we have a very thin layer under a huge external magnetic 
field perpendicular to the surface, as in the quantum Hall effect measurements, 
most of the electrons in this layer will have the spins parallel. If this happens to 
be true, we have a mechanism associated with the spin structure of the elemen-
tary particles for the plausible formation of a spin 1 Bose-Einstein condensate. 
This is just a classical prediction, not a quantum prediction, associated with a 
model which satisfies the Dirac equation when quantized. The possible quan-
tum mechanical bound states must be obtained from the corresponding analysis 
of two interacting quantum Dirac particles, a problem which has not been 
solved yet. From the classical viewpoint, bound states for a hydrogen atom can 
exist for any negative energy and any arbitrary angular momentum. The quan-
tum analysis of the atom gives the correct answer for the allowed stationary 
bound states. 

 
Figure 6. Evolution of the centres of mass of both particles for a 
longer time 
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