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Abstract 

Starting from a statistical model of the electron, which explains spin and spin measurements in terms 

of a probability density distribution resulting from a rapidly changing angular momentum during an 

extended Zitterbewegung (EZBW), a “light-like” model of the electron and other spin-1/2 particles is 

formulated. This model describes individual particles in terms of paths of a moving quantum. It is 

shown that this description allows one to reproduce observable properties as path-averages over a 

period of the fast (EZBW) in elementary calculations. The general topology of the paths may be 

described as a helical path, with a helix axis forming a circle around a fixed point in space. The radius 

of the helix and of the circle are equal and given by half the reduced Compton wave length of a photon 

of energy equal to the rest energy of the particle described. The paths depend on the relative velocity 

between the described “entity” and the observer, and represent the De Broglie wave. The merits of the 

proposed model are summarized and its role in relation to the established description by quantum 

mechanics discussed. It is concluded that it supports the existence of the proposed (EZBW), and offers 

a description of quantum behaviour without quantum mechanics.  
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1 .Introduction 



The behaviour of electrons in the nonrelativistic regime is correctly described by the Pauli-

Schrödinger theory, into which the spin is “ad hoc” introduced in the form of spinors with non-

classical properties [see, f. i. [1]]. 

In a recent publication [2], we have shown that, the behaviour of electrons subjected to spin-

measurements can also correctly be described in terms of a classical statistical model which uses a 

probability-density distribution (PDD) of the directions of an “instantaneous angular momentum”  that 

changes during an assumed fast, periodic, “Zitterbewgung” (ZBW). A (ZBW) that would allow a 

changing instantaneous angular momentum is not predicted by the Dirac equation, while (ZBW) as a 

qualitative concept of interpretation of the Dirac equation exists since the beginning of quantum 

mechanics [3, 4, 5 ]. An “extended” (EZBW), whose existence is the basis of our statistical description 

in terms of a (PDD), has only recently been proposed as a hypothesis in theoretical analyses of the 

Dirac equation [6], and in model descriptions of the electron [7, 8, 9].The validity of these models, 

however, has never been established. No experimental evidence of an (EZBW) has been reported so 

far. 

Our statistical model, therefore, which is based on the existence of an (EZBW), and explains 

established experimental data, constitutes important support for an (EZBW) and a corresponding 

substructure of the electron, if it is valid. 

In the present paper we report results of our attempt to further develop the model, and to support its 

validity. We proceed in the following way:  

(i) In the next paragraph we construct the angular dependence of the length of the 

“instantaneous position vector”, and the probability density of its direction, from the 

corresponding value of the instantaneous angular momentum and its (PDD), obtained in 

[2].  

(ii) In paragraph 3, we construct closed curves of “instantaneous positions” in real space, 

which are consistent with the distributions obtained in [2], and which reproduce all 

experimentally obtainable quantities as curve-averages. These closed curves represent 

individual particles.   



(iii) In paragraph 4, we introduce proper time to parameterize the angles (ϑ, and ϕ), and in this 

way obtain paths representing the motion for different velocities relative to the observer: 

the (EZBW). All relevant experimentally accessible properties of the electron are in this 

way explained as resulting from the (EZBW). 

(iv) In paragraph 5, we summarize the results, and discuss some of the many questions that 

arise. 

 

2. The position vector 

The probability density of the directions of the instantaneous angular momentum, in the (+) - state in a 

context defined by a magnetic field in direction (Z), was found in [2] to be given by the function 

PDD (ϑ,ϕ)=(dN/dω)=cos(ϑ)/π,             (1) 

with (ϑ) the polar angle, and (ϕ) the azimuth angle. The integrand dN=(PDD)(ω) dω is the probability 

that the instantaneous angular momentum vector (il(ϑ,ϕ)) during the period of an (EZBW) points into a 

differential surface area dω=sin(ϑ)dϑdϕ of the unit sphere. A cut through the (PDD) in a plane 

containing the (Z)-axis is shown in Figure 1. 

                                                

  

Figure 1: The (PDD) of the instantaneous angular momentum for a (+)-state in the context defined by 

the (Z)-axis 

 

As indicated in the figure, the probability density vector can be decomposed into two vectors of 

constant length (1/(2π)), one pointing into the Z-direction, and the other being a radius-vector of the 

sphere around the point (0, 0, z=1/(2π)).  

For a given functional form of the length of the instantaneous 

angular momentum vector il (ϑ, ϕ), averages over the period of 

the (EZBW) can be calculated from the (PDD). As shown in our 

previous paper [2], assumption of the functional form 

 │il(ω)│=ħ cos(ϑ),                            (2) 



yields the average angular momentum vector S=(0, 0, ħ/2), and the average projection onto the (Z)-

axis sz=ħ/2, i.e. the experimentally determined spin 

properties. 

Using this information on the instantaneous 

angular momentum il (ϑ, ϕ), we now construct a vector of 

possible instantaneous positions, r (ϑ, ϕ). The 

two vectors are connected via relation 

il (ϑ,ϕ)=r (ϑ,ϕ) × p (ϑ,ϕ) ;  │il (ϑ,ϕ)│= ħ cos(ϑ),          (3) 

where p(ϑ,ϕ) is an instantaneous momentum vector during the (EZBW). As an extension of our model 

we now assume that the vector p(ϑ,ϕ) is independent of (ϑ), and has the direction of the normal of the 

instantaneous plane defined by r(ϑ,ϕ) and the (Z)-axis. Relation (3) then yields: 

│r (ϑ, ϕ)│=L sin(ϑ), L=ħ/│p│                                         

(4) 

The conditions characterising our extended model are represented in Figure 2: 

The angular probability density of the instantaneous position vector r (ϑ,ϕ), which we will call 

(PDDP), is determined by the (PDD) of the instantaneous angular momentum vector by the 

requirement that 2(PDDP) sin(ϑp) d(ϑp) = (PDD) sin(ϑl) d(ϑl). With relation (1), and taking into 

account that sin(ϑp)=│cos(ϑl)│(see Fig 2), this leads to the distribution 

(PDDP)(ϑ,ϕ) = │cos(ϑ)│/(2π) . (ϑ = 0…..π)                  (5) 

 

 

 

 

 



 

 

Figure 2:  Polar plot showing the relation between instantaneous position r(ϑ,ϕ), and instantaneous 

angular momentum il(ϑ,ϕ) according to our model. 

The surface of the torus, on which the possible instantaneous positions are located, is shown in figure 

3 a, and the probability density of directions of the position vector (PDDP), given by relation (5), is 

shown in Figure 3 b.  

 

 

 

 

 

(a)  

Figure 3 : (a) The torus of possible locations in units of 

L=ħ/p, and (b) the directional probability density distribution 

of the position vector(PDDP). 

The distributions shown in figures 3 a, and 3 b, together with 

relation (3) and the assumption made for the momentum (p), 

constitute our model. Averages <f(r)> over the period of a fast (EZBW), i.e. measurable properties of 

the electron, can be calculated as average over the instantaneous positions: 

<f(r)> = ʃ ʃ PDDP(ϑ,ϕ) f(r) sin(ϑ) dϑ dϕ= (1/(2π)ʃʃ f(r)│cos(ϑ)│sin(ϑ) dϑ dϕ   (ϑ=0…π), (ϕ=0…2π)    

(6) 

For all properties considered so far, we obtain in this way the established experimental results, i.e. the 

results also predicted by quantum mechanics. 



< il > = ħ/2 {0, 0, 1} = S (Spin) ;        (7 a) 

<│il │sin(ϑ) > = ħ/2 = sz (spin projection);      (7 b) 

< r > = 0;          (7 c) 

< │ r │sin(ϑ) > = ħ/(2 p) = L/2 =rc;       (7 d) 

< π r 2> = (π/2)(ħ/p)2 = π L2/2 = <A> ( av. area)       (7 e)  

If the elementary charge (e) is ascribed to the position (r), a circular current (I) around the Z-axis of 

magnitude I=e c/(2πrc) arises, and defines an instantaneous magnetic moment im=I A = πr2e c/(2πrc) . 

With result (7e) and (7 d), we thus obtain the average magnetic moment: 

μ = <im> =e c/(2πrc)<πr2> = e c ħ /(2p) = μB ,      ( 8 )  

with ( μB ) being the Bohr magneton if the momentum is replaced by (m c ), with (m) the rest mass of 

the electron. We see that, the model predicts the correct magnetic moment – including the 

“anomalous” g=2 factor – in a classical way.         

   

3. Paths of instantaneous positions 

Paths of instantaneous positions are obtained if the angles (ϑ, and ϕ) in relation (6) depend on each 

other. The integrand in (6) suggests, that the relevant averages <f(r)> obtained by integration over the 

solid angle sin(ϑ)dϑdϕ (see 7, 8), can also be obtained as average over  such paths. The condition is 

that, the dependence between (ϑ) and (ϕ) is linear, and the paths are closed. Closed paths arise if the 

ratio of the angles is a natural number (n). To describe paths, we introduce the torus angle ϕt=2ϑ (see 

Fig.2), and the angle on the circle ϕc=ϕ. The linear dependence we describe as ϕc=nt ϕt  if ϕt< ϕc, and 

as ϕt=ncϕc, if ϕc<ϕt.  In this way closed paths are characterized by the natural numbers nc and nt that can 

vary as ( nc , nt = ±1, ±2, ±3, ……..±∞), and by a variation of the angles as ( ϕc = 0….2π, ϕt =0….4π) 

for the chosen path. An explicit example of the position vector, using relation (4), for a path 

characterized by (ϕt< ϕc) is given in (9) below. Also given in (9) is the momentum vector p(ϕt, nt) 

r(ϕt, nt) = (x,y,z),  p(ϕt, nt)=(px, py, pz) 



x= L cos2 (ϕt/2) cos (nt ϕt ),  

 y= L cos2 (ϕt/2) sin (nt ϕt ), ϕt=0….4π      (9) 

 z= (L/2) sin (ϕt),                 

px= -ħ/L sin(nt ϕt ),  py= ħ/L cos(nt ϕt ),  pz= 0 

With relations (9), paths of the position vector, and of the angular momentum vector, can be calculated 

for various conditions. Figures 4a,b  show, as examples, a 3D-plot of the path of instantaneous 

positions for nt=10,  and a 3D-plot of the path of the instantaneous positions for nc=10.  

   

 

 

                                                                                                  

                                

                                      (a)                                                                                             (b) 

Figur 4 a, b: Paths of the instantaneous positions in units of L=ħ/p. (a) for nt=10, and (b) for nc=10. 

3D plots of the paths of the instantaneous angular momentum vector, are shown in Figures 4c,d. (c) 

for nt=10, and (d) for nc=10. 

 

 

 

 

 

(c)                                                                                            (d) 



 Figure 4c,d:  The path of the instantaneous angular momentum vector in units of ħ for the cases 

nt=10 (c), and nc=10 (d) 

All averages obtained using the spatial distribution of the instantaneous position vector (see results 

(7a-7e), and result (8)), can now be calculated as averages over the respective paths. It turns out that, 

results identical to the results (7a-7e, and (8)) are obtained for all allowed paths, i.e. for ( nc , nt = ±1, ± 

2, ±3, ……..±∞). We conclude from this that, individual particles characterized by the paths own the 

corresponding properties at different conditions, and also, that the distribution of instantaneous 

positions constructed in paragraph 2, corresponds to an average over paths of individual particles with 

different initial conditions.  These results suggest strongly that, the distinction of paths by different (nt, 

nc)-values corresponds to the necessary difference of the description of particles at different relative 

velocities between particle and observer, where the different velocities do not influence the observed 

properties. The relation between different (nt, nc)-values and the corresponding different relative 

velocities is described in the next paragraph. 

 

 

 

4. Time dependent paths of the position vector 

We introduce proper time by introducing frequencies for the circular- and for the toroidal variation of 

the corresponding angles, by writing ϕc=ωct, and ϕt=ωtt. We consider the case (ϕt< ϕc) and      ϕc=nt ϕt , 

outlined in the preceding paragraph, and demonstrated in Figure 4a for nt =10. The rotation axes 

defining ϕc and ϕt are perpendicular to each other, and the radii (rc) and (rt) both have the value of half 

the reduced Compton wavelength. We define the quadratic sum of the frequencies, ωs=(ωc
2

 +ωt
2)1/2 

=2ω0 =ωs, which characterizes the “entity”. Using the relation between the frequencies defined above, 

this leads to ωt(1+nt
2)1/2 =ωs , and thus to the following general relations:      

ωt =2ω0(1+nt
2)-1/2,           ωc =2ω0 nt (1+nt

2)-1/2      (10) 



Introducing these frequencies into relations (9), one obtains time dependent positions r(t, nt ) – i.e., 

paths that are different for different relative velocities between the observer and the system at <r(t)>=0 

(see 7c). If the relative velocity v=ßcerel  is chosen to have a certain direction (indicated by the unit 

vector erel), this is taken into account by the corresponding change of the position coordinates, by 

writing r(t,ß)=  r(t)+vt . If we choose a relative velocity in (Z)-direction, this leads to the following 

description of the system, based on relation (9): 

 r(t,ß) = (x, y, z)          (11) 

x=L cos2 ((ωtt+π) /2) cos(nt ωt t), y= L cos2 ((ωtt+π)/2) sin(nt ωtt), z= (L/2)sin(ωtt+π)+ßct          

The path for the internal motion is described by the position vector r1(t, ß) = (x, y , z-ß c t). 

We need a relation between (ß) and (nt) in order to get velocity dependent paths from (11). Looking at 

relations (10), we notice that (ωt) becomes twice the De Broglie frequency, which is given by ωDB= 

ßω0 =ßc/L, if we chose 

ß=(1+nt
2)-1/2                                                       (12) 

As an extension of the model we assume (12) to be correct, which then yields for the frequencies the 

relations 

ωt =2ßc/L and ωc=2ntßc/L         (13) 

With relations (11, 12, 13) we now have a rather complete description of the spin-(1/2) particle in 

terms of paths in real space of the “quantum” during its (EZBW). The description explains the wave-

particle dualism reflected in the De Broglie frequency, which is represented by paths calculated for r(t, 

ß) (see Figure 5 below).  It is further remarkable that, relative velocities characterized by a natural 

number (nt, nc) are special, because for these velocities the time period is given by 2π/ωt,c ,  while for 

numbers in between the natural numbers the period is longer. This predicts a kind of quantization of 

relative motion. Finally, from relation (12) it is also evident that both types of paths exemplified in 

Figure 4 arise when (ß) varies in the physically possible region from zero to 1. In the region        

(0<ß<2-1/2), one has paths r1(t, ß) of the internal motion of the type shown in Figure 4a, and for the 

region (2-1/2<ß<1) the paths are of the type shown in Figure 4b. For all these paths, the same averages 



as given in (7a-7e, 8), are now obtained as time averages over a period of the corresponding (EZBW). 

In the limiting case (ß→0, nt→∞) the frequencies become (ωt→0, ωc→2 ω0), and in the case (ß→1, 

nc→∞), the frequencies become (ωt →2ω0, ωc → 0). 

A parametric 3D plot of the position r(t, ß)  in real space during one period of the (EZBW), calculated 

using relations (10, 11, 12) for the case nt=10, is shown in Figure 5. 

Figure 5:  A parametric 3D plot of the positions in real space 

(in units of L) during one period of the (EZBW), for the   case 

nt=10 (left figure). Path of the “entity” during the second 

period  (right figure). Progress of the “entity” in z-direction 

is seen to proceed at the velocity v=2πL/τ=2πLωt/4π= 

(L/2)ωt=ßc (see relation (13). 

 

The modulation of the lateral size of the system is due to the torus frequency ωt, which is twice the De 

Broglie frequency. The extension of the “entity” in z-direction during one period is 2πL, independent 

of (v=ßc), but its progress in z-direction as a function of time occurs at velocity (v). A thorough 

discussion of these paths is beyond the scope of the present paper. We expect, however, that 

uncertainty relations as well as interference phenomena will be describable. 

 

 

5. Summary and discussion 

We have presented a model which describes the electron in terms of paths in real space of possible 

positions of a “quantum” which carries out an extended periodic Zitterbewegung (EZBW). The model 

is completely general. The only quantity that specifies the described spin-1/2 particle, is the momentum 

of a photon whose energy equals the rest energy of the particle. Qualitatively, the scenario the model 

suggests may be summarized as follows: The “quantum”, which forms the photon when it follows a 

straight axis and has momentum (p=mc) in direction of that axis, represents the particle of mass (m) 



when its axis forms a circle around a fixed point in space and is thus completely localized. Its possible 

positions then lie on a torus around the fixed point, with the torus radius being equal to the radius of the 

circle the axis forms around the fixed point. Examples of paths are shown in Figures 4. The energy of 

this electromagnetic “entity”, which has a size equal to the reduced Compton wave length ħ/mc, is 

E=mc2, with (m) being the relativistic mass. In paragraph 4, proper time is introduced, which leads to 

the description of paths in terms of frequencies for toroidal- and circular variation of instantaneous 

positions. The variation of these frequencies with relative velocity between observer and “entity” 

completes the model. The toroidal frequency turns out to be equal to twice the De Broglie frequency, 

and the quadratic sum of the two frequencies is constant and equals twice the frequency of the “free” 

photon that has the same energy as the “entity”.  

Thus, the model implies a mechanism that describes the electrodynamic origin of mass, and in this way 

“explains” the equivalence relation ħω=mc2. 

The following observable properties of the “entity” - which is to be identified with the free electron - 

are obtained as averages over an (EZBW) by elementary calculations, and are found to agree with 

experiment.  

(i) Spin of ħ/2 is obtained as average of angular momentum of the quantum during a period of the 

(EZBW). Also spin projection of ħ/2 is obtained as average of angular momentum projection during the 

period. 

(ii) If the elementary charge (e) is ascribed to the position of the quantum, the magnetic moment of the 

free electron is predicted to equal the experimental value of one Bohr magneton. No “ad hoc” 

introduction of a g=2 factor is necessary. 

(iii) The De Broglie frequency is identified as half the torus frequency. In this way, the “wave particle 

duality” of the electron is explained. The factor of two accounts for the fact that the De Broglie frequency 

describes the probability amplitude, while the torus frequency describes the probability. 

(iv) The relativistic mass- and energy variation with relative velocity is automatically taken into account 

by the corresponding variation of L= (ħ/p), and of the frequencies describing the “entity”. 



The results above support the validity of the model, which therefore offers an alternative description to 

quantum mechanics, at least for the phenomena considered. 

There arise, of course, many questions concerning the role of the presented model. Below we discuss 

the most obvious ones. 

First, what is the relation between the model and non-relativistic quantum mechanics?   Since the model 

predicts the correct magnetic moment as an average over an (EZBW)-period, at any relative velocity, 

and in addition predicts the same frequency for the (EZBW) as the Dirac equation does for the (ZBW), 

we conclude that it describes the Dirac particle, also in the non-relativistic region, in contrast to the 

Pauli-Schrödinger theory. Further, the phases of wave functions correspond to phases of change of the 

possible positions of the “quantum” in the model. For instance, the relative phase appearing in the singlet 

state wave function between the wave functions of the two electrons, is reflected in the phase-locked 

paths of the type shown in Figure 5, for two electrons of opposite spin, moving in opposite directions, 

and having a common origin.  An (EPR)-paradox does not arise. 

Secondly, what does the “quantization” of relative velocity, implied in relation (12), mean? As shown 

(see 7c), the instantaneous electric dipole moment <er> - present during the (EZBW) - averages to zero 

over a full period. For velocities v=ßc=c (1+n2)-1/2 which do not belong to a natural number (n), the 

period can be substantially longer than the one determined by (n), and an average electric moment 

persists until the longer period is completed. Also the average angular momentum vector – the spin – 

has x- and y-components until the full period is completed. Since the average electric dipole moment 

may lead to interactions, the translational motion at relative velocities belonging to natural numbers (n) 

may be regarded as especially stable. Since, during an acceleration of electrons the velocity varies 

continuously through regions not belonging to natural numbers (n), one may speculate that the observed 

radiation during acceleration may be explained by such incompletely averaged electric moments. 

Further, the question of antimatter – the positron –we did not mention. Qualitatively, we argue as 

follows. The model uses two frequencies (see relations 10, 11), which can have positive or negative 

sign. There are four combinations of signs: (+, +), (-, -), (+, -), (-, +). The first two correspond to positive- 

and the second two to negative polarization of the circulating photon, and therefore are different 



“entities” and represent positron and electron. The two combinations of signs, possible for each of the 

particles, define their two spin-states. We did not consider the question of charge. However we would 

expect that the different polarizations yield opposite static charges (±e) at the center of the “entities”. 

Finally, since the model predicts the g=2 factor correctly, the question arises why it fails to predict the    

(g-2) deviation of 0.002322…Bohr magnetons? If the deviation is ascribed to self-interaction, the 

interaction of the magnetic moment with the calculated average electric moment due to the average 

distance of the charge from the rotation plane <e │z1│> =e (1/π)L (see relation (11)), would be a 

possible candidate. This speculation would lead to a correction of the g- factor. Assuming the coupling 

constant between electric moment <e│z1│ >, and the magnetic moment μB, to be the fine structure 

constant (α), a correction of (1/π) α = 0.002322…would arise. This is the first term of the quantum-

electrodynamic correction of the g=2 factor in terms of powers of (α).   

In conclusion, the demonstrated merits of the model presented strongly suggest its validity. The model 

supports the existence of the proposed (EZBW), and suggests the purely electromagnetic origin of mass. 

And last but not least, it demonstrates that microscopic phenomena can be described without quantum 

mechanics, and thereby “explains” paradoxes known to be connected with “understanding” quantum 

mechanics. 
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