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Abstract. This paper is devoted to a detailed study of nonrelativistic particles 
and their properties, as described by Galilei invariant wave equations, in order to 
obtain a precise distinction between the specifically relativistic properties of ele- 
mentary quantum mechanical systems and those which are also shared by non- 
relativistic systems. After having emphasized that  spin, for instance, is not such a 
specifically relativistic effect, we construct wave equations for nonrelativistic 
particles with any spin. Our derivation is based upon the theory of represen~tions 
of the Galilei group, which define nonrelativistic particles. We particularly study 
the spin 1/2 ease where we introduce a four-component wave equation, the non- 
relativistic analogue of the Dirae equation. I t  leads to the conclusion that  the spin 
magnetic moment, with its Land6 factor g = 2, is not a relativistic property. More 
generally, nonrelat~vistic particles seem to possess intrinsic moments with the same 
values as their relativistic counterparts, but are found to possess no higher electro- 
magnetic multipole moments. Studying "galilean electromagnetism" (i.e. the theory 
of spin 1 masslcss particles), we show that only the displacement current is respon- 
sible for the breakdown of gahlean invariance in Maxwell equations, and we make 
some comments about such a "nonrelativistic electromagnetism". Comparing the 
connection between wave equations and the invariance group in both the relativistic 
and the nonrelativistic ease, we are finally led to some vexing questions about the 
very concept of wave equations. 

In t roduc t ion  

The  sub jec t  of th is  pape r  1 m a y  well seem d o u b l y  obsolete :  is i t  
rea l ly  wor th  while inves t iga t ing  wave  equat ions  in nonre la t iv is t ic  
s i tua t ions ,  when the  ba t t l e - f ron t  of theore t ica l  physics  t o d a y  runs  
t h rough  Q u a n t u m  F ie ld  Theo ry  (and/or  S - m a t r i x  Theory)  in  comple te ly  
re la t iv i s t ic  con tex t s  ~. 

W e  th ink  t h a t  t he  ma in  jus t i f ica t ion  to  the  presen t  work  lies in 
some of the  pecul ier  resul ts  which we ob ta in ;  as a m a t t e r  of fact ,  these  
resul ts  show the  necess i ty  of revis ing cer ta in  commonly  he ld  ideas  on 
q u a n t u m  mechanics  (QM). Specif ical ly,  i t  is mos t  i m p o r t a n t ,  when one 
goes f rom nonre la t iv is t ic  q u a n t u m  mechardcs (NQM) to  re la t iv is t ic  
q u a n t u m  mechanics  (RQM) to ful ly  apprec ia te  and  c lear ly  po in t  ou t  
wha t  are the  new features  b rough t  in to  the  t h e o r y  b y  the  change in the  
under ly ing  k inemat ica l  group,  as well as  t he  concepts  which are  va l id  
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in both cases. Indeed there appear to be widespread misunderstandings 
on these points in the current literature and textbooks, particularly 
in what concerns the notion of intrinsic spin and magnetic moment for 
elementary systems (particles). 

We are here interested in a description of "nonrelativistic elementary 
particles" and their properties. The frame of our investigation is furnished 
by  the classical analysis of invariance in QM, due to ~TIGI~EI~ [2], and 
according to which the state space of any quantum mechanical system 
is a representation space for the relevant kinematical group: the Poin- 
card group for RQM, the Galilei group for NQM. I t  is natural to call a 
system "elementary" (we will also call such a system a "particle"), 
if the corresponding representation is irreducible. We will not discuss 
here the shortcomings of such a concept of "elementari ty";  instead, we 
adopt, it  as a definition, which we strengthen by  requiring tha t  the con- 
sidered system has no additional structure besides the one associated 
with the corresponding irreducible representation. The purpose of this 
last proviso is to exclude from our considerations such systems as nuclei, 
atoms or molecules in stable states which, though being described by an 
irreducible representation of the kinematical group, possess a complicated 
internal structure, not accounted for by  this representation. 

The purely kinematical properties of an isolated quantum mechanical 
system, i.e. its behaviour under translations, rotations, uniform motions, 
are completely described by the associated representation of the kine- 
matical group. At this stage, the notion of wave equation for particles 
is to be considered as a particular method, in general not the most con- 
venient one, of specifying the representation corresponding to the 
parHele: the invariance of the wave equation under the group operation 
means that  its solutions span a representation space for this group. It 
has become increasingly clear that,  in kinematical calculations, it  is 
much easier to deal directly with the representation of the group in a 
convenient form, rather than with the wave equation and its solutions. 

But  suppose we now wish to s tudy how the particle behaves in 
external fields, for instance in order to know its intrinsic electromagnetic 
properties. Then we cannot use the representation of the kinematical 
group which only describes the free particle. This is where the notion 
of wave equations recovers all of its usefulness. Indeed, wave equations 
constitute the only tool we know of, which enables us to describe inter- 
actions in ordinary (first quantized) QM, via the trick of gauge in- 
variance 2 (of the second kind). Let  us emphasize here that,  throughout. 
this paper, we will only consider interactions of particles with external 
(classical) fields, and not  interactions between particles. 

This is the place to recall that, in NQM, gxuc~r [3] has shown the existence 
of a relation between Galilean invariance and gauge invariance. 
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Let  us now precisely state our program: we want to establish wave 
equations for nonrelativistic particles, derive from these wave equations 
the properties (essentially the electromagnetic ones) of the particles 
they describe, and compare the whole theory and its results to the 
corresponding relativistic ones. 

I. Galilei Group Representations and Nonrelativistic Particles 

According to the point of view advocated in ~he Introduction, the 
characterization of nonrelativistie particles is furuished by  the theory 
of unitary irreducible representations of the Galilei group. Let  us briefly 
review the results of this theory. The physical representations of the 
Galflei group are nontriviat projective (ray) representations [4], the true 
(vector) representations being devoid of physical content 3 because they 
do not permit the existence of any sensible notion of loealizabiIity [5]. 
A physical (unitary irreducible) representation of the Galilei group 
(strictly speaking: an equivalence class of such representations) is 
characterized by two parameters: a real positive number m and an 
integer or half-integer positive number s [6], [7]. The representation 
space (we now single out a particular element in the equivalence class) 
can be conveniently chosen as the tensor product of a (2s ÷ 1)-dimensio- 
nal vector space and the space L 2 ( R  3) of square integrable functions 
on the three-dimensional euclidean space. Let  T~(p) [p~lRs;  

= - s  . . . .  , ÷s ]  be any element of this representation space. Let  
(b, a, v, R) be the generic element of the Galilei group with b a time 
translation, a a space translation, v a pure Galilei transformation and 
R a rotation. The considered representation of the Galflei group is 
explicitly given by: 

[U(b, a, v, R)~]~ (p) 
÷s 

= e x p ( i E b  - i p .  a) × X D ~ ( R )  T~(R-l(p - my)) (1) 

1 ~ where E----~m and D ~ is the ( 2 s ÷  1)-dimensional representation of 

the rotation group. This representation is unitary for the scalar product 
corresponding to the ~ollowing definition of the norm: 

}}TII 2 =  X f d3Pt~(P)}  2 (2) 

The physical interpretation is straightforward: ~f~(p) is the wave 
equation in momentum space of a particle with mass m and spin s. The 
kinematical properties of this particle are completely described by the 
representation (1). 

a Except for a certain class of such representations which have been shown to 
describe "massless nonrelativistic particles" [7 ]. 
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Let  us mention the peculiar role played by the mass. Corresponding 
to its appearance as characterizing the projective representations of the 
Galilei group, the mass operator generates a superselection rule [4] 
(Bargmann's superseleetion rule), which has important  consequences 
[7], [8]. But  we will not be concerned here with this aspect of galflean 
invariance. 

The main point we wish to emphasize is the natural appearance of 
the concept of spin. I t  comes out here much in the same way as in RQM 
[2]. Accordingly, spin is not  due to "relati~dstie effects", is not a "con- 
sequence of I)irac equation". Even in NQ1Vf, spin has not to be considered 
as an "extraneous hypothesis", an "independent addition", but  on the 
contrary, follows at  once from the first principles. 

Having thus shown that  spin is not  a characteristic feature of RQM, 
one may well wonder what arc these features ? In  order to answer this 
question, we clearly have to construct a theory of nonrelativistic particles 
and their properties which could be compared to the relativistic theory. 
We will therefore a t tempt  to derive wave equations for nourelativistie 
particles of any spin. We open this program by investigating the Galilean 
invarianee of the standard nonrelativistic equation, the SehrSdinger 
equation, in order to understand its connection with the theory of 
representations of the Galilei group. 

II. Galilean Invaria~ce of the Schriidinger Equation 

The motivation for the present considerations on the Schr6dinger 
equation is twofold: first, its Galilean invariance is overlooked in most 
textbooks (at best, one finds it relegated to the minor rank of an exercise), 
though it is no less interesting and much easier to study than the 
thoroughly studied Lorentz invariance of the Dirac equation; secondly, 
we may hope to get some hint about the derivation of other non- 
relativistic wave equations. 

The SchrSdinger equation for a particle with mass m writes (we put  
h =  l ) :  

• ~ 1 z l x ¢  (3) 

The wave functions ~b are complex valued functions of the time t and the 
spatial coordinates x, with respect to which they are square integrable: 

tlCil ~ = f I~(x, t)[ ~' d3x < + ~ .  (4) 

By virtue of the equation (3), the norm 1[~5l[ is actually time independent. 
Let  the particle be subjected to a general Galilei transformation 

(b, a, v, R). Galilean invariance demands the behaviour of the particle 
to be governed by the same equation (3) after the transformation. More- 
over, if such a transformation is not to modify the physical properties 



290 J.-M. L~VY-LEBLOND : 

of the particle, the localization probability density of the particle at a 
given point before the transformation must be equal to the localization 
probability density of the particle at the transformed point after the 
transformation. In  other terms: 

l~ ' (x ' ,  ¢)12 = l ~ ( x ,  t)L2 (5) 

where ¢ and ¢ '  are the wave functions of the particle respectively 
before and after the transformation and the points (x, t) and (x', t') are 
related by the considered galilean transformation: 

x' = R x  ÷ vt ÷ a 
t' = t + b.  (6) 

The two wave functions thus differ by a phase factor: 

¢'(X': t') = e iI(x't) ~(X, t) (7) 

and it must be possible to find a phase function ] such that  ~b' obeys 
the SchrSdinger equation (3) as soon as ¢ does. This is indeed the case. 
One finds after a simple calculation: 

1 
/ (x ,  t) = - 2 - m y  t + m y .  R x  + C .  (S) 

where the constant C could depend on the considered Galilei trans- 
formation. 

We have thus shown that  the SchrSdinger equation is Galilean in- 
variant and, moreover, we have obtained the explicit transformation law 
of the wave functions under a Galilean transformation. The correspond- 
ence (7) ~ --> q~' is a unitary ray representation of the Galilei group. 
Since the SehrSdinger equation describes spinless particles with mass m, 
this representation is necessarily equivalent to the corresponding 
momentum space representation (1) (with s = 0). This equivalence is 
readily demonstrated by means of a simple Fourier transform. Indeed, 
there is a one-to-one correspondence between the space of square inte- 
grable functions in momentum space and the space of square intcgrable 
solutions of the SchrSdinger equation (3) (completed with respect to the 
scalar product associated with the norm (4)) according to: 

~)(X, t) ~- f e - i E t + i p ' x  ~ ( p )  d~p (9) 
p~ 

where E -- 2m " The transformation law (1) then agrees with (7), (8) 

for C = 0. 
I t  is now clear tha t  the kinematical descriptions of a free non- 

relativistic spinless particle by the associated irreducible representation 
of the Galilei group, or by the SehrSdinger equation, are completely 
equivalent. As pointed out in the Introduction, if we prefer the group 
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representation for describing the free particle, the unchallenged merit 
of the Schr6dinger equation is to allow for the description of the particle 
interacting with an external field, via the gauge invariance trick of 
replacing: 

i ~ -  t by i -oi- - "F(x,t ) (10) 
- i [7  z by - i V ~ - ~ ( x , t )  

( ~ , ~ )  being the 4-potential of the field. Remark that  one should question 
the internal consistency of such a scheme where one introduces electro- 
magnetic fields (obeying typically relativistic equations) in nonrelativistie 
situations. We shall discuss this problem in VI. 

III. A t~onrelativistie Dirae Equation 

a) Wave Equations/or Nonzero Spin ? 
We will now try to obtain wave equations for nonrelativistic particles 

of any spin, taking the opposite way to the one we just followed, i.e. 
we start from the irreducible representation of the Galilei group to reach 
a related wave equation which, though equivalent to the considered 
representation in the free particle ease, can be used in the presence of 
interaction. 

We have first to go from the momentum space representation (1) to 
some configuration space representation. Indeed, only in configuration 
space does the idea of wave equation as a partial derivative equation 
make sense; moreover, when interaction is present, it  is only in configura- 
tion space that  such notions as forces, potentials, are physically defined. 
Using the approach of N~WTOZ¢ and WIGz¢~ to localizability problems 
[9], it  can be shown that  a particle described by a representation (1) 
is localizable for any value of the spin, if it  has a nonzero mass. The 
position operator corresponding to this notion of localizabflity is simply 
given, in momentum space, by: 

X = ilTr (11) 

this being valid independently of the spin of the particle. That  means 
that  we obtain an a priori acceptable configuration space representation 
equivalent to (1), by performing a Fourier transformation in a way 
completely analogous to the spinless case. I t  suffices to use eq. (9) for 
the (2s ÷ 1)-component momentum space wave function, thus getting 
(2s ÷ D-component wave functions ¢~(x, t) defined in configuration 
space. The Galflei group representation now takes the form: 

¢~(x',  t') = eil(x't)~ D~(R) ¢~(x, t) (12) 

with the same phase function ] (8) as in the spinless case (7). This repre- 
sentation is unitary for the scalar product corresponding to the definition 
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of the norm: 
+ 8  

]l~[I ~ = X f [q~(x, t)l ~ d a x .  (13) 

This expression is time independent, due to (12). The law (12) is a 
satisfying transformation law in that  it is local, the value of the new 
function ~b' at  the transformed point depending only on the value of the 
function ¢ at the initial point. Things are simpler here than in the 
relativistic case where the dependence of the little group operators on 
the momentum p [2] requires a generalized Foldy-Wouthuyscn trans- 
formation to be made on Wigner's representation before a local confi- 
guration space wave-function may be obtained by  Fourier transforma- 
tion. 

We now search for an invariant wave equation associated with the 
transformation law (12). What  we mean is: does there exist a partial 
derivative equation such that  it  is automatically obeyed by ~b', if it 
is obeyed by  ~b, ~ and ~ '  being related by (12)? In other words, we 

are looking for a Galilei invarlant operator formed from ~ ,  17~ and the 

spin operators in the (2s + 1)-dimensional space. A tedious but  straight- 
forward calculation yields that  the only solutions to this problem are 
the functions of the SchrSdinger operator: 

S = ~ F i  + ~-~A = E - ~ - p  (14) 

The spin operators do not  appear if we pose the problem in this way. 
I t  should be remarked that  the situation, is the same in the case of the 
Poincar6 group. Wave equations which couple ~he different spin states 
are possible only if one allows for wave equations with more than (2s + 1) 
components. 

b) Linearization o/the Schrgdinger Equation 
We shall now derive such a wave equation, which will turn out to 

describe spin 1/2 particles, using the heuristic idea that  DmAC applied 
so successfully in RQM [10] ; we require the equation to be of first-order 
in all the space-time derivatives. Thus, we search a wave equation in 
the form: 

Oqb %~(AE + B .  p + C)~b = 0 ,  (15) 
A, B, C being linear operators to be determined, operating in a vector 
space whose dimension we still ignore but  which we will assume to be 
finite. 

For the solutions of (15) to obey the Schr6dinger equation: 
, ~  = 0 (16) 

there must exist some operator 0 ' =  A ' E +  B' .p + C', such that  
multiplying (15) by  0' we recover the SchrSdinger equation. In  other 
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words we must  have 
0'0 = 2mS (17) 

the arbitrary numerical coefficient 2m providing a convenient normali- 
zation. By identifying the various monomials in E and p, we obtain the 
following set of conditions: 

A 'A = 0 [A'Bi+ B;A=O 
A ' U + C ' A = 2 m  ]B;B~+ B~B,=-2O,~. ( i , j = 1 , 2 , 3 )  (18) 
C'C= 0 [C'B, + B~C = O. 

Defining the new operators: 

1 C B , = i ( A  +-~-~ ) 

1 
Bs= A - ~m C 

' ( ~ c ' ~  B4=i A' + 2m ] 

B ~ = A ' -  1-~-C" 
2m  

(19) 

So that ,  after (19) : 

{~,, o] (i = 1, 2, 3) Bi = \0 ~,1 
(23) (o "0--(o o) 

The wave function ~ is thus a 4-component object, which we write as 

~ = ( ; ) ,  ~v and Z each being a 2-component function. 0u r  wave equation 

finally reads: 

{ E ~  + ( a . p ) z = 0  
(25) 

(a'p)~o + 2 m z =  0. 

the conditions (18) can be rewritten as: 

B'~B,+ B;B~, = -2c~ , , .  (#,v = 1 to 5) (20) 

All the representations of such an algebra can be obtained from those 
of a Clifford algebra with dimension 4: 

y~y~+y~y~=2~fl ( ~ , f i = l t o 4 )  (21) 

according to the correspondence: 

B ~ = B ? ~  B ~ ' = - y ~ f l - 1  ( e = l t o 4 )  

B5 = - i f l  B; = - i f l -~  (22) 

where/3 is an arbitrary nonsingular matrix. Since we are only interested 
in the irreducible representations, we may use the standard results for 
the Dirae algebra (21). All the irreducible representations then have 
dimension 4 and are equivalent. We choose the following realization, 
standard for the Dirac equation, where the ai's are the Pauli matrices: 
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By direct substitution, one finds that  both ~ and Z satisfy the Schrh- 
danger equation. Since the A matrix in (15) is singular (see (24)), the 
wave equation (25) considered as an eigenvalue equation for the energy 

has ordy two identical eigenvalues, E ---- ~ precisely. The corresponding 

eigenveetors are of the form ~ = 1 In that  sense, these - - - g ~  (,~. p/~o " 

4-components might seem to contain an useless redundancy. However, 
this is not the case, as will be seen when we introduce the effect of an 
external electromagnetic field by  the usual substitution (10). 

c) Galilean Invariance and the Interpretation o[ the Wave Equation 
Before definitively accepting the wave equation and using it, it is 

necessary to prove its galilean invarianee in order to justify our previous 

heuristic derivation. Calling ~b' = ( ~' ) Z' the wave function transformed 

- - ( ~ )  by the general galilean transformation (b, a, v, R) from ¢ which 

takes (x, t) into (x', t') (6), one finds that  the wave equation (25) is 
invariant under the substitution: 

~' (X', ~')] . . . . .  ~[lr'~__V D12] (n) Dl]2 (R) \Z(x' ~) 

where the phase function ] is the same as in the Schrhdinger case (8), and 
D~I 2 is the two-dimensional ray representation of the rotation group. 
The ~ component transforms very simply, without mixing with the Z" 
component. In its transformation iaw 

~' (x', t') = ei~(X'ODl/2 (R) ~ (x, t) (27) 

we recognize the particular case s = 1/2 of the general expression (12) 
of the Galilei group irreducible representations. Since the function 
suffices to describe all the physical properties of a free system, the wave 
equation (25) describes a nonrelativistic particle with mass m and 8pin 1/2. 

Returning to the transformation properties (26) of the complete 
wave function, we find out a remarkable fact: the 4 × 4 matrices 

LJl/2 (v' R) a=~ (---~-D,a'vD~I~(R)~2 (R) D~'2(R)O ) (28) 

make up a faithful representation of the "homogeneous Galilei group", 
i.e. obey the multiplication law: 

dl/2(v', R') LP/2 (v, R) = L11/~(v' ÷ R'v,  R'R)  (29) 
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which is readily verified, using the standard relation: 

DV~ (R-X) a D1/2 (g) = t l  a (30) 

The wave function q~ = ( ~ ) t h u s  appears to take its values in a finite 

dimensional representation space of the homogeneous Galilei group. 

d) The Particle in an External _Yield and its Magnetic Moment 

I t  is time to draw more explicit conclusions from our wave equation 
(25). Let  us consider the effect of an electromagnetic field on the particle. 
Here also, it  might be questioned if the introduction of such a field, 
typically relativistic since obeying Maxwell equations, is not to destroy 
the internal consistency of a Galilean theory;  we will show (VI) that ,  a t  
least in the case of static fields, this is not so. Using gauge invarianee of 
the second kind to introduce the fields (3t', ~ )  (via the replacement (10)), 
the wave equation for a nonrelativistic particle with mass m, spin 1/2 
and charge q reads: 

{(aE.- q'//')cf + a"  (P - q~o)Z = 0  
(p -- q~)~v + 2m Z = (3i) 

We e~minate the auxiliary components Z, thereby obtaining the following 
physical wave equation for ~0: 

1 q 
[ E -  (p - . .  = 0 (32) 

where $¢t° = rot ~ is the magnetic field. Obviously, what makes this 
equation interesting is the last term which proves the existence of an 
intrinsic magnetic moment for the particle, given by: 

a (33) ~ t=  2m 
1 

Since the spin. of the particle is S = - 2 - a ,  its gyromagnctie ratio is 
q 

7 = -~-, i.e. twice the value of the orbital ratio, so tha t  the spin Land6 

factor reads g~ = 2. 
A complete nonrelativistic theory predicts the correct ~ value /or the 

intrinsic magnetic moment o] a s ~ n  1/2 particle. 
This phenomenon, which caused so much trouble to physicists in the 

twenties and which Dirac first explained by  means of his equation, is 
thus shown not to be a specific consequence of relativistic invariance. 
The "extraordinary" value of the spin gyromagnetic ratio, like the very 

a As emphasized in the Introduction, the particles here considered are supposed 
to be completely described by their wave equation, i.e. there are no strong inter- 
actions, neither radiative corrections to modify the derived value of the magnetic 
moment. 
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existence of the spin, is nothing of a "relativistic effect" as is plainly 
or tacit ly stated in m a n y  textbooks 5 

Of course, our final equation (32) is nothing but  the usual Pauh 
equation [11]. The novelty of our approach lies in the fact  tha t :  

i) the spin degrees of freedom do not have to be introduced "ad  hoe", 
but  are contained in the theory fl-om its starting point, equation (25). 

if) the correct value of the magnetic moment  results from the theory 
and does not need to be taken out from experimental results. Our 
derivation, moreover, automatically implies the Galilean invariance of 
the Pauli equation. 

I t  must  be added tha t  eq. (32) shows no evidence for spin-orbit 
interaction or the Darwin term. These are t ruly relativistic effects, only 
predicted by  the Dirae equation and whose practical importance is a 

sufficiently striking success of this equation. 
G~mINDO and SANCHV, Z DEL RIO (12], had already announced such a 

result on the nonrel~tivistie nature of the extraordinary spin magnetic 
moment.  However,  we do not  think their derivation to be quite satis- 
fying: they linearize the SchrSdinger equation in such a way as to intro. 
duce the square root of the energy operator. And worse, their equation 
is not  invariant  under the whole Galilei group but  only under its sub- 
group which they call "s ta t ic"  and which does not include the pure 
Galilci transformations. Let  us also mention tha t  EBERLEIN [13] obtained 
the correct magnetic moment  in the Pauli equation from very different 
considerations, of a formal mathematical  nature. 

e) ]Probability Density and Current 

I n  order to apply the wave  equation (25) to the analysis of physical 
problems, we have to know some sesquilinear form in the wave function 
~5, which can be used as a probability density. This form may  be deter- 
mined by  the condition tha t  the associated norm of ¢ be time-inde- 
pendent by  virtue of the wave equation. Let  us write the wave equation 
in the form: 

Ii - i . .  v = 0 g 
(34) 

- i s .  17~ ~- 2m Z ~- O. 

The norm of (i5 must  be defined by: 

l]~]l ~ = f q)+q) dax (35) 

s I t  might be that these unfounded assertions resul~ in part from the use of a 

unit system in which tile Bohr magneton writes #~ = ~ -  instead of -2m here , 

the presence of the constant c giving a "relativistic look" to such a formula. In this 
connection we will see later that dimensional arguments, when carefully haadled, 
give interesting results (IV.c). 
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in order to be tlme-independent according to (34). We then define the 
probability density: 

e = ~ + ~  (36) 

This sesquilinear form, in spite of its appearance, is nondegenerate; 
indeed, Q = 0 demands ~v = 0, which, in turn, implies Z = 0 after (34), 
so tha t  finally q5 = 0; from the galilean transformation law (27), it  is 
seen that  the probability density ~ is a galilean scalar, in accordance 
with its physical meaning, as in Schr6dinger case. 

To the conserved norm (35), there corresponds a continuity equation 

aQ . . 
- ~  + div] = 0 (37) 

where j is a probability density current. After the wave equation (34) 
and its adjoint, we may write: 

a t  - Y o t  a t  q) 

= ~ + ( a .  VZ) + (VZ + -  a ) ~  (38) 

= div(~+a z + Z+a~) .  

The simplest choice for the current, that  is 

j = - -  (of + a z + Z + a ~ )  , (39) 

is the only one compatible with the minimal electromagnetic coupling 
discussed above. Indeed, a more transparent expression for this current 
j is obtained by eliminating the auxiliary components g with the help of 
equation (34). Expressed in term of ~ only, we obtain, after manipulating 
some Pauli matrices: 

1  -Lv + × (40) 

The first term on the right-hand side is completely analogous to the 
usual expression for the probability density current of the SchrSdinger 
equation. The second term is a spin current, which gives rise to the 
correct value (33) of the spin magnetic moment when the current (40) 
is inserted in the standard electromagnetic interaction Lagrangian: 

L I = q f (e¢"  - ] .  , ~ )  d~x .  (41) 

In  fact, the spin part of this Lagrangian may be cask in the form: 

_ q LI~= ~ - f  [17 × (~+a~v)] t ~ d~ x 

(42) 
2m (~°+ a99) "°~f'd3 x" 

recognizes the existence of an intrinsic magnetic moment / t  = ~ m  a. One 

21 Commua. math. Phys., Vol. 6 
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l) Connection with the Dirav Equation 
Let  us write the Dirae equation in the following way:  

(# - m ) ~  + ( ~ . p ) z  = 0 
(43) 

( a . p ) ~ +  (8 + m ) z  0 
where d ~ is the total  energy (mass + kinetic) and ~, Z two 2-component 
spinets (usually termed big and small component respectively of the 
Dirac wave flmction). In  the non~elativistie limit where 5 ~ = m + E,  
E ~ m, it  is natural  to write equation (43) in the approximate form (25), 
thus recovering in almost a trivial way our wave equation, which appears 
very  simply as the nonrelativistie limit of the Dirac equation. As a 
mat te r  of fact, some authors have written down this equation when 
studying the Dirac equation and its nonrelativisgic limit. However, they 
usually jump over to the Schr6dinger equation which results from this, 
losing in the process m a n y  interesting features. On the contrary, i t  is 
most  rewarding to pause a while a t  this stage, in order to exhibit the 
Galilean invariance of this nonrelativistic equation. While the usual 
way of identifying the magnetic moment  of a Dirae particle consists in 
introducing the electromagnetic fields in the Dirac equation and then 
going to the nonrelativistie ] i rn l t ,  w e  have shown tha t  i t  is stfffieient to 
introduce the electromagnetic fields, alter taking the nonrelativistie limit. 

IV. lNonrelativistie Wave Equations for any Spin 

a) General I~emarks 
In  RQM, the relation between irreducible representations of the 

Poinear6 group and wave equations by  no means is a simple one. While 
a particle with spin s is described, in W I G ~ ' s  standard form of the 
irreducible representations, by  a (2s -5 1)-component wave function [2], 
non-trivial wave equations can only be written for wave functions with 
a larger number  of components 6. The wave equation then m a y  be viewed 
as simultaneously expressing constraints on the "redundant"  com- 
ponents and equations of motion, for the "physical" ones. But  the 
separation is not a covariant one. In  fact, i t  turns out tha t  the usuM wave 
equations are chaxaeterized by  a ret?resentation of the homogeneous 
Lorentz group according to which the components of the wave function 
transform. The appearance of the Lorentz group, instead of the rotat ion 
group (little group) in WIG~R'S  theory, is ra ther  mysterious. 

The same mystery  is present in NQ~NI. Although we do not under- 
s tand at  present its physical meaning, we nevertheless adopt the same 
guideline as in the relativistic case on our way from the irreducibIe 
representation of the invarianee group to a wave equation. Specifically, 

For a recen~ comprehensive article on relativistie wave equagions, containing 
numerous references t~ original papers, see ref. [14]. 
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we will require the components of the wave function to transform 
according to some finite-dimensional representation A of the homogeneous 
Galilei group: 

¢ '  (x', t') = e i~(x,~) A (v, R) ~(x ,  t) (44) 
where ] is the standard phase function. I t  is such a transformation law 
which we already met in the spin 1/2 ease (26). Since any wave equation 
can be re-expressed as a first order equation, we could look for the more 
general invariant equation of the form (15). This is the method used by 
GEL'F_~'~D and YAGnO~ in RQM 7. I t  leads to a simultaneous determina- 
tion of the representation A and the operators (A, B, C). Unfortunately, 
the homogeneous Galflei group (isomorphic to the three-dimensional 
euclidean group) is not  semi-simple and its finite dimensional represen- 
tations are rather complicated to classify [16]. In  particular, if faithful, 
they are necessarily nilpotent and thus cannot be irreducible, but  a t  
most undecomposable (such is the ease for the representation (28)). 
I t  is not easier to construct them by contracting [17] finite-dimensional 
representation of the Lorentz group, since it  does not suffice to consider 
the well-known irreducible finite-dimensional representations ~ , r ;  for 
instance, the undecomposable representation (28) derives by contraction 
from the reducible Dirac representation ~0,1/2 $ 21/2,0 of the Lorentz 
group. 

b) The Bargmann-Wigner Method 
We thus t ry  another approach which will prove more rewarding, 

using Bargmann-Wigner method [18] in our Galilean situation. Consider 
the complex valued functions in the coordinates (x, t) and in N discrete 
four-valued variables 2i (2i = 1, 2, 3, 4; i = 1 , . . . ,  N) .We require these 
functions ¢ ( x ,  t; 21 . . . .  ,2~-) to be symmetrical in the N variables 2, 
which already reduces the number of independent components from 4 N 
~o (hr + 3)! N! 3! . For  each value of i = 1 . . . .  , N, one defines an operator 0~ 

(see III .  b), which acts trivially on the indices 2, except the i th on which 
it  operates according to the definition: ( °,) a~ Z (45) 

~i ~ a . l}  2 m  i"  
The function ¢ is now required to obey the following set of equations: 

0 ~ ¢ = 0  i = l  . . . .  , N  (46) 
in complete analogy to the relativistic Bargmaun-Wigner wave equations. 
Let  us define the norm of the state represented by  the wave function 
cby: 

2 2 
II¢II ~ =  Z "'" Z f t~(  x, t; 2 , , . . . ,  2~,)12dax (47) 

).,=1 ~12~= 1 

7 Their  work  is reviewed a n d  the  references to  the  original papers  (in guss ian)  
are  g iven in ref. [15], p a r t  I I ,  chap.  I I ,  

21" 
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I t  is non-degenerate and time-independent by virtue of the wave equa. 
tions (46) (compare the corresponding discussion in III .  e). This definition 
of the norm endows the space of wave functions with a Hilbert space 
structure; in this Hflbert space operates an unitary representation of 
the Galilei group given by: 

¢' (x', t') = e i~(x,t) ~r~vj (v, R) ~ (x, t) (48) 

where ] is the usual phase function (8), (x', t') depends on (x, t) according 
to (6) and (~ IN] is the completely symmetrized tensor product of h r 

representations 8[ 1] d~ A1/2 (defined by eq. (40)) of the homogeneous 
Galilei group. The operators (5 [~] of these representations are linear 
operators acting on the indices X of the wave function. The invariance 
of the wave equation (46) under the representation (48) of the Gatilei 
group is easily proved, as in the spin 1/2 case (see III.  c). 

We are left with the problem of the physical interpretation of these 
wave equations. What  kind of particles do they represent ? This should 
be answered by reducing the representation (48) into a sum of irreducible 
components. But  we may proceed more rapidily. As a matter of fact, 
in this reduction will appear various irreducible representations corre- 
sponding to the redundant components of the wave function in which 
we are not interested, since they do not carry direct information on the 
particle described by the wave equations (46). Instead, it  suffices to 
consider the independent components of the wave function. Exactly as 
in the spinl/2 case, we use the wave equations themselves to c]Jmlnate 
all the components ~b (x, t; 2) where one index ~ at least takes the values 
2i = 3, 4; by expressing such components in terms of the components 
~b (x, t; ).) where each index 2 only takes the values hi = 1, 2, we are 
left with a priori 2 ~v components. But the symmetry of ¢ in the variables 

reduces the number of independent components to (N A- 1) (this is the 
number of ways of distributing the values 1 and 2 between the 5/indices 
), without taking their order into account). Due to the definition of the 
representation ~ [tvl, this (N ÷ 1)-component object T transforms ac- 
cording to the following representation of the Galilei group: 

~' (x', t') = e lf(x't) d [~] (v, R) ~(x, t) (49) 

where d IN] is the (N ÷ 1)-dimensional representation of the Galilei group 
obtained by restricting the matrices of the representation ~[~vl to the 
(invariant) subspace defined by the values 2l = 1, 2 of the indices X. 
According to the expression (40) of the matrices All  2 whose symmetrized 
tensor product defines ~[~, d[ ~'] is but the symmetrized tensor product 
of N irreducible representations D~I 2 (= d[a]) of the rotation group, so that  

d[ ~] (v, R) = D~V/2 (R) (50) 

where D-~/~ is the irreducible (iV ÷ 1)-dimensional representation of the 
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rotation group. The independent components of the wave equations thus 
transform according to: 

q~'(x', t') = e if(x,t) D~/2(R) ~(x, t) (51) 

in which one recognizes an irreducible representation of the Galilei group : 
see equation (12). Therefore: 

The equations "h la Bargmann- W igner" (46) describe a nonrelativistic 
Tartiele with sTinN/2 and mass m. 
(the mass m appears through the phase function ] (8)). 

Of course, these wave equations are much more complicated than 
the representation (51), but  they will enable us to s tudy nonrelativistic 
particles interacting with external fields. However, for that  purpose, the 
equations (46) as they stand, are not  yet  very suitable, because of the 
great number of redundant components, so that  it is useful to cast them 
in a somewhat more tractable form. We will illustrate this process and 
the subsequent use of the resulting equations in the case of a spin l 
particle. A further specialization to the zero mass case will yield the 
equations of "galllean electromagnetism". 

c) Electromagnetic Properties of Elementary Systems 

As already emphasized, the main advantage of wave equations is 
to permit the study of the electromagnetic interactions of elementary 
systems s. I t  may be said here that  the intrinsic magnetic moment for 
a particle of spin s 4= 0, charge q and mass m is found to be, in R Q ~ ,  

q~ 
/t = ~ for all spin values where it has been computed, i.e. any half- 

odd-integer value [19] and s = 1 [20J, 2 [21]. In NQM, we computed 
the magnetic moment of a sphll/2 particle and will soon do the same 
for a spin 1 particle. We find the same value of the magnetic moment 
and except to obtain it Mso for any other value of s. I t  is most dis- 
concerting that  this simple result needs rather involved computations. 
A simple argument would be desirable in both RQM and l~Q~I. 

Concerning the higher multipole moments, i t  is easy to see from 
elementary dimensionM analysis tha t  they must vanish in NQM. A mass 
m and spins particle is said to possess an electric (resp. magnetic) 
multipole moment in order l, or 2~-polar moment, if the expression for 
the energy of the particle in an electrostatic (resp. magnetostatic) field 
linearly depends on the spatial derivatives of order l of the electric 
(resp. magnetic) potentials. In  other words, there exists interaction 

s We recall that, throughout this paper, by "elementary system", we mean a 
system strictly obeying the ordinary wave equations, i.e. we do not consider 
radiative corrections neither, afortiori, strong interaction effects. 
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terms such as: 
~(~)D~f 

p(z) D ~  (52) 

where (f/f, ,~ )  are the electromagnetic potentials and D ~ some differential 
operator of order I in the spatial coordinates. The coefficients e(~) and 
/z(~, suitably normalized, give the value of the electric and magnetic 
muitipole moments of order 1. Recall that  a spins particle cannot possess 
muitipole moments beyond the order 2s, and that  elementary consider- 
ations about parity (when it  is conserved, which we admit) show that  
the electric (resp. magnetic) multipole moments of odd (resp. even) 
order identically vanish. 

We may derive dimensional equations for the multipole moments 
by recognizing the quaatities (52) to have the dimensions of an energy. 
Let  us choose a unit system with fundamental quantities: length (dimen. 
sion L), mass (M), time (T) and charge (Q). We obtain immediately: 

[eC)] = QL ~ 
[#(~)] = QL~+ 1 T_ 1 (53) 

In  a relativistic theory of an elementary system, the only quantities 
which we may use are the mass m and charge q of the particle along with 
the universal constants h (Planck's constant) and c (light velocity). 
These define unambiguously a certain unit system, so that  one has 
necessarily: 

(54) 

where ~ ,  ~'~ are real numbers. 

Let  us now remark that  in a nonrelativistic theory, the velocity of 
light is irrelevant and does not enter the equations. As a result, in such 
a theory, only the quantities (54) which do not depend on c, may be 
obtained. The only possibility thus left to a galilean particle is to possess 
electromagnetic moments: 

e(°) = ~oq 
(55) (1) 

. (of course :¢0=1 by definition and we mentioned that  ill= 1 ) .  

A nonrelativistic particle cannot possess intrinsic electromagnetic 
properties besides an electric charge and a magnetic dipole moment. 

So that  the quadrupole electric moments, etc., for elementary systems 
are specifically relativistic effects. 
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Such a result obviously is wrong if the particle is not "elementary", 
i.e. if i t  possesses an internal structure characterized by some supple- 
mentary parameters, binding energy, mean radius, etc. Such is the case 
for the deuteron for instance, so tha t  its nonvanishing quadrupole 
moment does not contradict our result. 

V. GaUlean Particles with Spin 1 and Nonzero Mass 

a) The BeTresentation o/the Homogeneous Galilei Grou T 
We shall first derive the representation of the Galilei group corre. 

sponding to the transformation properties of the wave function describ- 
ing a spinl galilean particle. The equations (46) "~ ]a Bargmann- 
Wigner" with N = 2 constitute our starting point. The representation 
which we are looking for is given by the general formula (48); it  remains 
t,o obtain a somewhat more explicit characterization of the representa- 
tion (~[~] of the homogeneous Galilei group. This is the s3nnmetrized 

tensor product of two representations All ~. Let (~)denote  a standard 

basis in the representation space of A1/2 (see III .  c). We construct a basis 
in the representation space of 612] by taking a complete set of independent 
linear combinations of symmetrical tensor products of two such standard 

basis 

= qJTa~ Z = gTa2 (56) 

in 

the ten-dimensionM representation space of (~[~] : 

w =  Z ~  - ~ lz~ (57) 

M = im(~laZ2 + ~aq~). 

We now use the explicit form (28) of the representation ~[1] = A1/2 of 

(~1) and (9~)transform, the homogeneous Galflei group under which Z~ Z~ 

to obtain the transformation properties of the wave-function defined 
in (57). Using the identity (30), we find: 

W ' =  W + v . R U  

L ' = _ R L + v × R M + m  vW + v(v • RU) - 1 ( re )  RU (58) 

3I' = R M  + m [v × _RU]. 
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I t  can be checked by a direct and instructive computation that  this is 
a faithful ten-dimensional representation of the homogeneous Galilei 
group. This representation is reducible but undecomposable (not com- 
pletely reducible), although it may be obtained by contraction [17] from 
the completely reducible representation ~1/2,1/2 ~ ~0,1/2 ~ ~1/~,0 of the 
Lorentz group which is used in the description of a relativistic spin l 
particle. The components (U, W) correspond to the four-vector of the 
relativistic case which transforms under ~1/2,1/~ and the components 
(L, M) to the antisymmetrie tensor of rank two which transforms under 

b) The Wave Equation 
From now on, we use the components (U, W; L, M) with the trans- 

formation properties (58) to describe the wave function of our spinl  
particle. These are in fact functions of space-time variables whose com- 
plete galilean transformation law is given by (48), with (58) giving the 
explicit form of the representation ~[~] of the homogeneous Galilei group. 
The three independent components are given by the vector-valued wave 
function U which transforms according to (51) (with N = 2), thereby 
illustrating the general theory of IV. b. 

We now want to rewrite the Bargmann-Wigner equations with these 
components (U, W; L, M). We use, for that  purpose, the definitions (57) 

and the Dirac-like equations (25)obeyed by ( ~ : ) a n d "  ",,o~ (~2o). One obtains 

the following system : 

p × × M : = m L - m E U .  
From these ten equations for the ten components, one may deduce 
supplementary relations : 

p X L =  - E M  
p • M = 0 m W -  p • U = 0 (60) 

One cheeks that  all these equations remain unchanged when (U, W; L, M) 
are subjected to the transformations (58), along with (E, p) being trans- 
formed according to the standard law: 

p' = R p  ÷ m v  
1 (61) 

E ' = E ~ - v . R p ÷  ~.mv~. 

This proves the Galilean invariance of our equations. Moreover, i t  
follows from these equations that  each one of the components 
(U, W; L, M) separately obeys the SehrSdinger equation. In other words, 
the equations (59) viewed as an eigenvalue problem for the energy gives 

the expected Galilean value E -- p~ 2m" 
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In the same way as our equations (25) for spin 1/2 appear as a non- 
relativistic limit of the Dirae equation, the equations (59) may  be 
derived by  a suitable limit process from the Proca equations [20] which 
describe relativistic spin 1 particles. 

c) Electromagnetic properties 
The essential advantage of the wave equations (59) over the standard 

Galilei group representation for a spin s = 1, is to permitthe study of 
the particle behaviour in external fields. We introduce electromagnetic 
fields in the wave equation (59) by the minimal coupling recipe (10). 
The game consists in eliminating the auxiliary components (W; L, hi) 
to obtain an equation for the essentiM components U. This equation will 
give the energy of the particle in presence of the fields. I t  is somewhat 
disappointing that  this computation is a very tricky one, rather more 
involved than the corresponding elimination process in the relativistic 
ease, where a eovariant formulation is of a great help. We will not re- 
produce here these manipulations. Let  us simply state the final results: 

q 
the particle is endowed with a magnetic m o m e n t : / t  = 2~m S, where S is 

its spin (i.e. the matrices (S~)~--  i e ~ ) .  As in the spinl/2 case, this 
intrinsic magnetic moment is the same as the one obtained in RQIV[. But  
contrarily to the relativistic situation, our particle has no electric 
quadrupole moment. That  this is a general property of galilean particles 
has been demonstrated in IV. e. Finally, there appear some derivative 
couplings between the electromagnetic field and the wave function (but 
such complicated terms also exist in the relativistic case). 

¥I. GaliIean Electromagnetism 

a) The Wave Equations 
The relativistic wave equations for a spin 1 massless particle are the 

Maxwell equations in vacuo : 

{pp -O ~ = 0  ~ p × g ~ = - E ~  
(62) 

x ~ ' f  = Eo~(*) [ P " ~ f  = 0 

the fields (o ~, 3~) deriving from the potentiMs ( ~ ,  ~ ) :  

(63) 

Gauge transformations of the second kind: 

{ ~ - >  ~ '  + pA 
(64) 

¢'-+ ¢" + E A  
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where A is some arbitrary scalar function, do not  modify the fields. 
~Vhat is now the situation in the Galilean case ? Starting from our 

wave equations (59) and (60), setting m = 0, and changing the notation 
(U,W;L,M) to the more conventional one (d,Y/';o~,Ovt °) as above, we 
obtain a similar system: 

p. = 0 × o ae (65) 
p × ~ = 0 ( * )  [ p . a ~  . 

The definitions (63) of fields in terms of potentials remain valid as 
well as the form (64) of gauge transformations. Another way to derive 
the galilean wave-equation is to write Maxwell equations in the form: 

{ p-~=0 ~[p×g~=-E~ '~ 
! (66) 

P × Jt~ = 7 E°~ [ P" 0 

where we have introduced the constant o (the velocity of light), impli- 
citely taken as uni ty in the preceding formulas. In  the nonrelativistic 
c --> c% one obviously obtains the same equations (65), although such a 
limit method ha general may  be misleading. Since Maxwell equations 
m a y  be obtained from Proea equations by  setting m = 0, one may  
exchange the limits m-+  0 and c-~ ~ ,  which checks the coherence of 
our results. 

I t  is easily seen tha t  the equations (65) imply : 

A ~ = 0 A ~  '~ --- O. (67) 

These equations also result directly from the relativistic equations 

1 ~ g  
[ ] o Z = A o  z c~ at ~ - 0  [ ~ C = 0  (68) 

when taking the limit c--> c~. 
A natural  Galilei-invariant gauge is fixed by  the transcription to the 

present case, m = 0, of the last of equations (60): 

d i v ~  = 0 (69) 

(which is but  the nonrelativistie limit of the Lorentz gauge condition). 
The potentials then also obey the equations: 

A Sr = 0 A ~  = 0 .  (70) 

The fields ( ~ ,  Or; g , j ~ )  describing a galilean spin1 massless particle 
transform according to a representation of the Galilei group of the ge- 
neral form (44) with the peculiarity tha t  the phase function ] now van- 
ishes (see (8)). This corresponds to the fact tha t  galilean particles with 
zero mass belong to true (vector) representations of the Galilei group [7] 
contrarily to nonzero mass particles which correspond to nontrivial ray  
representations. We still have to exhibit the representation of the homo- 
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geneous Galilei group. I t  is given by formulas (58) where one sets m = 0. 
The representation now decomposes, the potentials ( ~ ,  $/) on the one 
hand, the fields (~ ,J~)  on the other separately transforming according to: 

(71) 

I t  suffices to evaluate the left hand sides at the point (x', t') transformed 
from the argument (x, t) of the right hand side by  the considered Galflei 
transformation, to obtain the complete relevant representation of the 
Galilei group. Equations (65) and (63) are invariant when the wave 
function components are subjected to the transformation (71), while the 
energy momentum operators (E, p) transform according to: 

p ' =  Rp (72) 
E ' = E + v - R p  

since we consider a zero mass case (compare (61)). 

b) Physical Discussion 
When comparing Maxwell equations (62) with their nourelativistic 

counterparts, eq. (65), we see that  only the equations labelled (*) differ. 
The curl of the magnetic field, vanishing in the nonrelativistic approxi- 
mation, in fact is given by  the famous "displacement current" introduced 
by  Maxwell and which gives all their importance to his equations. The 
absence of this term in the galilean case means that  the Maxwell equa- 
tions introduce relativity (under the Poincar6 group) in a quite literal 
sense. In  physical situations where the displacement current is of 
negligible importance, the predictions of the theory are in perfect 
agreement with galilean relativity. The whole of pre-Maxwellian electro- 
magnetism (laws of Faraday, Ampere, Biot-Savart etc . . . .  ) is simul. 
taneously exact and consistent with the old Newtonian conception of 
space-time. But  as soon as one takes into consideration the essentially 
Maxwell/an equation (62), one obtains specifically relativistic phenomena 
such as the propagation of electromagnetic waves with constant velocity 
etc. This is the one equation which definitely ruins the old Gatflean 
relativity, introducing the Einsteinlan one. For an important class of 
phenomena, however, equations (62) and (65) coincide: such is the case 
if one is interested in static, time independent, electromagnetic fields ~, 

9 l~ore generally one could consider magnetic fields with a linear time dependence 
and time independent electric fields. But this case does not present any practical 
interest. 
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for which the displacement current obviously vanishes. This proves 
tha t  we do not risk any internal contradiction when introducing static 
electromagnetic fields in a nonrelativistic theory, the gahlean invariance 
of the theory being unaffected. These considerations Mso provide a 
justification for the use of gauge invariance of the second kind (we have 
shown the expressions (65) of gauge invariance to be consistent with 
galilean invariance) in nonrelativistie wave equations, provided we only 
consider static fields. This is a very important  case in practice since it 
suffices for studying Coulomb interactions as well as the electric and 
magnetic multipole moments of a system. Of course, there is also a wide 
class of phenomena where the nonrelativistie equations remain approxi- 
mate ly  valid, even with t ime dependent electromagnetic fields (low 
frequency phenomena, etc . . . .  ). 

The only monochromatic plane-wave solutions of eq. (65) are of the 
following two rather  trivial types:  

a) ( ~  = ~fo  --- C~ b) 0 (73) 

so tha t  there is no propagation, although one might interpret  b) as an 
electric field propagating with infinite velocity, which is consistent 
with the intuitive meaning of a nonrelativistic limit as corresponding to 
c -> co. Case b) also corresponds to the so-called "dipole ~pproximation" 
in semi-classical radiation theory, thus shown to be compatible with 
galilean invariance 1°. 

Equations (65) can be used to discuss galiJean electromagnetic fields, 
not only free ones, but  also in presence of sources. I t  suffices to add 
charge and current densities in the right-hand side of the first pair of 
eq. (65), as in the Maxwellian ease. However, the field equations no 
longer imply local conservation of the electric charge. After M1, such a 
local conservation law, insured by the displacement current in Maxwell 
equations, certainly is a specific relativistic requirement, as shown by  
the standard Einstein argument  based on the relativity of simultaneity. 

Considering now a classical (non-quantum, nonrelativistie) particle 
in a galflean electromagnetic field which obeys the equations (66), i t  is 
seen tha t  the usual Hamfltonian:  

1 
H = ~ m ( p  - q ~ ) ~  ÷ q :~  (74) 

leads to the equation of motion: 

mi" = q ( ~  -~ r × ~ )  (75) 

x0 A concrete application [22] of these ideas is a consistent nonrelativistie 
description of the behaviour oI electrons in intense electromagnetic waves (laser 
beams) which exhibits in ~ very simple way some of the peculiar features usually 
derived from involved relativistic considerations [23]. 
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so tha t  the well-known expression of the Lorentz force retains its validity 
in nonrelativistie situations. This is an old result, implicitly used in 
m a n y  places, bu t  whose internal consistency it  is perhaps useful to 
emphasize here. 

As to the energy carried by  the electromagnetic field itself, con- 
siderations similar to those of the relativistic case, when applied to 
eq. (65), show tha t  the energy density of the field must  be defined by:  

W = _ ~ 2  (76) 

which is quite in keeping with the relativistic expression W 1) 
-- 8~ . ~ +  7 ~  2 , in the limit e--,,-~. The Poynting vector giving 

the flux density of the field energy retains its expression: 

S = 4~ × J4 ° . (77) 

One might be somewhat puzzled by  the fact that ,  in this galilean electro- 
magnetism, an electric field does not carry any energy according to (76). 
But  this completely agrees with the absence of the displacement current 
in (65). As a mat ter  of fact, i t  is the displacement current which makes 
possible the existence of electric currents in circuits tha t  are not com- 
plete loops, in other words the t ransport  of energy by  means of electric 
fields. The working of capacitors in a.c. circuits for instance, results from 
the specifically relativistic features of electromagnetism. 

I t  is commonly stated tha t  electric fields and magnetic fields are 
two separate entities in nourelativistic theory, mixing only under the 
effect of Lorentz transformations, which make them to appear  as two 
aspects of a same fundamental  quanti ty,  the electromagnetic field. The 
galilean transformation properties (71) show the necessity of revising 
this opinion: if a "pure"  electric field m a y  be defined in an absolute 
manner,  independent of the frame of reference, this is not the case for 
the magnetic field. A magnetic field which is pure in a certain frame, 
gives rise to a certain electric field component, in another frame, uni- 
formly moving with respect to the first one n. Indeed this is the standard 
effect accounting for the appearance of an electromotive force in a con- 
ductor moving through a magnetic field, the expression for which could 
be easily deduced from the relevant equation (7t). This effect, on which 
is founded most of our electrical technology, is thus shown not to be 
specifically relativistic. 

A last remark about  these galilean transformation properties of 
"nonrelativistic electromagnetic fields" may  be in order: there is a close 
connection between the fact tha t  a pure electric field remains such in 

11 This has also been noted by HAvxs in ref. [24], footnote 29. 
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any galilean frame on one hand and the absence of spin-orbit coupling 
in norLretativistic wave equations (see the case of spinl/2, ] l L d )  on the 
other hand. In  RQM, spin-orbit coupling, which appears for instance in 
the Dirae equation for an electron in the nuclear electric field, may be 
viewed as resulting from two simultaneous effects: i) a magnetic field 
is generated in the rest system of the electron by  its motion through the 
nuclear Coulomb field, and fi) one must take into account the so-called 
Thomas precession of the spin. This second effect is weft-known to be a 
purely relativistic one; what we wish to emphasize is that  the same is 
true of the first effect, so that  it  is not consistent to consider them 
separately or to talk of the Thomas precession as a "relativistic cor- 
rection". 

Summary and Conclusions 

In this paper we have considered the description of nonrelativistic 
particles, in order to compure their properties to those of the corre- 
sponding relativistic particles, thus obtaining a clearcut distinction 
between the specifically relativistic features of the theory and those 
which equally follow from a consistent nonrelativistie treatment.  

Nonrelativistie particles, defined through the theory of unitary 
irreducible representations of the Galilei group (invarianee group of 
nonrelativistie physics), are characterized, exactly as in the nonrelativ- 
istie ease, by their mass and spin-spin in particular is thus seen neither 
to "result" from some relativistic wave equation, nor to be a purely 
relativistic effect. The relevant Galilei group representation gives com- 
plete information on the free particle behaviour, describing all of its 
kinematical properties. 

In  order to s tudy the dynamical properties of the particle, however, 
it  is necessary to describe it  by means of a wave equation which enables 
us to discuss the effect of external fields on the system. We have been 
able to construct a theory of nonrelativistie wave equations for any spin, 
based on the theory of representations of the Galitei group. 

Our scheme is founded upon the properties of a new nonrelativistie 
wave equation for a spin 1/2 particle which we derived as did Dn~Ac in 
the relativistic ease. This equation implies the Pauli equation with the 
correct value of the electron gyromagnetic ratio, so that  one does not 
either deal here with a relativistic effect. 

However, using very simple dimensional arguments, it has been 
shown that  nourelativistic elementary particles could not possess higher 
order multipole moments besides an electric charge and a magnetic 
dipole moment, in contradistinction to the relativistic case. 

We Mso studied in detail "galilean electromagnetism", thereby 
demonstrating which feature of the Maxwell equations requires Galilean 
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rela t ivi ty  to  be replaced b y  the  Einsteinian one:  i t  is precisely the  
presence of the  very  "displacement  current"  in t roduced by  Maxwell. 
Interest ing conclusions m a y  be drawn f rom the  Galilean t ransformat ion 
law of the  electromagnetic field. 

Finally,  let us  emphasize t h a t  some puzzling questions occur when 
we compare  the connection between representat ions of the  kinematical  
group and associated wave equations in R Q M  and NQM. There seem 
to  be open problems about  the not ion of wave equat ion (necessity to 
introduce redundant  components  for the  wave functions, intervening 
of the  homogeneous Lorentz  - -  or Galflei - -  group, etc . . . .  ). We  have 
suggested [1] that, a detailed analysis of gauge invariance of the  second 
kind and its relations with the relat ivi ty group could perhaps clarify the  
situation. I t  might  also hopefully give an easier and quickier wa y  to  
s tudy  the  electromagnetic properties of particles. 
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