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The intrinsic magnetic moment of elementary particles
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In a purely nonrelativistic formulation, a Hamiltonian is obtained for the description of states of a
charged particle with spin, interacting with an external electromagnetic field. For the specific cases
of spin-} and spin-1, the simplest choices for the Hamiltonian functions lead to a value for the
(lowest order) intrinsic magnetic moment equal to the Bohr magneton in both cases. This is the same
as is obtained in treatments that start from a relativistic formulation, as in the Dirac theory. The
nonrelativistic and relativistic formulations both employ the ‘‘minimal coupling principle,”” but the
resulting Hamiltonians with couplings are, for very general considerations, not completely
determined. However, the corresponding ambiguity that occurs in the nonrelativistic theory is also
present in the relativistic formulation. The simpler nonrelativistic theory is more transparent in
exhibiting these features of the problem and dispels the notion that spin (and the associated magnetic

moment) require relativistic formulations for a proper understanding.

Association of Physics Teachers.

I. INTRODUCTION

A very prevalent notion, propagated in countless text-
books, has to do with the origin or understanding of the
magnitude of the fundamental intrinsic magnetic moment of
the electron. Without radiative corrections, this quantity is
given by the Bohr magneton

wo=eh/2mc, (1)

and the most common explanation heard for why it has this
value is that ‘it comes out of the Dirac equation.”’ Histori-
cally, the value for the electron’s intrinsic moment was first
determined experimentaily from spectroscopic measure-
ments, and it is true that the Dirac equation does imply the
value (1) for the electron as well as its spin quantum number
s= 3. Basically because the Dirac equation is the result of a
relativistic formulation, the notion developed that spin and
the associated spin magnetic moment are ‘intrinsically rela-
tivistic phenomena.”” In fact, spin has nothing to do with
relativity and considerations of relative motion. It has every-
thing to do with spatial isotropy and rotational invariance.
This should be fairly clear, since we speak of a particle’s
spin and spin states specifically through a discussion of dif-
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ferent orientations of reference axes fixed in the rest frame of
the particle. Then, if the intrinsic magnetic moment is a con-
sequence of ‘“motion’’ in the spin degree of freedom, it
would seem more natural to seek an understanding of its
characteristic value from a formulation that is nonrelativistic
from the beginning instead of from a relativistic treatment
that then considers the low energy limit.

This point has been made before,! but the idea does not
seem to take hold and is perlodlcally reintroduced into the
literature. Some of the discussions' involve considerations
of the Galilei group and its implications for the description
of particle motion, making the analysis a little abstract, and
the present paper takes a more elementary approach with an
aim toward bringing out the possible ambiguities that may be
present. We start with the basic Hamiltonian function (rep-
resenting kinetic energy) for a free particle with no internal
motion (that is, spin 0):

Hy,=p*2m=p ipjl2m, )
employing throughout this work the notation whereby the

double appearance of an index in a single term implies sum-
mation over that index. We can introduce electromagnetic
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interactions by modifying the free-particle Schrodinger equa-
tion (2) with the replacements

pi—mi=p;—(q/c)A;,

3
E—E—q®, ®)

in which A; and @ are components of the vector and scalar
potentials associated with an electromagnetic field that
couples to the charge g. The prescription (3), known as the
““minimal coupling principle,” is tied up with gauge invari-
ance, and its application then yields the coupling terms asso-
ciated with the interaction of the charge with the external
field. If the particle has an intrinsic magnetic moment g, we
can then add an interaction potential energy term — u-curl A,
but nothing tells us what to use for the moment; moreover,
insertion of the term in this manner is artificial. If, in fact, we
were dealing with some kind of composite object such as a
molecule, the hand insertion of a coupling term for the per-
manent moment would be appropriate, although in principle
the moment term could be derived. The nucleon is another
example of a composite particle in which the moment is
known experimentally to high accuracy. Actually, the calcu-
lation of the neutron and proton moments in terms of quark
intrinsic moments is a striking success of the quark model
for nucleons, and the theory provides another test of the for-
mula for the magnetic moment for spin- elementary par-
ticles. Further evidence on quark moments comes from
analyses of mass differences in hadron multiplets in terms of
(quark) magnetic hyperfine interactions.®

For elementary particles, we would like a formulation of
the problem in which the intrinsic moment coupling term
arises naturally from the application of the minimal coupling
principle. To accomplish this a more general free-particle
Hamiltonian is needed as a starting point, and it is not hard to
establish the form that this function should take. This is done
in the following two sections for the specific cases of spin-
5 and spin-1, respectively. Basically, the procedure involves
choosing a free-particle Hamiltonian that is a scalar (not
pseudoscalar) function of the particle momentum vector p
and the spin angular momentum pseudovector s. The func-
tion must be equivalent to the elementary form (2) in the
absence of an external electromagnetic field and it must be
consistent with the classical limit for the general problem.
These guidelines are the same as those employed in a rela-
tivistic formulation except in that case Lorentz invariance is
also imposed. As we shall see, once a more general free-
particle Hamiltonian is found (for the individual cases of
spin s), both the charge- and moment-coupling terms fall out
automatically, as in the relativistic theory. We then see that
for such particles, the charge and mass can be considered
fundamental but the associated magnetic moment is not and
its interaction term need not be inserted artificially into the
Schrodinger equation.

Concerning the classical limit, perhaps it should be em-
phasized here that this provides no guideline for the exact
expression for the moment-coupling term. The classical
force on a permanent moment in a magnetic field B is given
by F,,=u-VB, and this is small compared with the ‘‘deflect-
ing’’ force F,=(q/c)vxB on the charge for a certain con-
dition on the magnetic field. In terms of a spatial variation
scale length Ly, the field gradient is of order B/Lp, and if
the magnetic moment is of order g#/mc (as we expect), the
ratio (F,,/F ;) of the two forces is of order A/Ly, where X is
the particle de Broglie wavelength. That is, in the classical

598 Am. J. Phys., Vol. 64, No. 5, May 1996

limit A/L <1, the moment term is unimportant and classical
mechanics cannot provide a guide to its exact form.

In an attempt to provide a largely self-contained discus-
sion, the mathematical manipulations in this paper will be
indicated explicitly, although some identities employed are
also found in standard references. For example, derivations
of basic results involving the Pauli- and other spin-matrices
will be given in some detail. However, for the basic proper-
ties of these matrices the reader should consult textbooks on
quantum mechanics.

IL. SPIN-; CASE

The aim in the formulation outlined here is to find a new
generalized free-particle Hamiltonian function H,, which, on
application of the minimal coupling prescription (3), will
yield a complete Hamiltonian H' that includes a Kinetic en-
ergy term, charge coupling terms, plus an intrinsic moment
coupling term:

H'=H,+H,+H,,. @)

The new function H, must be such that, in the absence of
external fields, it is equivalent to the form (2). It is not hard
to infer the form of this function. Now describing both the
spatial and spin motion of the particle, for spin-3, the wave
function is represented by a two-component column. The
Hamiltonian operator is then a 2X2 matrix, formed from
factors involving the Pauli spin matrices. These matrices are
related to the particle spin operator by

s= 30, S
and their properties can be summarized in a single relation:

O-ja-k=5jk1+i€jklo-l' (6)

Here, 1 is the 2X2 identity matrix and €, is the Levi-Civita
symbol; in the term o0, in (6), matrix multiplication is
implied.

In terms of the pseudoscalar operator ¢-p formed from an
axial and polar vector, we construct the scalar operator

1
Hy=5— (o-p)(o-p). (7)

This expression has the desired form as a generalization of
(2) for the description of intrinsic spin and magnetic moment
effects. It contains the spin operator o and it is quadratic in
the momentum. The multiplying factor is determined from
the equivalent form that H reduces to when there are no
external fields, and this limit is the first thing to check. As we
shall immediately see, the only difference between (2) and
(7) is that the latter yields a term associated with coupling of
the intrinsic moment with an external magnetic field. More-
over, this coupling has the appropriate form and it gives the
value for the intrinsic moment. First, as to the limit when
there are no external fields, we note that the momentum op-
erators commute with one another and with the components
o;,s but the latter do not commute with each other. In the
product of dot products in (7), we can then take half the sum
with relabelled and interchanged dummy indices and apply
the identity (6). We then find that

HO - Hkm( P)I, (8)
no fields

which is the property required for the function, that is, that it
reduces to (2) in this limit. The Hamiltonian H' is then
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found from the form (7) by the minimal coupling prescrip-
tion (3):

=Hy(p—m)+q®l. 9)

This simple procedure, starting from the fundamental Hamil-
tonian (7), provides the correct complete Hamiltonian that
includes the effects of coupling to both the charge and intrin-
sic moment.

It is an elementary exercise to rewrite the Hamiltonian to a
form that demonstrates its features explicitly. The o operator
commutes with 7z, the p’s commute, but the components of
77 do not commute (X 7#0). Then

1

H'= o oo, mime+qPl (10)
1
= Tm (ojomime+ opojmer;) +qPl, (11)

and the first term can be rewritten with the help of the iden-
tity (6) as an anticommutator (0;0,+ 0,0;=26,l):

oo mim =21 — ooy . (12)
With this substitution the Hamiltonian (11) becomes
H'= —1— il + !
2m

and in the second term here we can write 0,0, =i€;;0; and
identify vector products:

— 040 (mem— ) +q®I, (13)

injI(TI(’TTk’lTj"7T]-7Tk)=2i0'1(ﬂx‘ﬂ')l. (14)

The Hamiltonian is now in the fundamental and transparent
form

H'= ! I+ : +q®7
—2m mﬂ'-(‘ﬂ')(fr) qP!. (15)

Here, since = —iAV —(g/c)A, the operator 7 X 7 reduces to
(iqgh/c)curl A=(iqh/c)B, (16)

in terms of the external magnetic field B. All of the interac-
tion terms in (4) can then be identified.

In addition to the kinetic energy term (8), there is the usual
charge-interaction Hamiltonian

=[—(gq/mc)(p-A+A-p)+(q*/2mc*)A’+q®]I.
17

However, now we have the important moment-interaction
term:

H,=-—pu-B, (18)
in which the magnetic moment is given by
qt
M= 5 2mce g, (19)

indicating the Bohr magneton (1) for its maximum magni-
tude.

III. SPIN-1 CASE

lee the case of spin-3, the spin-1 problem. has a long
hlstory going back to the 1930s and the introduction of the
‘“‘vector meson hypothesis.’’ Again, treatments started from
a relativistic formulation, but here a nonrelativistic approach
is taken from the beginning. We try to insert the spin opera-
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tor into some free-particle Hamiltonian that we construct,
imposing the requirement that the function be a scalar and be
equivalent to the ordinary Hamiltonian (2) when there are no
external fields. For spin-1 the particle has three spin sub-
strates with m,=1, 0, —1, but we can label these with an
index running from 1 to 3. This notation is convenient, even
though the index representing the Cartesian axes also runs
from 1 to 3. The latin letters j,k,l,m,n,... will be employed
for both kinds of indices in the formulation below. When two
indices appear together as isolated subscripts or singly to
designate the component of a wave function, as in Eq. (22)
below, those indices will always represent spin substrates,
even when they are attached to Cartesian vector components
[Egs. (26) and (27)].

For spin-1 the most convenient matrix representation of
the operators for the three spatial components s; is

(sj)=1i€xjis (20)

this specific representation is simple and convenient for
mathematical manipulations. As in the case of general spin,
the three components satisfy the commutation relations

=i6jm1S1. (21)

The wave function is a three-component column and the
Schrodinger equation now involves a Hamiltonian matrix op-
erator:

Huyg=EyY,. (22)

As an analog of the spin-} case where the operator (7) was
introduced, consider the expression

S=(s-p)(s-p), (23)

which in matrix form becomes, employing (20),

Sjsm_SmSj

Sk1= ~ €kim€mniPiPn - (24)
But €;,,= — €%, and the identity
€mik€mnl™ 5 5k1_ 8j15kn (25)
can be applied, giving
Su=1"6u—pup:- (26)
We are then led to choose
Hy=(Sutpwpi)/2m (27)

as our generalized free-particle Hamiltonian so that a pure
kinetic energy term results in the field-free limit. Applying
the minimal coupling prescription, we take

Hy=Hy(p—m)+q®dy, (28)

for our general Hamiltonian including effects of coupling to
an external electromagnetic field. This expression can now
be rearranged and put into a form so that the various cou-
plings (including the moment interaction) are exhibited. We
find

Hy=(1/2m) 8+ q® 8+ My, (29)

where the first two terms give the charge coupling contribu-
tions and
My=(mym— mme)/2m (30)

is the term associated with the interaction of the intrinsic
moment with the external magnetic field. As in the spin-3
case, we find that M, reduces to
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My =(igh2mc)(A;— AL, (1)

which can then be expressed in terms of the matrix element
(s+B)y; . This dot product can be written as

[€kmi€mindiA = —1(0A;— 3)Ay), (32)
and we have
My=—(p-B)y, (33)
with
gh
p=5 (34)

as the intrinsic moment.

In terms of the charge and mass, the magnitude of the
intrinsic magnetic moment is then the same as in the case of
spln-— This is quite a remarkable result, and the cases of
spin-Z and spin-2 have also been examined 0 as well as the
case of general half-integer spin® (always starting from a
relativistic formulation) with, again, the same result. This
prompted Belinfante'® to suggest that the magnitude of the
magnetic moment is given by the same formula independent
of spin. The result is usually expressed in terms of the gyro-
magnetic ratio g, defined as a factor in a general relation
between magnetic moment and spin:

= gq_h s (general spin) (35)
4 me ge pin).

In terms of g, Belinfante’s conjecture would correspond to a
general formula

g=1/s; (36)

however, this general expression has never been derived. It is
a surprising result, since (classical) intuition would seem to
suggest an increase in the intrinsic moment as s increases.

IV. EXTENDED DISCUSSION

In the previous two sections we have seen how a Hamil-
tonian can be obtained for charged particles with spin, in-
cluding the effects of coupling to an external electromagnetic
field, in which the intrinsic magnetic moment is inferred. It is
a ‘“‘minimalist”” approach, imposing simplicity of mathemati-
cal form, applying restrictions of gauge invariance and con-
sistency with the classical limit for particle motion, the need
for the Hamiltonian to be a scalar and rotational invariant,
and employing the mechanical application of the minimal
coupling principle. Higher-order effects such as radiative
corrections are ignored, of course, so that the procedure
yields only the zeroth-order moment. No considerations of
Lorentz invariance are introduced; the formulation is com-
pletely nonrelativistic with the 1/c in the moment formula
coming from an application of minimal coupling. The mo-
ment and its coupling term occur naturally in the formula-
tion, rather than having to be inserted ‘‘by hand.”” The par-
ticle’s mass and charge are then to be considered
fundamental but not its magnetic moment. The correct result
is obtained for the electron, the muon, and for quarks, so that
for spin-} the Hamiltonian (7) should be regarded as a fun-
damental form. For spin-1 particles, taking the same basic
approach, the corresponding Hamiltonian (29) is obtained,
with the result that the formula for the magnitude of the
intrinsic moment is the same as in the spin-j case. The only
known spin-1 elementary particle with finite mass and
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charge is the W™ vector boson that mediates the charged-
current weak interactions, but there are no direct measure-
ments of the magnetic moment.

But can other Hamiltonians be chosen that yield different
moments, and are such ambiguities present in the relativistic
formulations? For the specific case of spin-3, suppose, sim-
plifying the notation, we call the operator (7) IT and the first
term on the right of (15) K. That is, specifically,

1
N=— (0w (o w); K=%ﬂ2]. (37)

2m
We might consider in a more general Hamiltonian a linear
combination of IT and K. The coefficients in the linear com-
bination would not be independent, since the Hamiltonian
must reduce to its free-particle form when there are no ex-
ternal fields. We would then have

H"=(1-p)IT+pK+q®lI, (38)

with p as some parameter having any positive or negative
value. This Hamiltonian satisfies the requirements of gauge
invariance and the classical limit, and we find that on rewrit-
ing the first term in (37), the only difference from (15) is that
the second term therein is now multiplied by a factor 1—p.
This same factor would then be applied to the result for the
inferred moment. In fact, we might even add an additional
term to the Hamiltonian (37) proportional to o-B which
would also be consistent with gauge invariance and the clas-
sical limit. However, this term has the same form as the
moment coupling term (multiplied by 1—p) and could be
lumped within that term. That is, we could write our gener-
alized Hamiltonian in the form

H"=T1+3+q®I, (39)
where
= y(qh/2mc)(o-B). (40)

In the definition of X, factors are inserted to make the arbi-
trary parameter 7 dimensionless {and presumably of order
unity—or zero). With (40) chosen as a general Hamiltonian,
the fundamental intrinsic moment would be given by (19)
multiplied by 1+ 7, that is, it would be determined by the
value of the arbitrary parameter 7. In this very general for-
mulation the intrinsic moment can have any value, rather
than being a consequence of the basic theory The correct
value—apparently for all fundamental spin- particles—
corresponds to the choice =0 in H" or p=0 in H". That is,
maximum simplicity in the mathematical formulation yields
the correct fundamental theory.

In fact, the same type of considerations of a generalized
Hamiltonian have to appear in the Dirac theory. Here, in the
free-particle Dirac equation (with the usual notation in which
p=7v"p,, where ¥ is a Dirac matrix)

(p—mc)y=0, (41)

we make the replacement p— 7. However, at this point the
remark made by Pauli'! in his Handbuch article should be
noted. Pauli considered the possibility of an additional term
in the Dirac equation with coupling, of the form, say,

M y=8(gh/mc*)E, . y*y" ¢, (42)

in which ¢ is some arbitrary constant and v is the electro-
magnetic field tensor; the factor gf/ mc? is chosen to make &
dimensionless. The modified Dirac equation is then
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(#—me)y+Mp=0. (43)

The introduction of this term is consistent with Lorentz in-
variance, gauge invariance, and the classical limit. Its inclu-
sion modifies, in particular, the moment interaction effects
(and the inferred moment) as well as the general applications
of the Dirac theory. The standard Dirac theory corresponds
to the straight application of the minimal coupling principle
to the basic form for the free-particle Dirac equation and to
the choice 6=0. That is, the simplest form is taken—the
analog of the choice #7=0 in the nonrelativistic
formulation—and the result is, of course, a correct relativis-
tic theory. That is, in both the nonrelativistic and relativistic
formulations the ccrrect theories result from adopting the
value zero for the corresponding arbitrary constants. Regard-
ing the magnetic moment and its effects, however, as is em-
phasized in this paper, perhaps the nonrelativistic theory
should serve as a guide to the relativistic theory rather than
the reverse. This could have been done in the 1925-1928
era, since the electron’s intrinsic moment was known experi-
mentally.

Finally, some mention should be made of classical theo-
ries of particles with intrinsic moments. This part of the sub-
ject also has a long history, and the literature can, again, be
misleading. Relativistic theories of classical charged par-
ticles are described in the standard textbooks'? and, unlike
the quantum mechanical theories, no prescription is indicated
for the intrinsic magnetic moment of a particle of charge g
and mass m. Actually, a superficial study of some of the
classical treatments might lead to the notion that a ‘‘natural’’
value of a particle’s gyromagnetic ratio g might be 2 (inde-
pendent of spin), rather than the result (36) that quantum
mechanical treatments seem to give. Really, however, clas-
sical electromagnetism has nothing to say about what the
intrinsic moment should be and g has to be considered as an
undetermined parameter with no prescription for its value.
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