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We examine the role of quarks and gluons in polarized deep-inelastic scattering in connection with the
famous European Muon Collaboration experimental result. The gluon contribution generated by the ax-
ial anomaly is shown to have a well-defined physical meaning and its gauge-invariance properties are ful-
ly clarified. We also emphasize the role of the ghost contribution in the generalized Goldberger-Treiman
relation and give a detailed calculation of the correction due to unequal quark masses and to 7°-1-n'

mixing.
I. INTRODUCTION

The naive parton interpretation of the famous Europe-
an Muon Collaboration (EMC) result [1] that the total
contribution of the quarks to the proton spin
AZ=3, [dx[q} (x)—q; (x)+7 }(x)—F 7 (x)] is com-
patible with zero is not only in contradiction with the
naive quark model but also with all of our understanding
of baryon spectroscopy. As emphasized by Lipkin [2] us-
ing the Wigner-Ekhardt theorem, the total spin of the sea
quarks and gluons plus orbital momentum has to be very
large (> 6) in order to obtain this small value. It is then
difficult to understand why the nucleon is the only stable
state with J =1 =1.

The EMC result has produced a stream of theoretical
papers [3] with a broad spectrum of ideas from doubts in
the experiment to questioning the applicability of pertur-
bative QCD. In our opinion, however, this “spin crisis”
can be turned into a spectacular success of QCD. It has
been demonstrated [4] that the factorization theorem in
QCD leads to the expression for the first moment of the
flavor-singlet part of the structure function g (x):
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where the second term is due to a short-range interaction
of photons with polarized gluons via the quark box dia-
gram (see Fig. 1). For the first moment it reduces to the
contribution of the triangle axial anomaly. It need not be
a small correction in spite of a, because Ag ~a; ! due to
evolution equations [5]: a zero-mass quark emitting a po-
larized gluon conserves its helicity and again emits gluons
of the same polarization. The more gluons are emitted
(the smaller x), the higher the gluon polarization (of
course, this increase is always compensated by an orbital
momentum [6]). So, the EMC effect could result from a
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compensation between AZ and Ag =(a, /27)N rAg.

This approach has been criticized recently in [7-10] (i)
because of the nonlocality (k2 dependence) of the box di-
agram together with a dependence of this contribution on
the regularization procedure [8,9], and (ii) for the absence
of a local gauge-invariant gluon spin operator. These cri-
ticisms were partly answered in Refs. [11-13], which we
here want to elaborate upon and to present more clearly.
This is done in Sec. II where we also show that the com-
monly used definitions of AZ and Ag through the quark
and gluon axial-vector currents J5 and K, are in fact
gauge invariant although they have to be more accurately
defined, due to a nonperturbative ghost contribution.
The generalized Goldberger-Treiman (GGT) relation is
also discussed here. In Sec. III we calculate the correc-
tions to the GGT relation due to unequal quark masses
and to mixing of the neutral pseudoscalar mesons. We
demonstrate the cancellation of large isospin and SU(3)-
breaking terms and observe that only a small correction
(=~0.2) remains. In Sec. IV we give a general discussion
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FIG. 1. The photon-gluon scattering graphs.
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on the interpretation of the EMC result and our conclud-
ing remarks.

II. THE AXTAL ANOMALY
CONTRIBUTION AND THE QUARK AND
GLUON CONTENT OF THE PROTON SPIN

Consider first the ambiguity of the box contribution.
In the QCD-modified parton picture there is no difficulty
and no ambiguity in defining the first moment of the
gluon spin distribution function (except the usual ambi-
guity in the renormalization scheme in higher orders of
a,). This picture is based on the factorization theorem
which has the same theoretical foundation as the
operator-product expansion (OPE) (i.e., proved in any or-
der of perturbation theory) but many more applications.
The object which generates the gluon distribution func-
tion there (polarized and unpolarized) is not a product of
gauge-invariant operators but rather an ultraviolet regu-
larized matrix element of a product of gluon fields
(pl45(0)45(£)|p) ey convoluted with a contribution
from a short-range, infrared regularized subprocess:

J 0,060,187 (pl 45(0) A5(£)Ip ) egd %6 -

The gluon distribution functions are defined through
the Taylor-series expansion of this matrix element in the
limit £—0 and its gauge invariance is guaranteed by the
gauge invariance of the subprocess which is on the mass
shell, in the leading-twist approximation. So the matrix
element of the gluon axial-vector current K,
=€,.0p4 ,Fg, (or more precisely its projection onto the
gauge vector n in the axial gauge 4 9n,=0) will appear as
the first moment of the gluon spin distribution function
[11]. It is gauge invariant in perturbative QCD (PQCD)
since it contains only the transversal component with
respect to n of the gluon field 4. However, as we will see,
beyond PQCD, it requires further specification.

A real ambiguity exists, however, in defining the first
moment of the quark distribution. Actually, the first mo-
ment of the box-diagram contribution (see Fig. 1) off the
mass shell (k250 and m,70) has the form [9]

b a, 2qu/k2
rbox=— 14—
2w V 1+am2/k?
1+4m2/k%—1
X1n ‘/____" .

V1+4m2/k*+1

There are two gauge-invariant local (kZ-independent)
limits of this quantity, which can be considered as contri-
butions of parton subprocesses,

qu/kz—*o,
box
T = o, k2/m2—0.

They correspond to the cross section of the ¥ *g — ¢g sub-
proccss for either m,=0 or m,0 on the mass shell
k20, giving two dlﬂ‘erent deﬁmtlons of the quark con-

EFREMOV, SOFFER, AND TORNQVIST 44

tribution AX and different evolution equations. In the
first case, the anomaly part [first term in Eq. (2)] is sub-
tracted from the quark distribution function and included
into the subprocess. It gives Eq. (1) for I'§"® and the evo-
lution equations

A3=0 and AZ— Ag y(AZ—Ag) (3)

and y is an anomalous dimension and the overdot
denotes d /d InQ?. In the second case, the whole contri-
bution in Eq. (2) is in the quark distribution function, i.e.,
Isrel~AS'=A3—Ag and the evolution equations be-

come AZ’“‘yAE‘ and A’ +Ag 0.

Which of these definitions is better? We believe that
for light quarks the first one is better for the following
reasons.

(i) When the mass m, is small the cancellation of the
anomaly by the mass term in Eq. (2) occurs only in a
small part (|k?| << qu) of the whole integration region
|k|?< Q2 However, in this small part, other effects (in
particular nonperturbative) are expected to be more im-
portant than the cancellation.

(ii) Equations (3) are just the analytic continuation of
the evolution equation for higher moments m >2. This is
a necessary condition for the existence of soft x-
dependent distribution functions A3(x) and Ag(x) which
are measured experimentally.

(iii) Since AZ is independent of Q2 one has a closer
connection between low- (naive quark model) and high-
energy (parton) pictures of the proton.

(iv) Because of a possible cancellation of the two terms
in Eq. (1), the contradiction of the EMC result and the
quark model need not be so severe.

Now turn to the gauge-invariance problem. There is
no such problem for higher moments m =2 because there
are two towers of local gauge-invariant operators which
are built from quark and gluon fields g and 4,. So, being
defined as an analytic continuation of moments of x-
dependent spin distribution functions to m =1, AX and
Ag also have to be gauge invariant. The formal continua-
tion of the local operators gives, however, as was dis-
cussed earlier
AS=1{p|lJ;—K,|p)n, and Ag=—1(pIK |p)n

vy @)

where n,, is a lightlike vector satisfying n2=0,np=1 and
where J; =3y Efyvysqf,fv=Nf(as /2mw)K, are propor-
tional to the quark and gluon spin operators (strictly
speaking, K, is not the gluon spin; nevertheless, K n, is
its projection). The subtraction of K, in the definition of
AZ in Eq. (4) is done in accordance with Eq. (3) to make
AZ independent of Q? as a consequence of the Adler-
Bardeen relation

av"v_ava_Nf

ﬂ
2 F . (5)

The problem with gauge invariance arises since the
operator K, in Eq. (4) is apparently gauge variant at least
with respect to large gauge transformations. Of course in
the projection K, n, remains only the variance of the
large (homotopically nontrivial) gauge transformations
which are absent in perturbation theory. However,
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beyond perturbation theory Eq. (4) can be wrong due to
nonperturbative contributions. So the resolution of the
problem lies in a term nonanalytic in m in the matrix ele-
ments of Eq. (4) due to a nonperturbative contribution
[14]. The most important part of this contribution is
tightly connected with the well-known U(1) problem in
QCD [15,16].
Actually, in any covariant gauge,

(p'lI51pY=u(p")y,75G1(g*)+q,v5G,(gH)]u(p) ,

o ~ ~ (6)
(p'IK,IpY=a(p")y,rsG1(g*)+4,75G,(gM)]u(p) .
The same expressions can be written also in the form
(p'lI3|p)=2Mys,G,(¢*)+q,(s9)G,(g?) , )

(p'IK,lp)=2Mys,G,(g*)+q,(s9)G,(q?) ,

where M is the proton mass, s, its spin four-vector, and
the contributions parallel to it are, in terms of quark and
gluon distributions,

G,(0)=A=—Ag and G,(0)=—Ag .

Because of the gauge invariance of 3,K, and the ab-
sence of a zero-mass axial pole state in PQCD both
q%G,,q*G,—0 when ¢g?>—0. So both G,(0) and G,(0)
are gauge invariant if one disregards nonperturbative
effects. However, this is not correct in general. The
current K, has to couple with a zero-mass ghost pole
whose mixing with Nambu-Goldstone 7, supplies it with
an additional mass Am2 =AY/ [ 2, [17], where A? is the

K -ghost coupling and f y 18 the n’-decay parameter
(0|J5|17 >=f,4q,. This pole contributes to {p’|K,|p)
through the diagrams shown in Fig. 2 and gives

Am g, NN
z—‘“gQNN
my—q

~ A?
4,Gaq)= qu VN, e

where goyy is the ghost nucleon coupling constant
(8,K,=Q). Then

5 Am?Z,
hqu GZ(q )=G = ‘/fon Tgn’NN_Amn’gQNN
9 — 7

(8)

This ghost contribution is nonanalytic in m (the mo-
ment number) and nonperturbative in nature. Its physi-
cal meaning is in a periodic dependence of the QCD po-
tential [~Tr(H?)] on a collective variable X
= f d3x Ky(x,t), which changes by a winding number
under a homotopically nontrivial gauge transformation
[18] X —X +n. The reason of the pole is the same as
that of a gapless excitation in an ideal conductor.

An important comment is now in order. Notice that
the ghost pole can contribute only to the form factor G,
and does not contribute to G,. This is because the
effective ghost nucleon vertex (and 7’-ghost vertex) has to
contain a derivative N9,G,ysN, where G, is the ghost
field. It is the consequence of the no-ghost radiation con-
dition in any physical process [19]. Therefore the depen-
dence of the gauge parameter drops out from the ghost

N
. .
-Am n xz QNN
N

FIG. 2. The two different ghost contributions to NN: (a) cou-
pling through the physical %', (b) direct coupling.

propagator (see Fig. 2) (g, tag,9,/¢%) [—¢*a+1]7},

where a is a gauge parameter, and similarly from the
K ,G, vertex. That is the reason why the expression (7) is
in fact gauge invariant. This means, however, that G,
has to be gauge invariant also, due to the gauge invari-
ance of 2My G, +4°G,. So, the whole matrix element of
K, for symmetric states where ¢>=0, has to be gauge in-
variant.

Turn now to the renormalization properties of the G’s.
The quark current J3 is known to be renormalized multi-
plicatively with an anomalous dimension v, i.e., J 3=yJ3
whereas J K is not renormalized; therefore,
K,=vyJ3. Usmg Eq. (6) one finds

G

=vG,;,, and G12 YGy, -

The Adler-Bardeen relation Eq. (5) leads to the equality
2My[G(g)—G(gH)]1=¢%[G,(¢*)—G,(¢D)],

both sides of which are now seen to be Q2 independent.
In the limit g2—0 it gives

¢ VN fyg NN

G(0)=G,(0)=AZ = = o, , (9

_ . . . .
where 8NN 8NN Am gony is the mg-nucleon in-

teraction coupling constant. Equation (9) is not the for-
mula proposed in Ref. [16] due to the presence of gony
and to the fact that one should not neglect Okubo-
Zweig-lizuka (OZI) rule violations in the %’ coupling. It
also differs formally from the formula derived in Ref. [15]
but this could be just due to a difference in the definition
of g, N . The source of this difference is the inclusion in

the same one-particle-irreducible (1PI) vertex I'gyy in
Ref. [15] of two terms. The first term is a truly 1PI
multimeson contribution from the continuum spectrum,
which we call (71 = —Ag and the second term, which is
reducible with respect to the ghost, is the contribution
containing the direct ghost nucleon interaction [see Fig.
2(b)]. They have different kinematic structures in
(p’|K,|p) but the same structure in {p'|d,K,|p). So
the term G,, in Ref. [15], is in the right-hand side (RHS)
of Eq. (9) and, in fact, included in gnéNN whose definition

and consequent numerical values and renormalization
properties are different from ours. Although we did not
succeed yet to find a formal way to separate these two
contributions, we believe these two terms are different in
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nature and this difference can be easily seen in comparing
QCD with QED where we have the axial anomaly but no
ghost pole due to the Abelian character of the gauge
group. Indeed, in QED ¢2G,—0 in the symmetric limit
and if one disregards the first term Gl, one obtains
(ela”K u le ) =0, which is certainly not correct. So, in our
opinion the G, term has to be taken into account sepa-
rately from the ghost contribution. One way to demon-
strate this would be to construct an effective gauge-
invariant Lagrangian with the ghost contribution, which
is not a trivial task. Phenomenological considerations
(see Sec. IV) make it plausible to assume ggyy small, so
we should recover our previous formula (Ref. [16]),
whereas the relation derived in Ref. [15] probably yields a
large goyy by including finite ghost contributions to G,.
Interesting enough, a small ggyyy (according to our
definition) brings back agreement between Eq. (9) and the
final proposal of Shore and Veneziano [15] for the quark
component of the proton spin. Thanks to this observa-
tion, the discussion and results described in the next sec-
tion will be quite independent of the above controversy.

In conclusion, we must stress once more that quark
and gluon spin first moments defined through a hard sub-
process in the QCD-improved parton model are not ex-
actly represented by matrix elements of the currents
J3—K,and K,. The distinction is due to the nonpertur-
bative ghost contribution. The same contribution deter-
mines the total quark spin fraction via the GGT relation
9.

III. FLAVOR SYMMETRY BREAKING
IN THE GENERALIZED GOLDBERGER-TREIMAN
RELATIONS AND IN THE PSEUDOSCALAR NONET

The discussion in this section is rather independent of
the exact form and interpretation of the flavor singlet
Goldberger-Treiman relation [Eq. (9)], which still is un-
der dispute in the literature [15,16,20,21]. In our discus-
sion we keep our form of the relation as the first-order
approximation.

When considering corrections from finite quark masses
the Adler-Bardeen relation takes the form

dJ5=03,K,+ 3 2mgiivsq; (10)

which, together with the well-known relations for the
triplet and octet, leads to the following relations in the
triplet, octet, and singlet channels, respectively (for
Ny,=3 and g*=0):

2'MNg:’:l22’(rrl|4“’14_rndvd) ’ (lla)
2Myg8 =2(m v, +myvy;—2myv,) , (11b)
MyAZ=2(m,v,tmyv;+mv,)+G , (11c)

where
vi= <N|7i7’5‘IiIN)/JVi7’5N ’

and G= liquqoqzéz is the residue of the ghost pole

contribution [see Eq. (8)].
Flavor symmetry breaking enters into those equations
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in two ways: (i) nondegenerate m,’s; (ii) 7%-n-n’ mixing
in the coupling constants.

The effect of (i) is explicitly seen from Egs. (11a)-(11c¢)
and we can solve for AZ by eliminating the m,v,’s from
the RHS of Eq. (11c) using the other two. First, one can
use Eq. (11b) to eliminate v, and second, due to the iden-
tity

3myv, tmyvy)=3[(m,+my)v, +vy)+(m, —my)v,]

together with v;=v, —v,=V2f g NN /(m, +m,) from
Eq. (11a), neglecting the term (m, —m,)(v, +v,;) (which
leads to higher-order isospin corrections), one can reex-
press Eq. (11c) as

3m,—my

AZ=G/2My+t——"— g3 — —g% | 12
/2My 2mu+mdgA g4 (12)

where the second terms “violates isospin” and where the
plus or minus sign is for proton or neutron, respectively.
The third term “violates SU(3);.” Both terms are large,
reducing AZ by more than 50%.

But, we must also take into account #%-1-1’ mixing,
which for Eq. (11c) enters into G [see Fig. 2(b)]. This
contribution is again determined by the diagrams in Fig.
2; however, instead of one 7’ pole we have to put the
singlet combination of 7’,7m,7° poles. For g>—0 this
reduces, as is well known, to the following substitution in
the first term of Eq. (8):

EyNN  yNN 8 xNN 8NN .
4 > — 4 5 080t ———0,— i 5 sinf; ,  (13)
miy, mi ms ms

where 6, and 65 are the 7%’ and 7-7’ mixing angles, re-
spectively. Inserting conventional values for these angles
and for the couplings g,yy and g,yy, the second
“isospin-violating” terms of Egs. (12) and (13) cancel each
other and similarly the SU(3)g-violating third terms al-
most cancel each other. As a result the numerical value
of AZ changes very little. As we shall see this cancella-
tion is exact to first order in the limit of large anomaly
mass Am f,

This cancellation of large correction terms looks ac-
cidental, but obviously there must be a physical reason
for it which we now clarify. Using different techniques
other authors [19,22] have reached similar, but less gen-
eral conclusions. In short we write Egs. (11a)-(11c) in
matrix form:

gi/v2 2m, 0 O
2Mya |g8/V6 |=|a0O| 0 2m; 0 |O7!
A3 /V73 0 0 2m
00 O V3
+l00 o vg | » (11"
0 0 AmZ || |v,

where
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\NV3 —113 0 vy v, te‘t, singlet) frame.' In this construction a can have an ar-

_ - _ _ bitrary value, which we shall fix below. Now, one ob-
0= |1/ ‘/f 1/ ‘/f —2/V6|, |v|=0 |v, serves that the matrix in the square brackets of Eq. (11')
/vy 1/V3 1/V73 v v is of the same form as the 0~ * squared mass matrix with

and
AS=AZ—(G —Am%v,/a)/2M),

and in which O is the orthogonal matrix which trans-
forms from the ideal (u#%,dd,ss) frame to the (triplet, oc-

1
2m, 0 O 00 O
M3_,=a0| 0 2m; 0 |O'+[00 O
0 0 2m 00 Amj
m,+my  (m,—my)/V3
=a | (sym.) (m,+myz+4m;)/3
(sym.) (sym.)

be the mass matrix. The physical 7%, 7,7’ squared masses
are the eigenvalues of this matrix which is diagonalized
by another orthogonal matrix, the mixing matrix Q:

1 0 0 1 =6, 6
= |0 cosf; —sin6; 0, 1 0], (15)
0 sinf; cos6, -6, O 1

where 6, is the 7%-n mixing angle and 6,,6; are as in Eq.
(13) above, the 7%n' and 5-1’ mixing angles, respectively.

Now ) diagonalizes the sum of the quark mass term
(Q) and the anomaly term ( A4):

mio 0 0
0 m2 0 |=Q+4 (16)
0 0 mf,.
where
m, 0 O
Q=2200|0 m,; 0 |O7'Q7!, (17)
0 0 my
00 O
A=0l0 0 o0 |7, (18)
00 Am%,

but both Q and A have off-diagonal terms of same order
as Eq. (14). The mixing angles 8; are determined by the
cancellation of Q,;+ 4,;=0 (for i#j). To first order in
the small isospin mixing angles 8, and 6, one finds simple
algebraic relations for these (denoting a =Am ,27 /a):

quark mass terms and an anomaly term (Am 37 ). If one
can choose a~m?2 /(m,+m,) this matrix will be equal
to the true pseudoscalar mass matrix. As we shall see,
then the difference between AX and AXZ reduces to the
contribution from gyyy only, i.e., to that from the second
term in Eq. (8).

So, let

(m,—my)V2/3
(m, +my—2m,)V2/3 (14)
2m, +my+my)/3+Am2 /a

2mg+a mfll+mf7—2m,2,
0,=—0,—=——=—0, = > —=—0.017,
2V 2m, 2V2(mE—m2)
' (19a)
3 myg—m,
9 = | =
2 2 a
3 | —miatm
== 13 eI S =-+0.009 ,
7 n K
_ (19b)
—4V2m,
93=Earctanm
—4V2(mE—m?2)
=%arctan K ul =-—0.31, (19¢c)

3mk +3m2+2m2 —8mj
where we also give the results when expressed in terms of
squared pseudoscalar masses and with their numerical
values. The latter agree very well with the computer di-
agonalizations of Ref. [23]. Of these, the formula for 6;
is well known, but 6, and 0, have not appeared in the
literature, although the scheme for the mass matrix is
well known (see, e.g., Ref. [23]). Phenomenological
consequences of the isospin mixing have been discussed
by many authors [24-29]. These estimates of 0, and 6,
are also in reasonable agreement with a phenomenologi-
cal analysis using data from the decays n— 37°, 7' —37°,
7' —n27°, and ¢’ —¢7° from which it is found, within a
model [29], <(#°|H|y)=—0.0059 GeV? and
(#°|H|n') = —0.0055 GeV? with 10% errors. These cor-
respond to 6;,=—0.021 and 6,=+0.006 with the same
type of error.

In the limit of the large anomaly term [m, — o
whereby also 7—ng and m2=(4m2—m?2)/3] the ex-

n
pression for 6, reduces to the well-known formula of U-
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spin invariance [30] giving

V3 ma—my

9_>9Uspin_.:_
1 1 4 my
2 2 2 2
mi,—miotmy,—m<y
=X V_Kz ——"—=—-0.011. (20)
3(m,78—m,,)
J
V3 Am?f V73 1

6 = —
2M Sap (fy8nnn)sinbs n —’2MN 2Myg 4 Ve

Turning back to our original problem and Egs.
(11a)—(11c) or (11') we see that these equations are diago-
nalized by the same ():

gy /V2 mi 0 0 v,
My (g5 /v =07 0 m3 o % vy |, @D
A3 /V3 0 0 mi| |vg

where the v’s on the RHS transformed by the same Q, are
the pseudoscalar densities, which in the pole approxima-
tion can be replaced by only one physical pole. In order
to obtain the Goldberger-Treiman relation for g% with
mixing it has to satisfy

Vs Vo fo8ann /Mm%
1 _ 1 2
Q; Vg ——a‘ V"l f,,gnNN/m,,, ’ (22)
Vi v’l' fn’g'r]'NN /m 3;’

where g.yn, etc., are the physical coupling constants
after mixing is taken into account.

Now we can show that in the same one-pole approxi-
mation the difference of AZ and AZX in the third row of
Eq. (21) reduces to the contribution from gyyy only [Fig.
2(b)]. For this, it is enough to observe that, from Eq. (22),

assuming that f,=f,=f, = f, one gets
NN EyNN . 87NN
'—Vl *f "7 0803_ 2 2 Dln03i T > 62
n’ m T

So this relation which fixes a also leads to the cancella-
tion of the first term of G [see Eq. (8) with the substitu-
tion (13)] which appears in the definition of AX. Thus the
three Goldberger-Treiman relations, with SU(3); break-
ing taken into account, can be written as

8,34 V2 8NN
8 s /R -
Q g4 /\/6 = ZMN g"NN » (23)
Az /V73 tfAm gonN/2My &y NN

where all quantities in the RHS include the 7°-%-%' mix-
ing. The transition from the exact SU(3); to broken
SU(3) is seen to be a very smooth one, provided Q is
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In the same limit (keeplng mg>>m,,my), 05
——2V2m s/a=—=2V2m¢ /(3m2,) and one sees that
the sinf; term of Eq. (13) also cancels to first order the
%gf, term of Eq. (12), i.e., in this limit, the SU(3), part
cancels to first order just as the isospin part. This can be
seen explicitly from

V2Umg—ml) Am2 2AmE—m?2)
3m,,, m% ~84 3m3,
_ g 2mg—ml) 1
g (4m2 m%,)‘ng

[
=1 as is physically the case.

Note that, by separating off the quark and the anomaly
terms, one obtains similar cancellations as in Eq. (16) for
off-diagonal terms of (Q) and (4) in Egs. (17) and (18).
Some of these terms are enhanced by large ratios such as
m f, /m? coming from the v’s.

Now, using the third row of this equation one can ob-
tain

As— \/§f(gn,NN /cos03—Am .gonn)

2My
gt ) 2/3
- \/—/iztan03:t <1 £4(6,—6ytaney) (24)
or up to first order in the mixing angles
= 273
AS = ‘/3f(g17’NN—Amn’gQNN) 0 2 g3 0
2My 1/2 13 vz
(24")

Several comments are now in order. First, all large
symmetry-breaking corrections are canceled and only a
small one proportional to the 6,’s survives. The transi-
tion from exact SU(3); to broken SU(3)y is a smooth one
provided one simultaneously takes into account the non-
degenerate m, and the 7%n-n’ mixing. Such cancella-
tions within another context were already discussed long
ago [24,25] and recently also for the pion mass [31]. For
the pion mass the cancellation can easily be seen in our
framework directly from the pseudoscalar mass matrix.
Only if one insists in separating, in a pure SU(3); refer-
ence frame, a purely singlet gluonic quantity from the
quark mass contributions, one does get large cancella-
tions of terms of order (m,—my)/(m,+my) and
0,m ,27 /mZ. Physically this means only that the small
gluonic admixture in the pion gives a large contribution
in the singlet channel because of the smallness of m?2
compared to m? - This is, however, a very natural contrl—
bution and the transition to exact SU(3)p is a very
smooth one, due to the cancellation with quark mass
terms. On the other hand, if one neglects the mixing
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keeping only the nondegenerate m,’s one gets a large un-
physical isospin and SU(3)g-breaking terms and one can
even get a gluonic contribution of the wrong sign [32].
Second, in the limit of m,,m; <<Am,,mg, 6,,6,—0
but 6;70, Eq. (24') reproduces the result of Veneziano
[15] (up to the difference in LHS discussed in Sec. II) only
if the first-order correction from 0, is also neglected.
(Recall that gn;)NNzgn’NN_Amn’gQNN') The source of

the difference could be in a different one-meson approxi-
mation. Instead of the Nambu-Goldstone-boson poles of
Veneziano we have used the physical meson poles.

Third, there is a difference in AZ for the proton and
neutron in Eq. (24’). However, it is so small that it can
produce the breaking of the Bjorken sum rule, only in the
fourth digit.

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper we have tried to elucidate that our choice
of including the axial anomaly into the parton subprocess
rather than into the quark spin distribution function is
more of a physical than a mathematical problem. The
main physical argument is that the anomaly is connected
with the spin asymmetry for gg production in polarized
photon-gluon scattering when the gluon is on the mass
shell and the mass of the quarks is neglected. It is natu-
ral that the contribution of such a process is proportional
to the difference Ag (x) of the number of gluons polarized
in opposite directions, with respect to the proton spin.

One of the main results of this paper is a clear under-
standing of how Ag is related to the matrix element of the
gauge-invariant axial gluon current K, in QCD. These
quantities are proportional to each other in perturbative
QCD. However, beyond perturbative theory (K, ) con-
tains an additional contribution from the zero-mass ghost
pole relevant to the resolution of the U(1l) problem in
QCD. It is precisely this pole which helps resolve the
contradiction between the QCD modified parton model
and the OPE. One important result of this paper is the
proof that the forward matrix element of K , 1s, in fact,
gauge invariant. Thus, the main objection against the
picture where gluons contribute to the EMC result, i.e.,
that the separation of the quark and gluon contributions
is gauge dependent, is no longer valid.

The same ghost contribution plays also the main role
in obtaining the generalization of the Goldberger-
Treiman relation to the flavor-singlet channel. Another
new result of this paper is a detailed calculation of the
corrections from finite quark masses and from 7’'-5-7°
mixing. Although both corrections are larger, they can-
cel each other to first order in the expression for AS and
only a modest correction (~0.2) remains. As a side
product of this analysis, we also found new simple alge-
braic expressions for the #%7 and #°-%’ mixing angles
[Egs. (19a) and (19b)] which include the effect of the
anomaly pole contribution to the singlet mass. After this
work was completed, there appeared another paper [33]
which also discusses this problem, although less general-
ly, and within another framework, but with partly similar
conclusions.

1375

Concerning the evaluation of AZ by means of the GGT
relation [see Eq. (24)], unfortunately neither 8NN DOT
8onn are well enough known experimentally. There are
two sources of information on the value of g, yy. The
first comes from NN scattering phase shift analysis within
the framework of the one-boson-exchange potential
(OBEP) model [34]. It gives g, yy==7.3 with presumably
a large error. The second comes from 7'—2y decay cal-
culated through the baryon triangle loop contribution
[35] and it gives g, yy=6.3£0.4. Both estimates are
close to the SU(6) value [36] g, vy =6.5. However in the
OBEP analysis of NN scattering, no ghost pole exchange
was taken into account. This contribution would gen-
erate a contact NN interaction and for small squared
momentum transfer |#| <<m2, it would change the g,y

obtained to 1/ gf,,NN—mf,.géNN. If the second term is
large the two methods would give two fairly different
values. So it seems reasonable to assume that
m 8onn <<&ynn 6.3 (the sign is unknown and assumed
to be positive). Using this together with the values
g5=0.68, g3 =1.254, and f=f,=132 MeV, one ob-
tains, from Eq. (24'),

A3=0.92%0.06 . (25)

Of course, we are aware of the fact that both sources are
uncertain and therefore this value of AX is questionable.
In order to obtain some new information on both cou-
plings constants, new experiments are necessary. One of
the experiments would be the energy behavior of
A;; (s,t), the double helicity asymmetry near the forward
direction, in proton-deuteron (or deuteron-deuteron) elas-
tic scattering in the Regge region (s >>¢). The ghost ex-
change in this region will correspond to a j=0 fixed
singularity which is not Reggeized, in contrast with 7',
exchanges. Assuming the Pomeron-nucleon vertex does
not contain a spin-flip part and since p and = trajectories
do not contribute for an isoscalar target (and/or beam),
the main contribution comes from the ghost-n and 7’ ex-
changes. Because of the fact that the intercepts of the 5
and 7’ trajectories are below j=0, the ghost exchange
must dominate and we would expect a non-Regge behav-
ior of A4;, if goyy is large enough. However, a
significant energy interval is necessary to check this.

The same ghost contribution to (K, ) has also helped
us in understanding [37] the true meaning of the result of
Mandula on a lattice simulation for this matrix element
[38]. The smallness of the number he obtained implies, in
fact, not necessarily that the gluon contribution is small
but rather that it is canceled by the ghost contribution.
In fact two different matrix elements involving K, were
computed [39], namely (s’,0/K-s|0,s ) and

lim =2 (5,013,&,|p,s)
p—0 p
which lead to the following bounds:

|Ag—1G/2My| < L and |AF—G/2My|< 5 . (26)
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respectively.

If one takes these results at face value, firstly it is clear
that the ghost contribution G is not negligible compared
to Ag and secondly, due to the Adler-Bardeen relation,
i.e., by using Eq. (9), the second bound reads

|A=—Ag|<0.25,

which is in agreement with the EMC experimental result.
However, by combining the two bounds of Eq. (26) one
gets

|AZ] <0.45 and |Ag|<0.20. (26"

This means that both A and Ag are small, AX being less
than half our previous estimate Eq. (25). Nevertheless it
is not clear at all that the lattice size was large enough to
take into account long-range instantons which build the
contribution to G. So more accurate computations are
certainly required in order to get a more truthful con-

clusion.

Finally if one tries to use a reliable parametrization of
Ag(x) convoluted with o(y*g—gg) to fit the x depen-
dence of the EMC data, one finds that either the gluon
contribution lies mainly in a region below the existing
data (x <0.01) [9,40] or one needs some contribution
from the strange quark [13]. However, this last possibili-
ty of a substantial As seems to be excluded from a very
recent analysis [41] of the Chicago-Columbia-Fermilab
Rochester (CCFR) data which has measured accurately
the strange-quark content of the nucleon.

ACKNOWLEDGMENTS

We want to thank M. Chaichian, L. Frankfurt, C.
Korthals Altes, J. Mandula, J. Niskanen, A. Radyushkin,
M. Sainio, O. Teryaev for useful discussions, and espe-
cially G. Veneziano for several constructive conversa-
tions at various stages of this work.

[1] EMC, J. Ashman et al., Nucl. Phys. B328, 1 (1989).

[2] H. Lipkin, Phys. Lett. B 237, 130 (1990).

[3] H. Rollnik, invited talk presented at the 9th International
Symposium on High Energy Spin Physics, Bonn, 1990 (un-
published).

[4] A. V. Efremov and O. V. Teryaev, JINR Report No. E2-
88-287, 1988 (unpublished); G. Altarelli and G. G. Ross,
Phys. Lett. B 214, 381 (1988); R. D. Carlitz, J. C. Collins,
and A. M. Mueller, ibid. 214, 229 (1988).

[5] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).

[6] P. Ratcliffe, Phys. Lett. B 192, 180 (1987).

[7]1R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990).

[8] G. Bodwin and J. Qui, Phys. Rev. D 41, 2750 (1990).

[9] S. D. Bass, N. N. Nikolaev, and A. W. Thomas, Adelaide
University Report No. ADP-133-T8, 1990 (unpublished).

[10] A. V. Manohar, Phys. Rev. Lett. 65, 2511 (1990).

[11] A. V. Efremov, J. Soffer, and O. V. Teryaev, Nucl. Phys.
B346, 97 (1990).

[12] G. Altarelli and B. Lampe, Z. Phys. C 47, 315 (1990); G.
Altarelli, CERN Report No. CERN TH-5675/90 (unpub-
lished).

[13] G. G. Ross and R. G. Roberts, Rutherford Appleton Lab-
oratory Report No. RAL-90-062, 1990 (unpublished).

[14] S. Forte, Phys. Lett. B 224, 189 (1989); Nucl. Phys. B311,
1 (1990).

[15] G. Veneziano, Mod. Phys. Lett. A 4, 1605 (1989); G. M.
Shore and G. Veneziano, Phys. Lett. B 244, 75 (1990).

[16] A. V. Efremov, J. Soffer, and N. Tornqvist, Phys. Rev.
Lett. 64, 1495 (1990).

[17] G. Veneziano, Nucl. Phys. B159, 213 (1979).

[18] D. I. Diakonov and M. V. Eides, Zh. Eksp. Teor. Fiz. 81,
434 (1981) [Sov. Phys. JETP 54, 232 (1981)].

[19] Actually, the cross section for the radiation has the form
do~A,A} 3, ekeld(g?)d*q - -+ where A, is the ghost
production amplitude with momentum ¢ and polarization
vector €} (the dots are for phase space of other particles).
For the cross section to be equal zero, one has to have
A4,~q, due to q,q, zsﬁe,);=q2. So, only the longitudinal

part of the ghost can couple with physical particles. This

part however has to be gauge invariant because the contri-

bution of a virtual ghost to a physical process (e.g., the
ghost exchange in NN scattering) should not destroy its
gauge invariance.

[20] H. Fritzsch, Phys. Lett. B 229, 122 (1989); 242, 451 (1990).

[21] A. V. Efremov, J. Soffer, and N. A. Tdrnqvist, Marseille
Report No. CPT-90/P.2420 (unpublished).

[22] T. Hatsuda, Nucl. Phys. B329, 376 (1990).

[23] K. Kawarabayashi and N. Ohta, Prog. Theor. Phys. 66,
1789 (1981).

[24] D. Gross, S. B. Treiman, and F. Wilczek, Phys. Rev. D 19,
2188 (1979).

[25] B. L. Ioffe, Yad. Fiz. 29, 1611 (1979) [Sov. J. Nucl. Phys.
29, 827 (1979)].

[26] N. Isgur, H. Rubinstein, A. Schwimmer, and H. Lipkin,
Phys. Lett. 89B, 79 (1979); N. Isgur, Phys. Rev. D 21, 779
(1980); S. Godfrey and N. Isgur, ibid. 34, 899 (1986).

[27] T. N. Pham, Phys. Lett. 134B, 133 (1984).

[28] N. A. Tornqvist, Phys. Lett. 40B, 109 (1972).

[29] S. A. Coon, B. H. J. McKellar, and M. D. Scadron, Phys.
Rev. D 34, 2784 (1986).

[30] S. Okubo and B. Sakita, Phys. Rev. Lett. 11, 50 (1963); R.
H. Dalitz and F. von Hippel, Phys. Lett. 10, 153 (1964).

[31] Fayyazuddin and Riazuddin, Phys. Rev. D 42, 2347
(1990).

[32] T. P. Cheng and L. F. Li, Phys. Rev. Lett. 62, 1441 (1989).

[33]J. Schechter, V. Soni, A. Subbaraman, and H. Weigel,
Phys. Rev. D 42, 2998 (1990).

[34] O. Dumbrajs et al., Nucl. Phys. B216, 277 (1983).

[35] B. Bagchi and A. Lahiri (unpublished).

[36] N. Térnqvist and P. Zenczykowski, Phys. Rev. D 29, 2139
(1984).

[37]1 A. V. Efremov, J. Soffer, and N. Térnqvist, Phys. Rev.
Lett. 66, 2683 (1991).

[38] J. E. Mandula, Phys. Rev. Lett. 65, 1403 (1990).

[39] We are indebted to J. Mandula for some discussions on
this question which led to the results given in Eq. (26).

[40] J. Ellis, M. Karliner, and C. T. Sachrajda, Phys. Lett. B
231, 497 (1989), and references therein.

[41] G. Preparata, P. G. Ratcliffe, and J. Soffer, Milano Report
No. MITH 90/16 (unpublished).



