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Spin is perhaps one of the most confusing concepts in introductory Quantum

Mechanics, because it has no classical analog. The purpose of these notes is to

restate and expand upon the material found in Griffiths, using a much more careful,

and hopefully much more conceptually revealing, notation than he uses.

1 The Basics

The theory of angular momentum, both orbital and spin, is built up around a set of

operators∗ Sx, Sy, and Sz that have commutation relations given by

[Sx, Sy] = i~Sz [Sy, Sz] = i~Sx [Sz, Sx] = i~Sy. (1)

Out of these operators, we can construct S2, which is given by

S2 = S2
x + S2

y + S2
z , (2)

and which commutes with each of Sx, Sy, and Sz.

Because S2 and Sz commute, we can construct simultaneous eigenstates of these

operators. We denote these by |s ms〉, where s is an integer or half-integer greater

than or equal to zero and ms takes on all values between s and −s (inclusive) in

integer steps†. The relevant eigenvalue equations are

S2 |s ms〉 = s(s+ 1)~2 |s ms〉 (3a)

Sz |s ms〉 = ms~ |s ms〉 (3b)

∗For simplicity, I’ll stick to talking about spin for the majority of these notes, but remember that

everything I say also holds true for orbital angular momentum, with the exception that there is no

such thing as half-integer orbital angular momentum.
†That means that for any given s, there are 2s+1 possible values for ms.
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The simplest non-trivial example of a spin system is spin-1
2
. The basis of eigen-

states for this system is given by
∣∣1
2

1
2

〉
and

∣∣1
2
−1

2

〉
. In matrix notation, these basis

states are given by ∣∣∣∣12 1

2

〉
=

(
1

0

) ∣∣∣∣12 −1

2

〉
=

(
0

1

)
, (4)

and the matrices mentioned above are given by

Sx =
~
2

(
0 1

1 0

)
Sy =

~
2

(
0 −i
i 0

)
Sz =

~
2

(
1 0

0 −1

)
, (5)

and

S2 =
3

4
~2
(

1 0

0 1

)
. (6)

2 The “Separate” Representation

Suppose we have two particles, one of spin s1 and the other of spin s2. We would

like to describe the possible spin states that these particles can be in. It turns out

that there are two good bases for doing so, one that treats the spin of each particle

separately and one that looks at the combined spin of the system as a whole.

Let’s study the former first. The particle of spin s1 can be in one of 2s1 + 1

different spin states, one for each possible value of ms for that particle. Likewise, the

particle of spin s2 can be in one of 2s2+1 different spin states. If we treat each particle

independently, that means that there are 2s1+1 times 2s2+1 different possible states

for the two particles to be in‡. We can denote these states by

|s1 ms1〉 ⊗ |s2 ms2〉 . (7)

This notation emphasizes the fact that we are thinking about our states in terms of

the eigenstates of the spin operators for each particle separately. The ⊗ represents an

operation called a tensor product §. In essence, the tensor product indicates that we

‡This is true for the same reason that if you have 3 shirts and 2 pairs of pants you can make

2×3=6 outfits. It’s just basic combinatorics.
§The concept of a tensor product and a direct sum (which will come up later in these notes)

ultimately arise from the fact that the theory of angular momentum in quantum mechanics is an

application of group theory. I will try to borrow useful notation and concepts from group theory in

these notes without actually going into all of the mathematical formalism, as that’s another course’s

worth of material right there.
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are forming a new Hilbert space for our particles’ spins as a product of each individual

particle’s original Hilbert space.

This is abstract, so let’s investigate what it means with some calculations. First

of all, the statement that our two particles have their own Hilbert spaces implies that

there are two distinct sets of spin operators, one set for each particle, that we will

denote by S2 (1) and S
(1)
i for particle 1¶ and S2 (2) and S

(2)
i for particle 2. The (1)

operators only act on the first ket in our tensor product state, and the (2) operators

only act on the second one. For example,

S(1)
z |1 1〉 ⊗ |3 − 2〉 = ~ |1 1〉 ⊗ |2 − 2〉 , (8)

but

S(2)
z |1 1〉 ⊗ |3 − 2〉 = −2~ |1 1〉 ⊗ |2 − 2〉 . (9)

It’s possible to be even more precise in our notation. Since the tensor product

allows us to express the states that we get when we combine two Hilbert spaces, it

should also allow us to express the operators we get when we combine those Hilbert

spaces. In particular, we can write the operators from the preceding paragraph as

S2 (1) = S2 ⊗ 1 (10a)

S2 (2) = 1⊗ S2, (10b)

and similar for the Si operators‖. The benefit of this notation is that there is abso-

lutely no ambiguity about which part of the combined Hilbert space out operator is

acting upon: operators to the left of the tensor product symbol act on kets to the left

and operators on the right act on kets to the right. For instance,

(A⊗B)(C ⊗D) (|φ〉 ⊗ |ψ〉) = AC |φ〉 ⊗BD |ψ〉 . (11)

The other big benefit of this notation is that we can write all sorts of “mixed” op-

erators, like Sx ⊗ S2, which would have been more difficult to write in the (1) (2)

notation. To make all this a bit clearer, let’s do an explicit example:

(S2 ⊗ Sz) (|2 − 1〉 ⊗ |1 1〉) = S2 |2 − 1〉 ⊗ Sz |1 1〉
= 2(2 + 1)~2 |2 1〉 ⊗ ~ |1 1〉
= 6~3 (|2 − 1〉 ⊗ |1 1〉) . (12)

¶Whenever you see a subscript i, take it to means any of x, y, or z. It will save me much typing

if I don’t have to write down all three operators whenever I make a statement that applies to any

of them.
‖Here the symbol 1 stands for the identity matrix; its the operator that does nothing at all to a

ket.
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Finally, we’d like to know what the bras that correspond to the kets in our com-

bined Hilbert space look like. Remembering that bras and kets are Hermitian conju-

gates of each other, it’s not too hard to believe that

(|φ〉 ⊗ |ψ〉)† = 〈φ| ⊗ 〈ψ| . (13)

With this we can also express inner products and expectation values:

(〈λ| ⊗ 〈ξ|) (A⊗B) (|φ〉 ⊗ |ψ〉) = 〈λ|A|φ〉 ⊗ 〈ξ|B|ψ〉 = 〈λ|A|φ〉 〈ξ|B|ψ〉 , (14)

where in the last equality we used the fact that inner products are just numbers, so

the tensor product should just reduce to regular multiplication.

2.1 More Operator Examples: Total Spin

One useful quantity that we might want to calculate for our system of two particles

is the total spin of the system (both the magnitude of the spin and the component

in the z-direction). Since these are observables, we should be able to write them as

operators in our product Hilbert space.

First, let’s think about how we might write Sz,total. For the state |s1 ms1〉 ⊗
|s2 ms2〉, the z-component of particle 1’s spin has a value of ms1~ and the z-component

of particle 2’s spin has a value of ms2~. Therefore, the total spin in the z-direction

must be the sum of those, (ms1 +ms2)~. This suggests that we write Sz,total as∗∗

Sz,total = Sz ⊗ 1 + 1⊗ Sz, (15)

∗∗Note that this is the “correct” way to write one component of Griffith’s equation 4.176. As

written in the textbook, 4.176 make little sense because (1) S is not a well-defined operator, unlike

S2 and Si and (2) it makes no sense to add operators that live in different Hilbert spaces. Of

course, what’s really going on here is that Griffith’s equation is shorthand for Eq. (15) and the

corresponding equations for Sx,total and Sy,total. From speaking with some of you, I believe that

much of the confusion you all are experiencing about addition of angular momentum comes from

the ill-defined notation in the text and the belief that sparing you the details of the mathematical

formalism will make the material more comprehensible. I think that’s nonsense; hence, I wrote these

notes.
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because when we act it on our generic state we get

Sz,total(|s1 ms1〉 ⊗ |s2 ms2〉) = (Sz ⊗ 1 + 1⊗ Sz)(|s1 ms1〉 ⊗ |s2 ms2〉)
= (Sz ⊗ 1)(|s1 ms1〉 ⊗ |s2 ms2〉) + (1⊗ Sz)(|s1 ms1〉 ⊗ |s2 ms2〉)
= (Sz |s1 ms1〉 ⊗ |s2 ms2〉) + (|s1 ms1〉 ⊗ Sz |s2 ms2〉)
= ms1~(|s1 ms1〉 ⊗ |s2 ms2〉) +ms2~(|s1 ms1〉 ⊗ |s2 ms2〉)
= (ms1 +ms2)~(|s1 ms1〉 ⊗ |s2 ms2〉), (16)

as desired.

Next, let’s figure out S2
total. Following the lead of Eq. (2), we can write S2

total as

S2
total = (Sx,total)

2 + (Sy,total)
2 + (Sz,total)

2. (17)

Let’s look at the last piece of the sum first:

(Sz,total)
2 = (Sz ⊗ 1 + 1⊗ Sz)

2

= (Sz ⊗ 1)2 + (1⊗ Sz)
2 + (Sz ⊗ 1)(1⊗ Sz) + (1⊗ Sz)(Sz ⊗ 1)

= (S2
z ⊗ 1) + (1⊗ S2

z ) + 2(Sz ⊗ Sz). (18)

The other terms are the same, with x and y substituted for z. Therefore,††

S2
total = (S2 ⊗ 1) + (1⊗ S2) + 2(Sx ⊗ Sx + Sy ⊗ Sy + Sz ⊗ Sz). (19)

By construction, our |s1 ms1〉 ⊗ |s2 ms2〉 states are eigenstates of S2 (1) (S2 ⊗ 1),

S2 (2) (1⊗ S2), S
(1)
z (Sz ⊗ 1), S

(2)
z (1⊗ Sz), and Sz,total. Are they also eigenstates of

S2
total? We can find out by evaluating the commutator of S2

total and S
(1)
z . Using the

fact that

(A+B)⊗ C = (A⊗ C) + (B ⊗ C), (20)

(which is easy to prove using the definition of the tensor product in terms of matrices

given in section 2.2), we can evaluate the commutator (skipping many steps, which

you should try to fill in):

[S2
total, S

(1)
z ] = 2 ([Sx, Sz]⊗ Sx + [Sy, Sz]⊗ Sy)

= 2i~ ((Sx ⊗ Sy)− (Sy ⊗ Sx))

6= 0. (21)

††Note that this is the “correct” way to write Griffith’s equation 4.179. Comments similar to

those in the previous footnote apply here, with the added point that taking the dot product of

operators from different Hilbert spaces makes even less sense (unless you know what that notation

really means) than adding them.

5



Spin and the Addition of Angular Momentum Using Tensor Notation

We see that the commutator is nonzero, which means that we cannot construct si-

multaneous eigenstates of S2
total and S

(1)
z , and therefore the |s1 ms1〉 ⊗ |s2 ms2〉 states

are not eigenstates of S2
total. We conclude that, S2 (1), S2 (2), S

(1)
z , S

(2)
z , and Sz,total

constitute a complete set of commuting observables for this system‡‡.

2.2 Tensor Products as Matrices

From early in our study of quantum mechanics, we have emphasized the fact that

quantum mechanics is “just linear algebra”, in other words, that our operators can

be represented by square matrices and our states by column vectors. Is it possible to

do this with operators and states built as tensor products of different Hilbert spaces?

It is, although it requires us to define a new sort of matrix multiplication.

Suppose we have two 2x2 matrices, A and B, given by

A =

(
A11 A12

A21 A22

)
B =

(
B11 B12

B21 B22

)
. (22)

Then, the tensor product of A and B, also known as the Kronecker product in the

context of linear algebra, is given by

A⊗B =


A11

(
B11 B12

B21 B22

)
A12

(
B11 B12

B21 B22

)

A21

(
B11 B12

B21 B22

)
A22

(
B11 B12

B21 B22

)


=


A11B11 A11B12 A12B11 A12B12

A11B21 A11B22 A12B21 A12B22

A21B11 A21B12 A22B11 A22B12

A21B21 A21B22 A22B21 A22B22

 . (23)

This result generalizes to matrices of different sizes in the expected way.

Let’s apply this to our operators and states. To be specific, let’s choose the case

‡‡A complete set of commuting observables (CSCO) is a set of commuting operators whose eigen-

values completely specify the state of a system. For example, a CSCO for an electron in the hydrogen

atom, ignoring spin, is H, L2, and Lz.
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of two spin-1
2

particles. First, let’s construct the states. For example,

∣∣∣∣12 1

2

〉
⊗
∣∣∣∣12 1

2

〉
=


1

(
1

0

)

0

(
1

0

)
 =


1

0

0

0

 , (24)

whereas

∣∣∣∣12 − 1

2

〉
⊗
∣∣∣∣12 1

2

〉
=


0

(
1

0

)

1

(
1

0

)
 =


0

0

1

0

 , (25)

and likewise

∣∣∣∣12 1

2

〉
⊗
∣∣∣∣12 − 1

2

〉
=


0

1

0

0


∣∣∣∣12 − 1

2

〉
⊗
∣∣∣∣12 − 1

2

〉
=


0

0

0

1

 . (26)

Evidently, our new Hilbert space is 4-dimensional, and the states we just calculated

are a good bases for that space.

We can play a similar game with the operators. For example,

Sz ⊗ 1 =


~
2

(
1 0

0 1

)
0

(
1 0

0 1

)

0

(
1 0

0 1

)
−~

2

(
1 0

0 1

)
 =

~
2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , (27)

and

1⊗ Sz =


1

(
~
2

0

0 −~
2

)
0

(
~
2

0

0 −~
2

)

0

(
~
2

0

0 −~
2

)
1

(
~
2

0

0 −~
2

)
 =

~
2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 . (28)

Given these two operators, we can also construct the Sz,total operator (Eq. (15)):

Sz,total = Sz ⊗ 1 + 1⊗ Sz = ~


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 . (29)
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Practice acting with these operators on these states, both in tensor product no-

tation and in matrix notation, to see that both notations agree with each other.

3 The “Composite” Representation

Now we would like to start thinking about how we could describe our system of

two particles, one of spin s1 and the other of spin s2, in a way that emphasizes the

composite system rather than the individual particlesz. Remember that a particle

of spin s has 2s+1 possible states, one for each value of ms, so that there are 2s1+1

times 2s2+1 possible states for our two-particle system. Suppose that we calculate

the total spin in the z-direction, that is, the sum of ms1 and ms2 , for each of these

states, and carefully tabulate them. Assuming that s2 is greater than or equal to s1,

we might come up with something like this:

s1 + s2 (s1 − 1) + s2 · · · (s1 − 2s1) + s2

s1 + (s2 − 1) (s1 − 1) + (s2 − 1) · · · (s1 − 2s1) + (s2 − 1)
...

...
...

...
...

...
... (s1 − 2s1) + (s2 − 2(s2 − s1))

...
...

...
...

s1 + (s2 − (2s2 − 1)) (s1 − 1) + (s2 − (2s2 − 1)) · · · (s1 − 2s1) + (s2 − (2s2 − 1))

s1 + (s2 − 2s2) (s1 − 1) + (s2 − 2s2) · · · (s1 − 2s1) + (s2 − 2s2)

If we rewrite this to get rid of all the silly parentheses and color-code the entries

suggestively, we produce:

s1 + s2 (s1 + s2)− 1 · · · s2 − s1
(s1 + s2)− 1 (s1 + s2)− 2 · · · (s2 − s1)− 1
...

...
...

...
...

...
... s1 − s2

...
...

...
...

(s1 − s2) + 1 s1 − s2 · · · −(s1 + s2) + 1

s1 − s2 (s1 − s2)− 1 · · · −(s1 + s2)

zIn principle, you should be able forget everything you read in Section 2 and still understand this

one, because our two representations, while closely related, are also logically self-contained. We’ll

look at the connection between them in Section 4.

8



Spin and the Addition of Angular Momentum Using Tensor Notation

Remember, each entry in this table represents the total spin in the z-direction for

some state of our two particle spin system. However, suppose we were just handed

this table and told that the numbers in it represent the z-component of the spin of

some physical system, and suppose further that we are not told that the system is

two particles whose spins we have summed. If we looked just at the red entries, we

would note that they take on all values, in integer steps, between s1+s2 and -(s1+s2).

Likewise, the blue entries take on all values, in integer steps, between s1+s2-1 and

-(s1+s2-1), and so on, until we get to the green entries, which take on all values, in

integer steps, between s2-s1 and -(s2-s1). Hence, we would conclude that this table

is a table of all the possible spin states associated with s={s1 + s2, s1 + s2 − 1, . . .,

|s2 − s1|}
Since we do in fact know that we constructed this table by summing the z-

components of the spin of two particles, our conclusion is that the Hilbert space

of our two particles of spins s1 and s2 can be constructed out of all of the states

represented by s={s1 + s2, s1 + s2 − 1, . . ., |s2 − s1|}. Symbolically, we say that the

Hilbert space of our two particles is given by

|s1 + s2 ms1+s2〉 ⊕ |s1 + s2 − 1 ms1+s2−1〉 ⊕ · · · ⊕
∣∣|s2 − s1| m|s2−s1|〉 , (30)

where the ⊕ operation is called a direct sum. This notation means that the Hilbert

space for the two-particle system has as its basis states all of the states listed in the

sum.

Let’s look at an explicit example. Suppose we had as our system a spin-1 particle

and a spin-2 particle. We expect there to be (2*1+1)(2*2+1), or 15, states, with

total spins running between 2+1 and -2-1, inclusive, in integer steps. We can verify

this by tabulating these states by their total spin in the z-direction:

1 + 2 0 + 2 −1 + 2

1 + 1 0 + 1 −1 + 1

1 + 0 0 + 0 −1 + 0

1− 1 0− 1 −1− 1

1− 2 0− 2 −1− 2

or

3 2 1

2 1 0

1 0 −1

0 −1 −2

−1 −2 −3

We see that the result is just what we wanted: 15 states made up of a spin-3 multiplet,

a spin-2 multiplet, and a spin-1 multiplet♣. The Hilbert space for the system is

♣A multiplet is simply a set of spin states with the same value of s. We say that we have a spin-s

multiplet, instead of a spin-s particle, in cases when we are talking about the spin of a multi-particle

system.
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therefore

|3 ms=3〉 ⊕ |2 ms=2〉 ⊕ |1 ms=1〉 , (31)

so the basis states are |3 3〉, |3 2〉, |3 1〉, |3 0〉, |3 − 1〉, |3 − 2〉, |3 − 3〉, |2 2〉, |2 1〉,
|2 0〉, |2 − 1〉, |2 − 2〉, |1 1〉, |1 0〉, |1 − 1〉.

Now that we know what’s going on with our states, we’d like to know which

operators we can use to describe them. By construction, each of our basis states is

an eigenstate of Sz,total and S2
total (in other words, the spin quantum numbers sitting

in our basis kets are related to the total spin of the composite system, not to the

spin of either particle separately). We’d like to know if our basis states are also

eigenstates of the spin operators that act on the individual particles, namely, S2 (1),

S2 (2), S
(1)
z , and S

(2)
z . Since all of composite states are possible states for the same

two particles of spin s1 and s2, all of these states are eigenstates of S2 (1) and S2 (2),

with eigenvalues s1(s1 + 1)~2 and s2(s2 + 1)~2, respectively. However, these states

are not in general eigenstates of S
(1)
z or S

(2)
z
♦ Therefore, we have a complete set of

commuting observables for our composite Hilbert space consisting of Sz,total, S
2
total,

S2 (1), and S2 (2).

3.1 Direct Sums as Matrices

As with tensor products, it is possible to represent the direct sum of two matrices as

a new matrix, but it requires us to define a new sort of matrix addition.

Suppose we have two matrices, A and B, of sizes m × n and p × q, respectively.

The direct sum of these matrices is given by

A⊕B =

(
Am×n 0m×q

0p×n Bp×q

)
, (32)

where 0 is a matrix of zeroes.

As with tensor products, let’s see how this notation works with an explicit exam-

ple. To be specific, we will pick the case of two spin-1
2

particles, whose composite

♦There is one major problem with the tables of total spin in this section. For example, in the

spin-2/spin-1 example above, we see that there are two states with ms,total=2. The way I color-

coded the table suggests that one of these corresponds to |3 2〉 and the other to |2 2〉. If this were

true, then these states would be eigenstates of S
(1)
z and S

(2)
z . However, the truth is that |3 2〉 and

|2 2〉 are linear combinations of the states presented in the table. We will defer our discussion of the

details until Section 4.
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Hilbert space is described by

|1 ms=1〉 ⊕ |0 0〉 . (33)

By inspection, the basis states for our Hilbert space are |1 1〉, |1 0〉, |1 − 1〉, and

|0 0〉♠. Since we have four states, we should represent them by four-entry state

vectors, like this:

|1 1〉 =


1

0

0

0

 |1 0〉 =


0

1

0

0

 |1 − 1〉 =


0

0

1

0

 |0 0〉 =


0

0

0

1

 . (34)

From the discussion above, we know that these states should be eigenstates of

Sz,total and S2
total. Using direct sum notation, and preserving the order we adopted in

listing states, we can write

Sz,total = Sz,s=1 ⊕ Sz,s=0 = ~

 1 0 0

0 0 0

0 0 −1

⊕ ~
(

0
)

= ~


1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

 , (35)

and

S2
total = S2

s=1 ⊕ S2
s=0 = 2~2

 1 0 0

0 1 0

0 0 1

⊕ ~2
(

0
)

= 2~2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (36)

♠Let’s adopt a convention by which we always list our states in descending order by s, and, within

each s multiplet, in descending order by ms.
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Likewise, we find that

S2 (1) = S2 (2) =
3

4
~2


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (37)

You should check that these matrices actually do what they are supposed to do to

our states.

4 The Addition of Angular Momentum

We have now studied two different ways to represent the spin states of a system

consisting of a spin-s1 particle and a spin-s2 particle. In the separate representation,

the basis states for our system are eigenstates of S2 (1), S2 (2), S
(1)
z , S

(2)
z , and Sz,total

and live in a Hilbert space given by

|s1 ms1〉 ⊗ |s2 ms2〉 . (38)

In the composite representation, the basis states for our system are eigenstates of

Sz,total, S
2
total, S

2 (1), and S2 (2) and live in a Hilbert space given by

|s1 + s2 ms1+s2〉 ⊕ |s1 + s2 − 1 ms1+s2−1〉 ⊕ · · · ⊕
∣∣|s2 − s1| m|s2−s1|〉 , (39)

Since these two Hilbert spaces describe the same physical system, it must be that

they are the same Hilbert space; in other words, it must be that

|s1 ms1〉⊗|s2 ms2〉 = |s1 + s2 ms1+s2〉⊕|s1 + s2 − 1 ms1+s2−1〉⊕· · ·⊕
∣∣|s2 − s1| m|s2−s1|〉 .

(40)

This is the essence of the addition of angular momentum (both orbital and spin) in

quantum mechanics: given two particles with angular momentum♥, we can equally-

well represent the system in terms of eigenstates of the individual particle’s angular

momentum operators or in terms of the system’s total angular momentum operators[.

♥This also works with one particle with two contributions to its angular momentum, for exam-

ple, an electron in a hydrogen atom that has both orbital angular momentum and spin angular

momentum.
[This is an exceedingly peculiar, nonintuitive result, so don’t feel bad if you don’t have a gut

sense of what that means. What is important at this stage is that you understand the logic behind

that result, and that you can use the formalism to solve problems. More intuitive understanding

will come with time

12



Spin and the Addition of Angular Momentum Using Tensor Notation

Before we go on to an explicit example, there is one more note about notation

that is worth making. Equation (40) is rather cumbersome to write, and most of

what’s in it is really redundant. A much briefer way of writing it is

s1 ⊗ s2 = s1 + s2 ⊕ s1 + s2 − 1⊕ · · · ⊕ |s2 − s1| ; (41)

in other words, we use the total spin quantum number for each ket to represent the

entire ket. For example, we can write

1

2
⊗ 1

2
= 1⊕ 0, (42)

or
3

2
⊗ 2 =

7

2
⊕ 5

2
⊕ 3

2
⊕ 1

2
. (43)

One cute thing to note about this notation is that if one replaces the quantum

number representing a state with the multiplicity of the state and removes the circles

from around the addition and multiplication symbols, one should always get a correct

equation. For instance, spin-1
2

has two states, spin-1 has three, and spin-0 has one,

so Eq. (42) becomes

2× 2 = 3 + 1. (44)

Likewise, Eq. (43) becomes

4× 5 = 8 + 6 + 4 + 2. (45)

This works because what we are really doing here is counting up the total number of

basis states in both representations of our Hilbert space, and the total must be the

same in either case. It is possible to show this in generality, starting from Eq. (41).

See if you can figure out how to do it.

4.1 Matching the Basis States

It’s finally time to tackle the issue that we’ve been skirting for the majority of these

notes: how to figure out which basis states in the separate representation are equal to

which basis states in the composite representation. As a specific example, lets have

our particles be spin-1 and spin-1
2
\. Then, in the separate representation, our basis

states are
|1 1〉 ⊗

∣∣1
2

1
2

〉
|1 0〉 ⊗

∣∣1
2

1
2

〉
|1 − 1〉 ⊗

∣∣1
2

1
2

〉
|1 1〉 ⊗

∣∣1
2
− 1

2

〉
|1 0〉 ⊗

∣∣1
2
− 1

2

〉
|1 − 1〉 ⊗

∣∣1
2
− 1

2

〉 . (46)

\I choose not to do spin- 12/spin- 12 because that example is already done in your book.

13
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Since

1⊗ 1

2
=

3

2
⊕ 1

2
, (47)

our basis states in the composite representation are∣∣3
2

3
2

〉 ∣∣3
2

1
2

〉 ∣∣3
2
− 1

2

〉 ∣∣3
2
− 3

2

〉∣∣1
2

1
2

〉 ∣∣1
2
− 1

2

〉 . (48)

So how do we figure out which equals which? One clue is that basis states in both

representations are eigenstates of Sz,total. For our example here, there is exactly one

state in each representation with Sz,total = 3
2
~, so they must be equal:∣∣∣∣32 3

2

〉
= |1 1〉 ⊗

∣∣∣∣12 1

2

〉
. (49)

The same holds true for Sz,total = −3
2
~:∣∣∣∣32 − 3

2

〉
= |1 − 1〉 ⊗

∣∣∣∣12 − 1

2

〉
. (50)

At this point, we run into problems. For instance, there are two states in each

representation that have Sz,total = 1
2
~:
∣∣3
2

1
2

〉
and

∣∣1
2

1
2

〉
, and |1 0〉 ⊗

∣∣1
2

1
2

〉
and |1 1〉 ⊗∣∣1

2
− 1

2

〉
. In general, the two from one representation will be a linear combination of

the two from the other. We need to figure out which linear combination is correct.

The first step is to act on Eq. (49) with the lowering operator

S− = S− ⊗ 1 + 1⊗ S−, (51)

remembering that S− acts like this:

S− |s ms〉 = ~
√
s(s+ 1)−ms(ms − 1) |s ms − 1〉 . (52)

We find that

S−

∣∣∣∣32 3

2

〉
= (S− ⊗ 1 + 1⊗ S−) |1 1〉 ⊗

∣∣∣∣12 1

2

〉
S−

∣∣∣∣32 1

2

〉
= S− |1 1〉 ⊗

∣∣∣∣12 1

2

〉
+ |1 1〉 ⊗ S−

∣∣∣∣12 1

2

〉
~
√

3

∣∣∣∣32 1

2

〉
= ~

√
2 |1 0〉 ⊗

∣∣∣∣12 1

2

〉
+ ~ |1 1〉 ⊗

∣∣∣∣12 − 1

2

〉
∣∣∣∣32 1

2

〉
=

√
2

3
|1 0〉 ⊗

∣∣∣∣12 1

2

〉
+

√
1

3
|1 1〉 ⊗

∣∣∣∣12 − 1

2

〉
. (53)
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Now we know what linear combination of |1 0〉 ⊗
∣∣1
2

1
2

〉
and |1 1〉 ⊗

∣∣1
2
− 1

2

〉
is equal

to
∣∣3
2

1
2

〉
.

If we repeat this process on
∣∣3
2

1
2

〉
, we get∣∣∣∣32 − 1

2

〉
=

√
2

3
|1 0〉 ⊗

∣∣∣∣12 − 1

2

〉
+

√
1

3
|1 − 1〉 ⊗

∣∣∣∣12 1

2

〉
, (54)

and if we do it once more, we get
∣∣3
2
− 3

2

〉
= |1 − 1〉 ⊗

∣∣1
2
− 1

2

〉
, as expected. Try to

fill in the steps of these derivations.

All this still leaves us with no knowledge of the states
∣∣1
2
± 1

2

〉
. However, we do

know that
∣∣1
2

1
2

〉
must be a linear combination of |1 0〉 ⊗

∣∣1
2

1
2

〉
and |1 1〉 ⊗

∣∣1
2
− 1

2

〉
,

and we also know that it must be orthogonal to
∣∣3
2

1
2

〉
, since basis states are always

orthogonal. If we write∣∣∣∣12 1

2

〉
= A |1 0〉 ⊗

∣∣∣∣12 1

2

〉
+B |1 1〉 ⊗

∣∣∣∣12 − 1

2

〉
, (55)

and use the fact that 〈
3

2

1

2

∣∣∣∣12 1

2

〉
= 0, (56)

we find that

A

√
2

3
+B

√
1

3
= 0. (57)

Combining that with the fact that
∣∣1
2

1
2

〉
must be normalized, that is,

|A|2 + |B|2 = 1, (58)

we find that A=−
√

1
3

and B=
√

2
3
, so that

∣∣∣∣12 1

2

〉
= −

√
1

3
|1 0〉 ⊗

∣∣∣∣12 1

2

〉
+

√
2

3
|1 1〉 ⊗

∣∣∣∣12 − 1

2

〉
. (59)

Finally, if we use the lowering operator on this state, we get∣∣∣∣12 − 1

2

〉
=

√
1

3
|1 0〉 ⊗

∣∣∣∣12 − 1

2

〉
−
√

2

3
|1 0〉 ⊗

∣∣∣∣12 − 1

2

〉
. (60)

So, after a bit of tedious work, we have accomplished our task of writing the basis

states from the composite representation in terms of those in the separate represen-

tation. This method generalizes to combining any two angular momenta.
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By doing this, we can also explicitly see why states from the composite basis are

not eigenstates of S
(1)
z and S

(2)
z . For instance, the state∣∣∣∣12 1

2

〉
= −

√
1

3
|1 0〉 ⊗

∣∣∣∣12 1

2

〉
+

√
2

3
|1 1〉 ⊗

∣∣∣∣12 − 1

2

〉
. (61)

is clearly not an eigenstate of S
(1)
z or S

(2)
z because it is a mixture of two states with

different values of ms1 and ms2 . Likewise, if we were to invert all of these results by

writing the separate basis states in terms of the composite basis states, we would see

that the separate basis states are not eigenstates of S2
total because they are mixtures

of states with different values of stotal.

4.2 Systems of More Than Two Particles

Finally, we would like to talk about how to combine angular momentum for more

than two particles. The answer is, very easily with tensor product notation. This is

best illustrated by example.

For instance, suppose we wanted to combine three spin-1
2

particles. We would get

1

2
⊗ 1

2
⊗ 1

2
= (

1

2
⊗ 1

2
)⊗ 1

2

= (1⊕ 0)⊗ 1

2

= (1⊗ 1

2
)⊕ (0⊗ 1

2
)

= (
3

2
⊕ 1

2
)⊕ 1

2

=
3

2
⊕ 1

2
⊕ 1

2
. (62)

We see that three spin-1
2

particles combine to form a spin-3
2

multiplet and two distinct

spin-1
2

multiplets. The difference between these two spin-1
2

multiplets is symmetry:

one of them is antisymmetric with respect to swapping the first two spin-1
2

particles

and the other is symmetric with respect to that swapping].

]Using Griffith’s up-and-down-arrow notation, one of the spin- 12 multiplets is given by∣∣∣∣12 1

2

〉
=

1√
2

(|↑↓↑〉 − |↓↑↑〉) (63a)∣∣∣∣12 − 1

2

〉
=

1√
2

(|↑↓↓〉 − |↓↑↓〉), (63b)
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Let’s do one last example:

1⊗ 2⊗ 3 = (1⊗ 2)⊗ 3

= (3⊕ 2⊕ 1)⊗ 3

= (3⊗ 3)⊕ (2⊗ 3)⊕ (1⊗ 3)

= (6⊕ 5⊕ 4⊕ 3⊕ 2⊕ 1⊕ 0)⊕ (5⊕ 4⊕ 3⊕ 2⊕ 1)⊕ (4⊕ 3⊕ 2)

= 6⊕ 5⊕ 5⊕ 4⊕ 4⊕ 4⊕ 3⊕ 3⊕ 3⊕ 2⊕ 2⊕ 2⊕ 1⊕ 1⊕ 0. (65)

5 Conclusion

The theory of angular momentum in quantum mechanics is one of the least intuitive

parts of the whole subject, but it is also one of the most mathematically beautiful and

theoretically important, because it illustrates virtually all of the quantum weirdness

we have encountered throughout the course of this class. Hopefully these notes have

helped make a little more sense of this subject.

while the other is ∣∣∣∣12 1

2

〉
=

1√
6

(2 |↑↑↓〉 − |↑↓↑〉 − |↓↑↑〉) (64a)∣∣∣∣12 − 1

2

〉
=

1√
6

(|↑↓↓〉+ |↓↑↓〉 − 2 |↓↓↑〉). (64b)

The first set is antisymmetric with respect to swapping particle 1 and 2, and the second set is

symmetric with respect to that swap.
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