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In this paper we study the coupling between the pseudoclassical spinning particle and 
an arbitrary gravitational field. The gravitational field is treated as a gauge field in order 
to deal with possible contributions from the torsion of space-time. We find that the spin- 
ning particle cannot be coupled directly to the torsion. We study the classical equations 
of motion which turn out to be the same as derived by Papapetrou in order to describe 
the so called pole-dipole singularity in general relativity. We discuss also the structure of 
the energy-momentum tensor for the spinning particle. 

1. Introduction 

Recent ly  there has been a certain amount  o f  interest  in a "classical"  (pseudo- 

classical) descript ion o f  a relativistic particle wi th  spin [ 1 - 3 ] .  Fur thermore ,  the 

interact ions wi th  e lec t romagnet ic ,  Yang-Mills and weak gravitat ional fields have been 

studied [4,5]. 

It appears to be o f  some interest  to study the in teract ion with  an arbitrary gravi- 

tat ional field. Firstly, we can obtain informat ion  about  the classical mo t ion  of  spin- 

ning test objects.  Secondly,  we can try to understand eventual  couplings be tween  

spin and torsion o f  the space-time [6,7]. In fact,  it has been very of ten claimed in 

the l i terature that  spin and torsion are strictly related. 

In order to deal wi th  these problems it appears to be very convenient  to discuss 

the gravitational field as a gauge field [8]. In fact in this con tex t  it is easy to take 

into account  the torsion. Fur thermore ,  this t r ea tment  is convenient  also f rom a 

technical  po in t  of  view. For  instance, one is led to in t roduce,  in a natural  way, the 

classical analogue o f  the ?-matr ices  as x u independent  objects.  

* Present address: Phys. Dept., The Johns Hopkins University, Baltimore, Md. 21218. 
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The plan of  the work is the following: in sect. 2 we build up a Lagrangian for 
the interaction of  the pseudoclassical spinning particle with an external gravitational 
field. The general prescriptions to write down Lagrangians invariant under a general 
gauge group were discussed in ref. [5]. Correspondingly we introduce 16 "vierbein" 
fields to deal with translations and 24 "local connections" to deal with Lorentz 
transformations as explained by Kibble [6]. The Lagrangian we obtain in this way 
can obviously be translated in the ordinary language by introducing the metric ten- 
sor and the affine connection. However, starting from the "gauge-like" formulation, 
the affine connection does not need to be a symmetric one. The free Lagrangian of  
the spinning particle gives rise to first-class constraints [2]: one being the mass con- 
straint, while the other one (Dirac constraint) gives rise to the Dirac equation after 
quantization. As explained in refs. [2,5], any interaction must preserve the first- 
class character of  the constraints in order to have a smooth limit for the zero coupl- 
ing constant. This requirement is not generally satisfied; for instance, in the electro- 
magnetic case, this forces the particle to have a vanishing anomalous magnetic mo- 
ment. 

The consistency of  the constraints is studied in sect. 3. Firstly we analyze the 
case of  a symmetric affine connection and we find that the Lagrangian of  sect. 2 
satisfies the mentioned criterium. Secondly, we analyze the non-symmetric case. We 
find that it is necessary to modify our Lagrangian. The' required modification con- 
sists in the substitution of  the affine connection with its symmetric part,  that is 
with the Christoffel symbol. But this means that the pseudoclassical spinning par- 

ticle cannot be coupled directly to the torsion. This statement must be understood 
in the same sense as the other statement about the vanishing of the anomalous mag- 
netic moment .  Because if one considers second quantization effects, then as the 
electron can get an anomalous moment ,  it may well be possible that the spinning 
particle can have some interaction with the torsion. We also make some considera- 
tion about quantization,  and in particular we find that the Dirac constraint gives 
rise to the usual form [9] of the Dirac equation for the interaction with a gravita- 
tional field. 

In sect. 4 we study the equations of motion which follow from our Lagrangian. 
In particular we find that the spinning particle does not perform a geodesic motion.  
This is not  a very surprising result, because this fact was known in general relativity 
already in 1951. At  that time, Papapetrou [10] derived from general relativity the 
equations of  motion for a classical test object, whose space-time singularity was a 
delta plus a delta-derivative function (pole-dipole singularity). This object can be 
pictorially seen as an infinitesimal dipole evolving in space-time. The interesting 
fact is that the Papapetrou equations turn out to be coincMent with our equations. 
This cannot be an accident, and in order to clarify this point  we study the energy- 
momentum tensor of  the spinning particle. The singularities of  this tensor are pre- 
cisely the expected ones, that is a delta plus a delta-derivative. These facts open 
some possibilities to interpret these pseudoclassical theories, which up to this mo- 
ment are essentially formal theories. In the weak field case we consider the operator 
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corresponding to the energy-momentum tensor and we show that its matrix ele- 
ments are those of  the usual Dirac theory and coincide with the results found by 
Brink et al. [4]. About  this point it is interesting to notice that the delta and the 
delta-derivative terms add together to form the Gordon decomposition of the Dirac 
current [4,5]. 

In the appendix we further develop the connection between the gauge-like and 
the metric approach to the gravitational field. In particular we give an explicit proof  
of  a formula relating the affine connection with Christoffel symbols and the torsion 
tensor. 

2. The interacting Lagrangian 

We recall from ref. [2] that the Lagrangian describing a pseudociassical spinning 
particle without any internal symmetry is 

1//(.~ i . )2 Lfree = - ½  i~**~** - ½ i,e;s~ s - m c  ** - m e t  ~**~s , (2.1) 

where ~** and ~s are pseudovector and pseudoscalar Grassmann variables, respective- 
ly. 

This Lagrangian in invariant under global Poincard transformations 

5x** = x** - ~** = 6** + e S  = :  - ½(~ .~ese~) .~ ,  x ~ , 

= - ~ ( e . e  s . J . v ~  , 

~i~ s = 0 ,  

where 

(2.2) 

~u = -r/vo e.Par/a** , (2.3) 

and S.~a are the generators of  the Lorentz group in the four-vector representation, 
i.e. 

u ~ u (2.4) ( S . ~ ) . v  = ~Ourl~v - r lv~a • 

Here r~c~ is the flat Minkowski metric 

r/,~t3 = (1, - 1 ,  - 1 ,  - 1 ) .  

Now we want to extend these transformations to local ones [6,8]. In order to do 
that we observe that under local transformations, 8 x  u and 8~** are completely inde- 
pendent variations. Thus it will be convenient to use different indices according to 
the transformation properties. We will use Greek letters for quantities likex**, 5c u, 
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which will be called "world type" ,  whereas we will use capital latin letters for quan- 
tities like ~A (A = 0, 1, 2, 3), which will be called "local type".  Thus under  local 
t ransformat ions  we have 

~ x "  = e " ( x )  + e" .dx)  x ~ =- O " ( x )  , 

and 

(2.5) 

a~A = ~.B(x) ~B. 

It follows for cLY *~ 

(2.6) 

~SdxU = OU, u(x)  dxU . (2.7) 

Eqs. (2.6) and (2.7) define the t ransformat ion laws for a local four-vector and a 
world four-vector, respectively. 

We want  to emphasize again that e~.B(x) (still satisfying the condi t ion (2.3)) and 
OU,,(x) are completely  independen t  funct ions,  due to the fact that we are making 
local t ranslat ions in addit ion to local Lorentz t ransformations.  In particular,  the 
OU(x) can be considered as the parameters of a local t ranslat ion,  that is the param- 
eters of  a general coordinate  t ransformat ion.  

In order to make the argument  of the square root  in (2.1) invariant  under  (2.6) 

and (2.7) we need to in t roduce a "vierbein"  field G o * such as to t ransform a world 
four-vector in to  a local one;  i.e. we require 

8(G A dx u) = .<B(X) Gffdx u • (2.8) 

It follows 

~G~. = G(x)  GO + 4 ( x )  G~. 

Now the combina t ion  ( )2 
In(." 

(2.9) 

is clearly invariant  under  (2.6) and/or  (2.7). 

The next  problem is that d~ A is no t  a local four-vector, bu t  its t ransformat ion 
properties are 

8d~ A - O<4"B(X) dxU~ B + e@B(X) d~ B (2.10) 
3x  u 

In order to build up a local quan t i ty  we need to in t roduce a gauge field (Au).~ 

* We recall herc that the G A can be introduced as any other kind of gauge fields. One has only 
to notice that the generators of the translation group are a/ax Ia, see ref. [6], footnote 13. 
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such as to compensate for the inhomogeneous term in (2.10). As usual we form the 
quantity 

d~ A + (A~).AB dx"~ B , 

with the requirement that it be a local four-vector under (2.6) and (2.7), 

6(d~ A + (A,~. B dyP~ B) 

= U4.B(X)(d~ B + (A,).Bc dxg~C) .  

It follows 

 (A.t:B " A = O,•(Av).B + 

_ ~.B(Au).AB , O@B(X) (2.1 1) 
0X u 

Furthermore, we have 

( A , ) A B  = - ( A , ) B A  " 

Correspondingly we get the Lagrangian 

L = 1 i~AB~A (~B + (Au).Bc 2U~C) 

2 i~s~s mc TIA B ~ct. L i ~A~5 . . . .  G v x  - - - - ~ B ~ S  , (2.121 
?'r/c /q'/c 

which is manifestly invariant under local Lorentz transformations. We can easily 
transform L into a form which contains world quantities only. To this end let us 
suppose that it is possible to invert the "vierbein" fields, i.e. to find fields such that 

x A H ] G  u =6 x , H~GBu =¢5A B . (2.13) 

In this situation we can define a world four-vector starting from ~A, 

fu = H ~  A , S's = ~s - (2.14) 

Substituting in ( 2 . 1 2 )  we get 

L = -½ ig~v~(~ v + P~o~?°~ "x) - ½ i~'s S:s 

mc g ~ v (  2 u -  imc f u ~ s ) (  )?v --mci ryes) , (2.15t 

where we have defined the following quantities: 

i ~ o  _ v A - H~ (Gx,o + (Ap)AB GB)  , (2.16) 
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_ A B g#u - f lABGg Gu . (2.17) 

Fur thermore ,  we have used the following relation: 

~AB¢' G. , (2.18) g ~  _ v B 

where guy is the inverse matr ix  of  guy, 

Spy - ~AB I.Ila uU (2.19) 
- q **A**B • 

The quanti t ies  guy and P ~  can be identif ied as the matr ix  tensor and the affine 
connec t ion ,  respectively (see the appendix) .  

Obviously we could have wri t ten directly the expression (2. l  5) for the interact ing 
Lagrangian. However, as we said in the in t roduc t ion ,  we prefer to stress the similari- 
ty of the non-Abel ian  gauge fields with the gravitational field. In this way we can 
easily compare the results we get here with the results obtained in ref. [5]; further- 
more it is more natural ,  in this context ,  to consider the case of  a space-time with 
torsion, that is, the case of  a non-symmetr ic  connect ion ,  as it will be done in the 
following section. 

From the Lagrangian (2.12) * we get the following expressions for the conju- 
gated monrenta :  

+ 1 i~A ~?AB(AtJ).Bc ~C,  (2.20) 

HA _- 21 irlAB~B , (2.21) 

i l l~ r ico A . ) E ~  ) ,  • C ( D E (2.22) IlS : 1 i~S - - - - / ~ A  ~a (Pu ~ • 
mc 

which have the standard Poisson brackets [111 

{ xla, Pu} = -g~v, 

{~A, riB) = ~ ,  (~s, l ls} = I .  

* Here and in the following we will assume as Lagrangian variables x~ and ~A. We could use ~'~ 
as well, but due to the fact that their Dirac brackets (see eq. (2.30) in the following) is x~ 
dependent, it is much more convenient to use the ~A variables. Then every time we will use 
the ~** variables, they must be understood as functions of ~-A and x#. 
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From (2.20) we get the following constraint 

(Pu ½(Au)ARsB)(pv ' A B (2.23) __ __ ~ ( A u ) . B  S . A ) £ : ' ~ v  = ; q l 2 C  2 , 

where 

S.AB = ½ irIBc[~A, ~C] , (2.24) 

are the generators of the "spin part" of tile Lorentz group. If we define the mechan- 
ical momentum 

7'u = Pu } A B (Au).B S.A , (2.25) 

we get the mass-shell condition 

X = ~ l ~ ) v ~  ~'Lv nl2C2 = 0 .  (2.26) 

We recognize in (2.25) the typical combination for the covariant derivative. 
From (2.21) and (2.22) we get two more constraints: moreover, we can require 

tire further constraint [2,5] 

II5 = ½ its - (2.27) 

This constraint together with (2.21) forms a set of second-class constraints. By 
defining the corresponding Dirac brackets we get 

{ ~A, ~B)* = irlAB , (2.28) 

{~s, ~s}* = i ,  (2.29) 

and for the variables ~'** 

(~-u, ~-v}* = igUV. (2.30) 

The next problem is to determine the nature of the two remaining constraints 
(2.22) and (2.26). In fact, we know from our previous works [2,5] that an arbitrary 
interaction can change first-class constraints into second-class ones. In order to avoid 
this phenomenon (which would give a non-smooth zero interaction limit) we found 
that it is generally necessary to "renormalize" the mass appearing as a factor of the 
square root in eq. (2.12). The prescription is 

m 2 C  2 :=> m 2 C  2 = r n 2 c  2 --  igF~vla~U~ " . (2.31) 

Here/a is the generator of the gauge group and F~v is the covariant gauge tensor. 
In the present case we can establish the following correspondence 

2 • ' 

F~v ~ --(Ruv~.B = (Au,v)AB - (Av,u~.B (Au~.c(Av).CB + (av~c(Au).CB, (2.32) 
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where S A is defined in (2.24) and (Ruv~ .  R is the Rieman curvature t .  

It follows that the expected mass renormalization should be 

m2 c 2 ~ m ~ c  2 = m2  c 2 + 1 i(Ruv~.B S B  H~H~)~C~D , 

or in terms of the variables (2.14) 

m 2 c  2 = m 2 c  2 + I grxRXotav;~Ofr~lafv, (2.33) 

where we have introduced the Riemann tensor in world coordinates 

z. _ h B A X X X o h a 
R o . v  - 113 G o (R.v).B + (2.34) = Fou,v - Fov,u P ~ I ' p u  - I 'auFov 

Furthermore we have 

It follows that for a symmetric affine connection there is no mass renormalization. 
In fact in this case l~vUx coincides with the Christoffel symbol, consequently the 
Riemann tensor satisfies the cyclic identity [12] 

RXuvo + RXvou + R o u  v = 0 .  

It appears quite obvious from these considerations that, at least for symmetric 
connections, the constraints (2.22) and (2.26) are first class. This will be shown in 
the next section where we will examine the general case too. The result will be that 
the spinning particle is never coupled to the torsion tensor. To conclude this section 
we observe that after (2.27) the constraint (2.22) becomes 

Xl) = ~ u ~  u - mc~5  = 0 .  (2.36) 

3. Constraints 

Let us now study the conditions the interaction must verify in order to not 
change the character of the two constraints 

x =  ~ .  5 ~ g  ~"  - m 2  c 2 " 

(3.1) 

(3.2) 

~- The 1/2g factor can be understood by comparison of (2.2) with the analogous transformation 
properties defined in ref. [5]. The minus sign is due to the different definition of the curl 
with respect to ref, [5]. 
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By using the following brackets 
" , 

( ~ . ,  ~ v }  = ½ (S)AB(R.v).BA, (3.3) 

( ~ . , f U * =  ~ 0 - P o u r  , (3.4) 

we get 

(XD, XD }* = i (~u  ~vg uv - m2 c2 -- 1 iS.AB(Ruv).BA fu f v )  + 2 ~u  r ~ v f  ° fv  , (3.5) 

and 

(XD,×}* A B , x , o ~x+ x , =S.B(Rup) .A f gO pX + p09~Xf (C~vg C,~gO ) ,  (3.6) 

where we have introduced the torsion tensor 

Cfiv = I'~v - I'~ u • (3.7) 

From the analysis in the appendix we know that for F~v symmetric the following 
identity holds 

=~gO (g~.,~ + g,-.,u - gu. , . )  . (3.8) 

In this case the torsion vanishes; furthermore, by using the cyclic identi ty (2.35), 
we see that tile two terms in (3.5) and (3.6) proport ional  to (Ruv~. B are zero. Final- 
ly the last term on the right-hand side of (3.5) is zero due to the ant isymmetry 
~-o~-v. Hence, in the symmetric case, X and XD are first-class constraints and we do 
not need to modify the Lagrangian (2.12). 

In tile non-symmetric case, that is for a space-time with torsion, it is clear that 
we have to modify in some way our Lagrangian. The dangerous term is tile last one 
on the right-hand side of  eq. (3.5). If one looks at tile derivation of  this equation, 
one realizes that this term is present because in the Dirac bracket (3.4) the coeffi- 
cient of  ~-o on the right-hand side is not a symmetric one. This suggests to look for a 
modification of ~u such as to obtain a symmetric coefficient in (3.4). By putting 

t 

~ u  = ,~u + i L u o x f ° f  x (3.9) 

one gets 

( ~ ,  fo}* = _ [pOou + (Lua x Luxo)gXO] f e  . (3.10) 

The symmetry condition determines Luox uniquely, 

Luox = 1 [CoOugox + Cfixgoo _ C f o g o u l .  (3.11) 

Now we can use eq. (A. 15) of  the appendix to get 

= c~ . (3.12) LuoX 1 gxc~ oU Ol -t 
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By substituting into (3.10) and recalling that Lua x = - L u x  ~ we obtain 

{}  (5~u, fo )* = P ~-o (3.13) 
cr/~ 

To obtain a mechanical momentum like (3.9) we need a new conjugated momen- 
tum 

G = G ~.ox~'°~ "x , 

which can be derived by adding to our Lagrangian (2.15) the following term 

- -  - 2"  f<,~.x 2 tgxa Pota Ol.t 

By doing so we get the new Lagrangian 

txnJ ! 

With this Lagrangian the same considerations as in the synunetric case hold, and in 
particular the constraints X and XD are first class ones without any mass renormali- 
zation. Then we get the result that the spinning particle can be consistently coupled 
only to the symmetric part of  the affine connection, i.e. to the Christoffel symbol. 
In other words the sphming particle does not couple directly to the torsion, attd cor- 

respondingly it is not a source for  the torsion fieM [6]. Then, in the following, we 
can forget eventual torsion properties of  the space-time, because these are not rele- 
vant from our point of  view. 

Now let us spend some word about the quantization. From (2.28) and (2.29) we 
get the anticommutation rules for the quantum operators [21 

[~A, ~B]+ = _hr/AB, [~S, ~S]+ = h .  (3.15) 

These relations can be satisfied by putting 

~A = X~I h.I, sTA , ~s = X/½ hTs , (3.16) 

where T5 and 7 A are the usual Dirac matrices. We observe also that in this context 
the use of  the variables ~'~ is quite natural because they correspond to the use of the 
spin matrices conform to metric (see for instance ref. [9] and references therein). In 
fact we have 

~U = G ~ A  = X/½ h'YS7 u , (3.17) 
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where 

[.y,, ,),v]+ = 2gUY . (3.18) 

In the x ~ representation, the momentum operator Pu is 

Pu = ihOu " (3.19) 

It follows for ~ , ,  

9~ u = ih(a  u + ¼ i(A#)AB oAB) = t'hV/~ , (3.20) 

where V u is just the covariant derivative upon a Dirac spinor [ 12], which by using 
(2.16) becomes 

1 • X V u = 3 u + ~  t (H~4GAu I ' X u ) g r x O  rp (3.21) 

In (3.20) and (3.21) we have 

OAS = 1 i[~/A, YB] , 

o ~v : ½ i[') ,u, 7Vl , (3.22) 

respectively. 
Now the Dirac constraint becomes the Dirac equation in a gravitational field [9], 

( i h T " V , .  - m c )  ~(x) = 0 .  (3.23) 

4. Equations of motion 

Starting from the Lagrangian (2.12) it is not difficult to obtain the equations of 
motion for the various quantities of interest. In particular we get 

~ I P } xv g~p = I (R~v~.B jcV s B  , (4.1) 
[ ) ;iv 

~ s -  1 d 
m c  dr ( / -~A),~A),  (4.2) 

~A + (A,  .~B )?U~" 2 . _ 1  r/AR/~ A ~,~S - (4.3) 
mc 

These equations can be also obtained very simply, by using the correspondence 
(2.32), from the analogous equations founded in ref. [5]. However, we must also 
take into account that ~u and ~A are not scalars under the gauge group; further- 
more, in this case we do not have the mass renormalzation phenomenon. 

We can get another interesting equation by considering the spin generators in 
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. 

We find 
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(4.4) 

Spy + F~oSX.u2o _ FXvpSU.x2o + 2 u ~ ,  .__ gUXgvp2og~ x : 0 .  (4.5) 

The physical meaning of  this equation can be easily seen by going in the fiat space 
limit, in which case we get 

d (SU. v + xU ~v xUS~u) 0 (4.6) 
dr  

that is the conservation of  the total angular momentum. Then (4.5) is simply the 
balance of  the angular momenta of particle and field. 

These equations can be simplified by choosing a particular gauge [5], that is the 
gauge specified by the following Hamiltonian 

1 
H = - 2m~ (5~u 5~vguv - m 2 c 2 )  " (4.7) 

The relevant Hamilton equations are 

)?u= 1 guvg~v, (4.8) 
m c  

~s = 0 .  (4.9) 

It follows from (4.8) that the constraint X = 0 is equivalent to the choice of the 
proper time gauge 

5cU2Vgu, = 1.  (4.10) 

Then in this gauge we have 

1 gUO(R#x).AB 2XS.BA , (4.1 1) xU + C~x2PScx - 2mc 

~A + (Au).AB 2/- t~B = 0 ,  (4.12) 

and furthermore the spin generators are covariantly constant; in fact due to (4.8) 
the contribution of the orbital angular momentum is zero, and we have 

Su.v + F~oSX.v2 ° - FXoSU.x2P = 0 .  (4.13) 

Some remark is in order with regard to eq. (4.11). The content of  this equation 
is that the spinning particle does not  .follow a geodesic in the space-time. In fact, if 
we are in a curved space-time, it is impossible to perform a change of  coordinates in 
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such a way to gauge away the second member ofeq.  (4.11). The spin is coupled to 
the curvature o f  the space-time. 

In order to understand this point we recall from ref. [5] that, studying the gauge 
current, we realized that the spinning particle is not a simple delta-like singularity 
in the space-time. The gauge current shows also a delta-derivative like singularity. 
In other words the spinning particle behaves like an infinitesimal pole-dipole (in the 
sense of  the distribution theory) singularity. The behaviour of  such a singularity in 
a gravitational field was studied by Papapetrou [10] long time ago. Generally speak- 
ing, if one is given a certain test singularity in the space-time, it is possible to derive 
the equations of  motion of such a singularity starting from the Einstein field equa- 
tions [13]. There are various ways to do that, the simplest possibility is to use the 
fact that in such a theory the energy-momentum tensor must have vanishing cova- 
riant divergence. Such a method has been used, for instance, by Fock [14] in the 
case of  a pole singularity, that is of  the scalar particle. In the case of  a string-like 
singularity, Gtirses and G~irsey [15] have used this procedure to derive the equations 
of  motion for the Nambu string. 

Finally, for a pole-dipole singularity, the equations of  motion have been derived 
by Papapetrou, and they turn out to be the equations (4.1) and (4.5) *. It follows 
that we do not have to worry if the spinning particle does not perform a geodesic 
motion, this is just what is required by general relativity. 

It seems to us that the fact that the spinning particle obeys the Papapetrou equa- 
tions cannot be considered as a mere coincidence, but that probably it is the key to 
better understand the physical meaning of the theories with Grassmann variables [17] 

Now let us consider the energy-momentum tensor, which can be obtained by 
varying the action associated to the Lagrangian (2.15) [ 12] 

2c 6S 
TUV(z) = - ~ g  6-guv(z~ ) . (4.14) 

By working in the proper time gauge we get 

mc 2 
f dr2U2~4(x(r) - z) ( z ) = 

f a r  + + (2"fv + 2~fu) fP ~x o a4(x(r)-  z) . (4.15) 

Now we can use the equation of  motion for ~-u, 

+ ppuy 'p = 0 ,  (4.16) 

'~ For some recent application of the Papa~trou equations and more references, see ref. [ 16]. 
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to express ~u in (4.15); we obtain 

/776'2 f TUV(z) = ~ drSeUSf64(x(r)- z) 

ic 
- 2-,N f d~ [~" ~ "(V~)a + ~,~-o~-(V~),,] ~ + (x(~) - =).  (4.17) 

Here we have defined the differential operator  

* v = g a s p  + P O e  , (Vp) , ,  " " ( 4 . 1 8 )  

which has the following remarkable proper ty  

[Vp, v~]Vo * c~ * v (Vu)o(V#)~ v . (4.19) ( V o ) o ( v + , l ~  * ~ * " * = = R d o #  

The differential operator V# is the adjoint of the operator  necessary to define 
the covariant divergence of 7 uv. hr fact we recall the wellknown formula [12] 

x/g TU";v = 8v(x/g T w )  + P ~ u ~ v ~ T  ~ , 

which can be rewritten as 

Vg T~V;v = ( g ~ v  + lP~c~)(x/g- TVC~) =- (Vv)~(vg- TVC~) . (4.20) 

By using (4.20) we can easily verify that T uv has zero covariant divergence, in 
fact we find 

x/rg T#V;v= mc2 f dr[ 3?~ + puavSccUcv 2mci RUopvSco~v~p ] 54(x(r  ) z) 

+ { ic f dT[~-~ (~#[P) + I~ox°~C~P + PPoSccr~#~a] ~p~4(x('f)-- z), (4.21) 

and the coefficients of the delta function and its derivative are the equations of mo- 
tion (4.1 l )and (4.13), respectively. 

Now we see easily the reason why Papapetrou gets two equations of motion. In 
fact in order to get a vanishing divergence for T #v we have to put to zero indepen- 
dently the pole and the dipole ternrs. 

Let us comment about the form of T#V; we see that the first term is the usual 
contribution for the scalar particle. The second term is the spin term, and it is very 
reminiscent of an analogous contribution we found in ref. [5] for the local isospin 
current. Furthermore,  this term plays an important  role in the quantized theory. In 
fact let us consider the operator T "v at the zero order in the gravitational field * 

* Here we use natural units h = e = 1. 
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(Z) = ~m f aT ( [plapV , ~) 4 (X(7) -- Z)]+ TUV 

+ p U 6 4 ( x ( r ) -  z ) p  v +p~64(x(r)  z ) p  ~} 

1 [.dr[pUovp +puoup ' Op64(x(r ) z ) ]+ .  
1n J 

By taking the Fourier transform and the matrix element between states of given 
momentum,  we find 

~(p ' )  rUV(p ' - p) u(p)  = l  ~(p,)[yU(p,  +p)V +7V(p, +p)U]u(p) .  (4.22) 

This is just the usual result, which is obtained by matching the first and the 
second term in (4.17) via the Gordon decomposit ion of the Dirac current *. 

To conclude this section let us consider the motion of the spin four-vector 

EA = 21 eABCDH~ ~.)l, zSc D , (4.23) 

which in world coo~'dinates is 

1 
E ~ = I~A E A = ~ g  e uv°° 5~vSoo , (4.24) 

where 

g = - d e t  [I gu, ll = det -2  IIH~t II • (4.25) 

By using the previous equations of motion we find 

Eu + p~v2v gx = 2gUPRpv2V Ps , (4.26). 

where 

_ , u  

ROy - Rp~ v , 

F5 = ~0~1~2~3 • 

(4.27) 

(4.28) 

This equation is the analogue of the Bargmann-Michel-Telegdi, which was founded 
in ref. [5], for the spinning particle in a gravitational field. 

Appendix 

The relation between the gauge and the metric theory of gravitation has been 
considered in great detail in refs. [6,8]. For completeness we will report here some 
of the relevant results. 

* The same thing happens for the interaction with an arbitrary gauge field, see refs. [4,5 }. 
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Let us start by recalling eqs. (2.16) and (2.17), 

PUvp = tUA(GAo + (Ao)ABG~)  , (A. 1) 

- -  A B (A.2) guy - r?ABGu Gv . 

We want to show that Pvuo and guy can be identified with the affine connection 
and the metric tensor, respectively. From (2.9) and (2.11) it follows 

6p~vo = 0 u p x  OX.vp~o 0 x I "u OU, vo ( a .3 )  , h X v p  , ,p v~.  - -  , 

6guy = - 0  X,u gay - 0 X, vg#x . ( a .4 )  

We see that these are the right transformation properties for an affine connection 
[12] and for a symmetric tensor of rank two. 

Now let us consider a general quanti ty which is simultaneosuly a local and a 

world tensor; i.e. 
t 

6 V (#l' ' 'ul)(A l ' "An)  i~l  ,"i (~.I...U~...~z/)(A 1.--An) 
(vt...Vm)(Bl...Bp) = "= 0,#~ V (v I . . . . . .  Vm)(B 1...Bp) 

m 
'- V(#I. . .  ktl)(A1..-A n ) 

i= 1 

Ai V(I~I...tH)(A1...Ar..An) 
+ e.A~ --(Vl...Vm)(B1... Bp) i = 1 

P 
B~ V (.1...m)(A 1...An) (A .5 )  

. C.B i (Vl...Vm)(B1...B~...Bp) • i=1 

Then we can define a derivative which is covariant with respect to the two dif- 
ferent types of transformations 

V (ul'''12l)(A l" 'An)  = V ('Ul""Ul)(A 1..-An) 
(Vl...Vm)(B1...Bp); # (Vl...Vm)(B1...Bp), t.t 

l 
+ ~ F~I.#V(#I '""~"'"I)(AI '"An) 

.= -- (Vl...vm)(B1.-.B p) 

v~ V (lal...lat)(A1...An) 
I~vi# -- (v 1 ""vi"" Vm)(B 1 ...Bp) 

rtl 

i=1 

5 (At.t)AA~ V (lal'''t'tl)(A l.. 'Ai...An) 
+ i= 1 " (Vl...Vm)(B 1 ...Bp) 
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p 
_ ~ (Au)B~i VOq...**l)(A,...An) (A.6) 

i = 1 (v 1...vm)(B 1...B}...Bp) " 

It follows from this definition and (A. l) that the covariant derivative of the 
"vierbein" fields and o fg ,v  is zero; correspondingly guy can be interpreted as a 
metric tensor. 

Up to this moment we have not required that the affine connection is a symmet- 
ric one, thus in general it is not expressible as a function of the metric tensor only; 
however, we can show that it is uniquely determined by the metric and the torsion 
tensors. In fact from the definition (3.7) of the torsion tensor and eq. (A. 1) we get 

A B ( A v ~ . B G B  A A G A c  p (A.7) ( A . ) . B G v -  = o U' Gu,v - Gv,u + 

By introducing the quantity 

A Ac = I~B(A u )Ac , (A.8) 

that is the gauge field in local coordinates, we can solve eq. (A.7) for the antisym- 
metric part of AAc  

A~B - AAc  = ~CB + ~CB , (A.9) 

where 

and 

, - G v , u ) ,  

C•B A p 
= (A.1 l) 

It is convenient to "lower" the upper index in (A.9) by defining 

A' (A.12) A A B  C = ??AA,ABc  , 

and analogously for the other quantities. Now we are able to solve eq. (A.9) for 

A ABC,  

_ 1  ACAB - ~ ( t A C B  tBAC -- tCBA)+ I (CAcB  -- CBAC CCBA). (A. I3) 

Coming back to (Au~ B we get 

(A .?B  = ½  AA'OC. (tCA'B -- t CA' - tA' .C)  

+ 1  7 I A A ' G C ( C c A , B _  CBCA ' __ C A , B C )  " (A. 14) 

We see that the local connection (Au).AB is completely fixed by the "vierbein" 
fields and the torsion. 
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Now we can inser t  the express ion  (A .14 )  in to  (A.1) ;  by  do ing  so, one  can see 

t ha t  the  first t e rm in ( A . 1 4 ) c o n t r i b u t e s  to  bu i ld ing  up the  Chr is toffe l  s y m b o l  (3 .8) ,  
and the  final resul t  is 

= + g g  ( g u o C v 3 - g v o C ~ u - - g ~ o C ~ v ) .  (A.I  5) 
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