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How the Result of a Measurement of a Component of the Spin of a
Spin- 2 Particle Can Turn Out to be 100
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We have found that the usual measuring procedure for preselected and postselected ensembles of
quantum systems gives unusual results. Under some natural conditions of weakness of the measurement,
its result consistently defines a new kind of value for a quantum variable, which we call the weak value.
A description of the measurement of the weak value of a component of a spin for an ensemble of
preselected and postselected spin- 2 particles is presented.

PACS numbers: 03.65.Bz

This paper will describe an experiment which mea-
sures a spin component of a spin- —,

' particle and yields a
result which is far from the range of "allowed" values.
We shall start with a brief description of the standard
measuring procedure. Considering measurements on an

ensemble of preselected and postselected systems, we

shall define a new concept: a weak value of a quantum
variable. And, finally, we shall describe the measure-
ment of the weak value on the example of a spin- —,

' par-
ticle.

In quantum theory, the result of a measurement of a
variable A which has discrete eigenvalues a; must neces-
sarily be one of those values. The Hamiltonian of the
standard measurement procedure ' is

H = —g(t)qA,

where g(t) is a normalized function with a compact sup-

port near the time of measurement, and q is a canonical
variable of the measuring device with a conjugate
momentum tr. The initial state of the measuring device
in the ideal case has to be such that tr is well defined.
After the interaction (I) we can ascertain the value of A

from the final value of tr: A Btr.

As a reasonable approximation for a real situation, we

may take the initial state of the measuring device as a
Gaussian in the q (and consequently also in the tr) repre-
sentation. For this case, the Harniltonian (1) leads to
the transformation

tIH dte a2I4(—tea) 'g—
—(~ —a;)'/4(4a)'iA ) (2)

where g; a; i A =a;) is the initial state of our system. If
the spread of the tt distribution hatt is much smaller than
the differences between the a;, then, after the interaction,
we shall be left with the mixture of Gaussians located
around a; correlated with different eigenstates of A. A
measurement of tt will then indicate the value of A.

In the opposite limit, where htr is much bigger than all

a;, the final probability distribution will be again close to
a Gaussian with the spread hatt. The center of the Gauss-
ian will be at the mean value of A: (A) =g; i a; i a;.
One measurement like this will give no information be-
cause htr»(A); but we can make this same measure-
ment on each member of an ensemble of W particles
prepared in the same state, and that will reduce the
relevant uncertainty by the factor I/JN, while the mean
value of the average will remain (A). By enlarging the
number X of particles in the ensemble, we can make the
measurement of (A) with any desired precision.

The outcome of the measurement is the average of the
obtained values tr of the measuring devices. As we ex-
plained earlier, it will yield, for a sufficiently large en-

semble, the value (A). We now raise the question: Can
we change the above outcome by taking into account the
values of tr of only a part of the original ensemble, per-
forming a particular postselection'? We may, of course,
achieve this rather trivially, by selecting only measuring
devices with large values of tt which we can always find,
since the original distribution of tt has nonvanishing tails.
But suppose we allow only postselection performed on

the particles themselves; how then can we maximize the
outcome for the average of tr? It might appear at first

that the best method for this will be to select all particles
for which the final state corresponds to the eigenvalue

a,„. But this is not the case. Surprisingly, we found
that by making other postselections we can obtain much

bigger outcomes.
Indeed, we shall now show that the above measure-

ments (with large t),tr), when applied to preselected and
postselected ensembles, may yield new values which lie
outside the "allowed" range, i.e., outside the interval
[min(a;), max(a;)]. The procedure of the measurement
is as follows. We start with a large ensemble of particles
prepared in the same initial state. Every particle in-

teracts with a separate measuring device, and then the
measurement which selects the final state is performed.
Finally, we take into account only the "readings" of the

1988 The American Physical Society 1351



VOLUME 60, NUMBER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1988

measuring devices corresponding to the postselected par-
ticles.

Let us consider an ensemble of particles with an initial
state I y;„) and a final state I y/). At a time in between
we switch on the interaction (1) where the initial state of
each of the measuring devices is [1/JZ(2') '/ ]
x exp( —

q /4h, ). After the postselection the state of
the measuring device (up to a normalization factor) is

.
&

-q'/4~'

(y/ I A I trr;„)
=-(yf I y;„&exp iq

'"
e

&vyI y;.)

This formula is valid if the spread 5 is sufficiently small:

1&v/ I v;.& I

"
( I &li f I
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In the rr representation, the state of the measuring de-

vice is approximately

(3)

exp[ —a'(n —&y/IA I yi.)/(y/I @is&)'1. (s)

where

N!
Cn

n!(N n)!—1 —a 1+a
1
—a

' n/2

The Fourier transform of this equation exhibits the prop-

The standard interpretation of this outcome of the
measuring device is that the measured value of A is

(I/ff I A I I/f )/(yf I y';„). This is the weak value of A for
this preselected and postselected ensemble:

= ( Yf I A I v;.&/& wf I wi. &

The uncertainty of n for each of the measuring devices is
much bigger than the measured value; i.e., An=i/2A
»A [see Eq. (4)]. However, for an ensemble of N
such devices, the uncertainty of the average of n is de-

creased by the factor of I/JN. Therefore, if N is

sufficiently large, then (I/JN )/)z((A„and the value of
A„can be ascertained with arbitrary accuracy. As we

see from the definition (6). A is not bounded by the
minimal and the maximal eigenvalues of A.

One may wonder how a superposition of shifts, all
smaller than a,„, leads to a shift which is much larger
than a~,„. We shall demonstrate this by proving a
mathematical identity which corresponds to the type of
experiment considered in the present note (see also
Aharonov et al. ).

For all functions f(q) which tend to zero faster than
exponential, f(q) ( exp( —lna I q I ), the following
equality can be made valid with any precision by our
taking N large enough:

N

c eiqn/Nf(q) elaqf(q)
n —N

erty described above: For function f(zr) [the Fourier
transform of f(q)] the superposition of shifts, which are
all smaller than 1, is equivalent to a shift by the arbi-
trarily large value a, i.e.,

N

c„f(n —n/N ) =-f(zr —a ).
n= —N

We shall now describe an experiment that measures
the weak value of the z component of a spin- —,

' particle
and yields an arbitrarily large result for it. A version of
this experiment can, we believe, be performed in the lab-
oratory.

We start with a beam of particles moving in the y
direction with a well-defined velocity. The particles are
initially well localized in the xz plane and have their
spins pointed in a direction (. We choose g in the xz
plane with an angle a between g and x (Fig. 1). The
prepared beam comes through a Sterm-Gerlach device
which measures the spin weakly in the z direction. The
requirement of weakness is fulfilled by our making the
gradient of the magnetic field sufficiently small. The
motion of the beam changes, therefore, only slightly.
This weak measurement causes the spatial part of the
wave function to change into a mixture of two slightly
shifted functions in the p, representation, correlated to
the two values of a, . We then pass the particles through
another, normal, Stern-Gerlach device which splits them
into two beams corresponding to the two values of a„.
We keep only the beam with a„1,which continues to
move freely towards a screen placed in front of it. The
screen is placed sufficiently far so that the displacement
in the z direction due to the average momentum p, ac-

FIG. 1. The experimental device for measurement of the
weak value of a, . The beam of particles with the spin pointed
in the direction g passes through an inhomogeneous (in the z
direction) weak magnetic field and is split by the strong mag-
net with an inhomogeneous field in the x direction. The beam
of particles with o =1 comes toward the screen and the
deflection of the spot on the screen in the z direction is propor-
tional to the weak value of cx, : o, (bzppp/l)(88, /Bz)
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quired during the above weak interaction will be larger than the initial uncertainty hz. On the screen we shall obtain a
wide spot whose displacement in the direction z is measured. This displacement will yield the weak value of ~, :

~.,~ =(t. I ~. I t~)j(t, I tg1 =tan i a.

A brief mathematical description of this experiment follows. The particles have mass m, magnetic moment p, an
average momentum pp in the y direction. Their initial state is

I ttt;„) =5 (2tr) e " e ' e e
' ' (cos(a/2) I t„)+sin(a/2) I J„)).

The Hamiltonian of the weak interaction is

Hi = —p(88, /Bz)za, g(y —
y 1),

Ba, a 1
p max tan —,1 «hp, =

2 2h,
(12)

The Hamiltonian of the second Stern-Gerlach device,
which selects the particles with ct„=1, is

H2 = —p(88„/Bx)xo, g(y —y2).

The requirement for the splitting of the beam is

p I BB„/Bx I »Ap„=l/2h. If the angle a between the
directions of spin in the initial and the final states is close
to z, then the requirement has to be stronger, i.e.,

exp( —2b, 'p'
I 88„/Bx I

' « cot'(a/2).

where g(y —y;) has a compact support at the location of
the weak Stern-Gerlach device, which is arranged such
that (m/pp fg(y) dy =1. It is, indeed, essentially a
Hamiltonian of the von Neumann type [see Eq. (1)l.
Since y=(pp/m)t, g(y —yt) is effectively a function of
time (we arrange the momentum in the y direction such
that pp»Ap~ =I/2h); the canonical variable q of Eq.
(1) is, here, p(BB,/Bz)z. The change in the momentum
in the z direction during the interaction is Sp, =p(BB,j
Bz)cr, For o.ur ensemble of preselected and postselected
particles, we shall see that Bp, =p(88, /Bz) tan(a/2).
The necessary requirement of the weakness of the in-

teraction [see Eq. (4)] is

lp B~ a
Z tan-

pp Bz 2
(14)

The measured value of the spin component correspond-
ing to this wave function is tan(tt/2). A rough estima-
tion for the number N of particles in the initial beam
necessary for our obtaining accuracy of I/M is
N=-tM'/cos'(a/2) .

In the above description we have not, so far, taken into
account the influence of 88„/8x and 88~/By which can-
not both vanish since div8=0. In a standard Stern-
Gerlach experiment, one takes care of this problem by
adding a large constant magnetic field in the direction of
the measured component of the spin. It is interesting to
note that the same method can be used in our weak mea-
surement. The strong magnetic field in the z direction
will, of course, rotate the direction of the spin and, there-
fore, during the interaction (11) we have to calculate the
weak value sandwiched not between the states I t~) and

I t„) [see Eq. (6)l, but between the rotated states. It
turns out, however, that if we arrange the magnetic field
in the z direction, such that it rotates the spin during the
interaction by 2ntt, then the weak value of o, during the
whole period of the interaction does not change.

Another striking aspect of this experiment becomes
evident when we consider it as a device for measuring a
small gradient of the magnetic field 88,/Bz. Our choos-
ing a close to tr yields a tremendous amplification.
Indeed, any weak coupling with the spin of the particles
from our preselected and postselected ensemble will be
amplified by the factor [cos(a/2))
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tion, before the collapse on the screen, is approximately
2 2

po
exp

I

The direction of the beam with o„=1 is p(BB,/Bx)x
+ppy. The screen is placed at the distance I such that

ltu 88,
tan —&)h,.

pp Bz 2

The wave function of the particle in the z representa-

'J. von Neumann, Mathematische Grundlagen der Quan
temechanik (Springer-Verlag, Berlin, 1932) [English transla-
tion: Mathematical Foundations of Quantum Mechanics
(Princeton Univ. Press, Princeton, N3, 1955)l.

2This Hamiltonian (1) is the effective Hamiltonian of a
Stern-Gerlach measuring device as will be explained later [see
Eq. (»)].
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3lf condition (4) is valid, then

&yf (e 'I '(y;„&e

6The coeScients e, are derived from the binomial expansion.
We can rewrite the left-hand side of (7), the part which multi-
plies f(q) as

)n=Z
n 0

iq(&yy ~
A

~ tr, n&) v2i4~2=-(yf
~ y») 1+ —

q 4h

Nt

, =iv n!(N —n)!

' n/2

tqn/Ne
1
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4A may even be a complex number. The measurement of n

gives only the real part Red . In our case, in which the initial

state of the measuring device is a Gaussian, we can also find

the imaginary part Imh by measuring the canonical variable

q itself. Indeed, in the q representation the state of the

measuring device is

e "exp — (q+2A ImA„)2
4h,

5Y. Aharonov, D. Albert, A. Casher, and L. Vaidman, Phys.
Lett. A 124, 199 (1987).

[cos(q/2N)+iasin(q/2N)] 2

=[1—(1 —a )sin (q/2N)] e'

where tan&S=atan(q/2N). For f(q) (exp( —Ina~~q
~ ), we

obtain

N

lim g c„e'vi2 f(q)N-~n -N

lim [1 —(I —a2}sin (q/2N)]~e'2~~f(q)

-e'"f(q ).

This proves the statement in the text (7}.
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