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This paper describes a simple applet for illustrating Lorentz transformations. The user specifies
stationary and moving objects and light pulses, and sees animations of two reference frames. Even
with minimal graphicgthe objects are colored dots and the light flashes are expanding kistlek
animations can make the concepts of redshift, length contraction, time dilation, and
non-simultaneity more intuitive than traditional spacetime diagram0@ American Association of
Physics Teachers.
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I. INTRODUCTION runs in a Web browser. The Java applet and source code are
available at the author’s web sitand EPAPS?

Lorentz transformations are one of the enduring fascina- In the following, | explain the ideas implemented, and
tions of doing physics. The heart of our fascination is theShow some examples illustrating redshift, time dilation,
transformation of time. We can cope with length contractionl€ngth contraction, and nonsimultaneity in a simple way.
and velocity-dependent inertia, but our ordinary intuition Viewing the animations over the Web is recommended, but
balks at the relativity of “meanwhile.” not essential.

Acquiring a good understanding of relativity requires de-
veloping new intuition for time transformations. For this,
spacetime diagrams are helpful. But viewing time as anothell. THE PROGRAM

spatial dimension diminishes the full impact of time transfor- Fi 1 sh h h : b
mation. It is much more striking if we can perceive the time_ F'9uré 1 shows how the program appears in a browser.

coordinate with the aid of an animated visualization. In this;]:rhere are two g_;g%hm;?l _paneIT, r_eprr]gshentlng t\;vo |r|1|ert|al
paper | will argue that a very simple but interactive visual- T@mes at a specified relative velocityrhich is 0.& for a
ization can make nonsimultaneity and other Lorentzian ef{n€ €xamples in this paperOn the screen, the red dots are

fects easy to appreciate and make the resolution of som}é?(ed in the left frame and move to the rightward in the right
well-known paradoxes more obvious. rame, for blue dots the converse is true. But this paper uses

a different schemébecause animations have been replaced

Visualizations of the Lorentz transformations have a long ) o !
history. In Gamow'sMr. Tompkinsstoried from the 1940s, 2V Still frames: fixed dots in whatever frame are dark gray,
' pmoving dots are light gray. Circles represent wavefronts

the hero dreams of a city where light travels at about 10 mpOfrom light flashes

Textbooks often illustrate thought experiments: Taylor an A liaht flash is a convenient wav of marking a spacetime
Wheelef is a fine example. Mermin used computer graphics 9 y gasp

: P . . ) event. The user specifies a light flash by clicking with the
ﬁ);Iélé)sé{;?tsei;eﬁgvgﬁsnogli%reggl arreuljafi)\??%?/lrolrneczgnf?vtvlgpem mouse while the animation is running, initiating an expand-
for teaching relativity may be found in the relativity series of "9 circle. Let us represent an eventfiy,x,,y} in the left
Physics Academic Softwatdhe internet has several relativ- 7@me andit;,x;,y;} in the right frame. The coordinates are
istic “flight simulators,” of which Seeing Relativifjis note- ~ related by(usinge=1)
worth_y for its superbl graphips. Hamiltc.)n' has r_evieyved SeV- Lt x Ly =yt o), (X ot Y ) (D)
eral flight simulators in addition to providing animations and L
detailed explanationsAnd yet computer graphics aren't ev- and its inverse
erything: Relativity \ﬁsqalizeoby Ep_steiﬁ shows ju_st how _ It XY ={v(t—ox), y(x —vt),y ). 2
much can be accomplished with simple ink drawings. This = | ) .
little-known book overflows with insights and original ways Animations show the frames while keepifig-t; . _
of explaining both special and general relativity, such as a Marking objects is a little more complicated, because it
type of spacetime diagram with proper-time as an axis andpvolves specifying a world Ime.rathe.r than just an event.
coordinate-time as arc length; it has a half-genius-half-The user can “set the scene” with objectstatt, =0 and
buffoon quality that surpasses even the Feynman lectures. then start the animatioriAs mentioned above, light flashes

This paper describes a simple computer program tha#an be marked while an animation is aIready runr)nSgup- -
shows{t,x,y} in two inertial frames related by a boost, with POS€ the user wants to mark an object stationary in the right

t represented by an animation rather than a spatial axis as f ame. To do so, she/he would select the blue button and then

a spacetime diagram. It does not represent what we might sé:eICk in either frame, whereupon a blue dot appears in both

from a relativistic ship(and in particular does not attempt rames. Att; =t, =0, we have from Eq(2)

perspective, Terrell rotation, or color shjftsDespite this X Yo ={yx vt 3
modest scope, however, it has two advantages that help give ivalent
insight: (i) it is highly interactive, and users can pose prob-Or equivaiently

lems that the author might not have thought of, ding it xoy =1y %y} (4)
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redshift | red I blue | run | pause I clear|

Fig. 2. lllustration of redshift. The circles represent light flashes from a
velocity 0.8 window size [1.0 time step [0.1 msec | 250 source stationary in the right frame but moving to the right in the left frame.
(Under Galilean transformation, the left frame would have concentric circles
all moving with the source.

Fig. 1. A screen shot of the applet. Common browsers will run the program

if Java is enabled, but the exact appearance will vary. Subsequent figures

will show only the two main graphical panels. In all the figures, dark gray

dots are stationary, light gray dots are moving, and circles represent expantban in the right frameand€/[ y(1+uv)] going back(shorter

ing wavefronts. than in the right framg resulting in a total time of
2¢/1[y(1—v?)] or 2y¢.
Playing with this animation invites the user to think about
For objects stationary in the left frame, replace blue by redhe following paradox. If the user sets off a light flash by
and swap the subscriptsandr. Note that clicking in either
frame specifies coordinates in both frames.

The asymmetry between Ed8) and(4) might seem puz- — —
zling. However, note that these equations represent not jus
boosts, but boosts followed by a mapping to zero time coor-
dinate. Becauséx, ,y,} is stationary, mapping t6,=0 in
Eg. (3) makes no difference; whereas becayse,y,} is
moving. the mapping tt =0 changes the appearance of Eq. | 1r @ ° 1
(4). From the user’s point of view, Eq$3) and (4) simply 1
illustrate length contraction.

[ll. EXAMPLES ! s

Users can set up their own scenarios, but four examples
are included. Unfortunately, the program cannot illustrate ve-
locity addition or the twin paradox because those problems
require at least two Lorentz transformations, whereas the
program is restricted to one. L 1L 4

A. Redshift

Figure 2 shows wavefronts of light flashes for a stationary
and moving source. The moving source produces nonconcer
tric circles, illustrating how light spreads around the event of
emission, not around the worldline of the source. It becomes
obvious that observers behind will see a redshift and observ
ers ahead will see a blueshift. Moreover, it is clear that ob-
servers perpendicular to the source motion will also see &
redshift. (Incidentally, sound spreads with respect to the |
worldline of the medium. So a wind can produce a Doppler
shift with neither source nor listener moving.

B. Time dilation

Figure 3 represents light moving forward and back along a
moving rod. The rod is stationary in the right frame and hadig- 3. lllustration of time dilation. The two dotsayA andB) are station-
length¢; in the left frame it is moving and has lengthy. In ary in the right frame and moving in the left frame. Light travels frénto

. . . B and back again. In the upper pandishas emitted a light flash for which
the right frame, light takes timé on each of the forward and t;<t,. In the middle panels the light has reach&dind been reflected, at

return trips(note that we are using=1). In the left frame, >t . n the lower panels the light reachédand has been reflected again,
light takes a timel/[ y(1—v)] going forward(much longer  and this event hag=t, .
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Fig. 4. lllustration of the javelin problem. The row of five dots represents Fig. 5. lllustration of the frisbee problem. The frisbee is represented by five
the barn and is stationary in the left frame, while the other two dots repredots stationary in the right frame and the sunroof by ten dots stationary in
sent the javelin and are stationary in the right frame. Light flashes go oftthe left frame.(The orientation is awkward in this figure; the “road” is to
when the head of the javelin reaches the right end of the barn and when thtee upper leff. Light flashes go off as the edges of the frisbee cross the
tail of the javelin reaches the left end of the barn. These light flashes aredges of the sunroof. Because length contraction affects only the direction of

simultaneous in the lefbarn frame. But in the rightjavelin) frame, the tail motion, the orientations of frisbee and sunroof depend on the frame. Con-
event occurs after the head event baforea light flash from the head event sequently the edge-crossings are simultaneous in thesleftoof frame but
can reach the tail. not in the right(frisbee frame.

clicking at somet, in the right frame, the left frame may  This is one version of a less well-known length-
have the same flash §t<t,. But how does the left frame contraction paradoXSee Ref. 8 for more versiondzigure 5

““now” at t what the user will do in the right frame iIIustr_ates it.(We neglec_t pr_oblems conc_erning_ the rotafcion of
12 ! 9 & the frisbee here¢The point is that a moving object that is not
| <

aligned with the direction of motion will be tilted as well as
contracted.
C. Length contraction in one dimension: The javelin

paradox IV. DISCUSSION

The third example is a well-known length-contraction  The initial motivation for writing two-frame animations of
paradox. One version of |t_|nvolves a Io_ng javelin, a Short{t,x,y} was to present standard examples in a simple yet
barn, and a relativistic sprinter. The sprinter runs with theappealing way. But after setting up and viewing a number of

javelin into the barn fast enough to shorten the javelin to the,amples, such animations became quite interesting, inde-
barn’s length; as the rear of the javelin enters the barn, som sendently of the particular examples.

ggrengloses the barn door. Does the javelin really fit into theé -~ sider the following features of the animations:

Figure 4 resolves the paradox. In the javelin frame, thel) A moving pattern of dots is length-contracted. The con-
barn door does close. But the tip of the javelin has reached traction factor noticeably increases with velocity, but the
the far wall of the barn before that. The tip must either cut ~ exact dependence is not obvious.
through the wall or get stopped by the wall, but the news will(2) Light wavefronts are immune to length contraction. They
not have gotten to the rear of the javelin before the barn door remain circles in both frames.

closes. (3) An event can be marked in several ways: by a light flash,
by a light wavefront crossing a dot, or by a moving dot

D. Length contraction in two dimensions: The frisbee crossing a stationary dot. If two event markers coincide

paradox in one frame(for example, a light flash goes off just as

the tip of the javelin reaches the far end of the barn
You are in the back seat of a car, and having nothing better they will coincide in both frames.

to do you open the sunroof and throw a frisbee up and for-
ward through it. The frisbee is actually wider than the sun- The assertions 1 and (&at is, length contraction and the
roof, but thanks to your relativistic frisbee-throwing skills, event conceptimply time dilation. Gamow makes this point
length contraction shortens the frisbee to fit. But in the fris-with beautiful simplicity. Mr. Tompkins in his dream city
bee frame it is the sunroof that has contracted, so how canotices length contraction first: a passing cyclist appears un-
the frisbee possibly fit? believably shortened, and when Mr. Tompkins gets on a bi-
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cycle himself, the street appears shortened. Time dilation anthe constant speed of light to calculate the back-and-forth
the non-invariance of simultaneity follow as consequences ofight travel time in the left frame asl? y(1—v?)], and then

length contraction: because the street is shortened, Mysedy=1/\/1—v2to derive the dilated time @. A different

Tompkins can cycle past five blocks in a few breaths. y(v) would give a time-dilation factoe- y, thereby contra-
We can translate Mr. Tompkins’s experience into more for-

. dicting the previous paragraph.
mal language as follows. Suppasgrepresents a dot station- — \y\.s™ have now expressed Lorentz transformations in

ary in the left frame and; is stationary in the right frame  «animation-oriented” language. Statements 1-3 carry all the

(that is, x; constant,x, constant If we write v for the  quantitative information about a boost, but without equations

velocity andy for the length-contraction factor, assertion 1 and without mentioning time-transformation explicitly at all.

implies that

(5) dElectronic  mail:  p.saha@qmul.ac.uk; http://ankh-morpork.maths
.gmul.ac.uk/~saha

with the functiony(v) as yet unspecified. Now le¢; cross 1§3é6(;am0W'Mf- Tompkins in PaperbackCambridge U.P., Cambridge,

X2 By assertion 3, we may express FhIS e"‘?”‘xﬁg X2 ’E. F. .Taylor and J. A. WheeleBpacetime Physicd-reeman, San Fran-

=¥, in the left frame and at,, =X, =X, in the right frame. cisco, 1991

If we substitutex; andx, in Eg. (5) and rearrange the terms, °N. D. Mermin, “The amazing many colored Relativity Engine,” Am. J.

-1 _ -1
Xo =7y Xortouly, Xy=7vy Xy—vt,

we obtain Phys.56, 600-611(1988.
“N. D. Mermin, Space and Time in Special Relativig¥aveland, Prospect
{t, X ={y(ti—wx), y(x,—ovt)}, w=(1-1/y?>)/v. Heights, lllinois, 1968

(6) SPhysics Academic Softwaréhttp://www.aip.org/pas

. 6C. Savage and A. Searle, “Seeing relativityhttp://www.anu.edu.au/
If we take y=1/\1— 2 or equivalentiyw=v, then Eq.(6) Physics/Searlg/
is a boost. If we take a differeng(v), then Eq.(6) still "A. Hamilton, “Special relativity,” (http://casa.colorado.edusjsh/sr/
retains two of the familiar properties of a boo8):it can be Sirs(:htgste'n Relativity Visualizedinsight, San Francisco, 1981
. . _ I . . C. n, IVIty Visuallz | y | f
mvt?rt,ed _by Ir(.a.ple_\cmg; (;)y v a; ma}é,?e ,Ve”fled t;]y dl_reCt 9The author’'s Web site ighttp://ankh-morpork.maths.qmul.ac.uldaha/
substitution; (i) it produces a time dilation ofy, that is, teach/lorenta/

(at,/ at,),(I =. 1%see EPAPS Document No. E-AJPIAS-71-013311 for the software, includ-

Assertions 2 and &hat is, the constancy of the speed of ing examples, and related documentation. A direct link to this document
’ may be found in the online article’s HTML reference section. The docu-

”g_ht) then imp'Y that_'}’(lf) can only be 1{1-v". To see ment may also be reached via the EPAPS homelatte://www.aip.org/
this, !’eca” the t'_me'd”atmn exampl&ig. 3 and_ the accom-  pubservs/epaps.htibr from ftp.aip.org in the directory /epaps. See the
panying discussionIn that example we used kinematics and EPAPS homepage for more information.
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