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Abstract

A possibility for the visualization of arbitrary objects in curved space-
times is the computation of an image as a realistic observer would see
it. We present this approach first in the context of special relativity. In
particular, we discuss the ‘apparent geometry’ of a moving object and the
effects on the specific intensity that is seen by the observer. We exam-
ine the possibility of using polygon shading as an alternative technique
which is simpler than a full ray-tracing approach. In general relativity, no
such shortcut is possible, and we have to explicitly integrate the paths of
all photons reaching the observer. The resulting image is therefore deter-
mined not only by the object itself, but also by the spacetime surrounding
this object. In addition, the observer may now have to be described in
a general relativistic context. We also discuss the possibility of including
general relativistic ray-tracing in conventional ray-tracing software. As
examples, we present pictures of a thin disc around a Kerr black hole and
of Einstein rings. We also mention astrophysical consequences of the dis-
tortion of images as they occur for light curves of X-ray pulsars or spectra
measured for accretion disks around compact objects. Examples for pic-
tures and animations can be found on the world wide web, our home page
is http://www.tat.physik.uni-tuebingen.de.



1 Introduction

Living in an essentially flat spacetime, we have not had the possibility to de-
velop an intuition for the interpretation of perceptions, in particular of visual
impressions, of objects in curved spacetimes. This is a major stumbling block
for an intuitive grasp of the meaning of results in General Relativity. This is
true for people who are not trained in General Relativity, but to some extent,
it also concerns the hard-core relativist.

One possibility to train our intuition is using computers to model objects
in curved spacetimes and to create images of them as we would see them if we
either had sufficiently large telescopes, or could get close enough ourselves, to
actually look at them in nature. Using this approach on simple objects, such as
spheres, cubes, rings, etc., can help us train our intuition for interpreting such
images. Using it on actual results of computations in numerical relativity will
then enable us to interpret the results we have obtained, or they can help us in
the diagnostics of the programs we develop.

2 Ray-Tracing Special Relativity

We will actually start with special relativity, i.e. the visualization of objects in
flat, fourdimensional spacetime. We will see that there are many basic concepts
as well as technical difficulties which can be discussed in this somewhat simpler
setting, without obscuring them by the additional difficulties introduced by
general relativity.

In fact, it is far from trivial to get the correct idea what an object moving
at relativistic speed will actually look like to an observer. Einstein [1] himself
does not seem to have realized the difference between measuring an object in a
moving frame of reference, and looking at it. Gamov [2] actually gave a wrong
description of what the world around us would look like if the speed of light
were much lower than it really is.

If images are actually obtained by ray-tracing, then the conceptual difference
to ’conventional’ ray-tracing in Newtonian space is not really dramatic. Photons
still travel on straight lines, but since they now travel at a finite velocity, we have
to keep track of time while tracing the rays and looking at their intersections
with objects in the scene. Of course, an appropriate Lorentz transformation
must be used to obtain directions, specific intensities, etc. in the rest frame of
the objects. This approach has been used to create images of several geometrical
objects moving at relativistic speeds [3].

2.1 Geometrical appearance

Complete ray-tracing can give us a realistic image with all relevant effects in-
cluded, but it is very expensive in terms of computational resources. If we are



mainly interested in the geometry of the scene, we may settle for a simpler
and much more efficient approach, i.e. polygon shading. In this technique,
objects are described as a collection of luminous polygons, excluding exterior
light sources. Efficient algorithms are available for projecting these polygons
onto the screen, determining obstructions from view by intervening polygons,
and for finding their shade for the resulting picture. Some of these functions
may even be performed by specialized hardware, resulting in considerably higher
speed for the whole procedure.

In a sense, we settle for a diagram, rather than a realistic image, of the scene.
However, the threedimensional structure can be emphasized by using texture
and non-isotropic emission characteristic on the surfaces. This can also recreate
an impression similar to exterior light sources, especially a diffuse, ambient sort
of lighting.

However, this approach is essentially static: Light rays are not followed along
their paths, the scene does not move itself, but the observer may regard it from
different perspectives and distances. How can the effect of a finite speed of light,
the fact that time plays an important role now, be incorporated into such an
approach?

We will see that it is indeed possible to transform the given geometry of
some scene into another one in such a way that the effects of motion relative
to the observer, together with the finite speed of light, can be included in this
static approach. This will permit the use of polygon-shading at least for some
visualization problems in special relativity.

2.1.1 Hyperbolic transformation, apparent positions

Imagine, say, a lattice, consisting of spheres and beams connecting them, passing
over a camera. The camera shall take pictures at a very high shutter speed, such
that the lattice moves very little during the time that the shutter is open for a
given picture. We can therefore assume that the photons making up one picture
have arrived at the camera at the same time. It is clear that photons coming
from different points on the lattice had to be emitted at different instances in
time, because they have a different distance to travel from their emission until
reaching the camera. This is true both in the reference system of the lattice and
in that of the observer. Using the Lorentz transformation and the traveling time
for photons coming from different points on the lattice, we can then compute
the points in space where the photons making up the picture have been emitted.
The results for different speeds have been given in [4], they are shown in Fig. 1.

A thin rod traveling straight towards the observer, with its axis along the
direction of travel, will appear elongated while it is approaching, and strongly
contracted when it is receding. If it is aligned perpendicularly to the line of
travel, it will assume the shape of a hyperbola. The shape of any other object
can be transformed in the same way, of course, if we regard the lattice as a
coordinate system for this object.
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Figure 1: Apparent shape of a lattice passing over an observer B at different
speeds.

The general formula for this transformation is

T = 'Y(II_5VP'2+$/2) =7y (z" — pr')
p = p, (1)
where § = v/c and v = 1/4/1 — 82;  and p = \/y?® + 22 are measured in the

observer’s frame, z' and p’ in the rest frame of the lattice. The coordinate
systems are aligned such that z = 0 coincides with =’ = 0 for p’ = 0; the
observer is positioned at the center of his reference frame.
Note that a ruler aligned vertically to the direction of travel, given by (z' =
z,

const, p'), will appear to the observer as having the shape of a hyperbola (z, p):
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Given the description of some object in its rest frame, all we have to do now
is to transform the positions of its defining points according to (1). The trans-
formed object can then be used as input for a conventional rendering program
to create pictures as seen by our hypothetical camera. Animated sequences may
be produced as well if the transformation (1) is redone every time the position
of the object relative to the camera changes. Note that the transformation also
depends on the direction of travel relative to the direction of observation.

Two examples obtained with this technique are shown in Figs. 2 and 3. The
apparent rotation of the cube is discussed further in section 2.1.3. Note that
the back side (green color) of the Brandenburg gate is already visible while the
camera is still inside the gate, facing forward.

2.1.2 Meaning of the apparent shape

We should pause for a moment and ask the question what the meaning of
this apparent shape of the lattice, or any other object, really is. Let us first
summarize what it is not:

e It does not show the positions of the points as measured in the observer’s
rest frame.

e It is not the lattice as we would actually see it from the side, i.e. from the
perspective chosen for Fig. 1.

e It is not what the observer at B would actually see: A rod aligned with
the direction of movement is seen as a point, a rod aligned perpendicularly
to it is seen as a line.

e It is not what an intelligent observer would reconstruct from the image
he sees: An intelligent observer knows about special relativity and, given
enough information, reconstructs the true shape of the object in its own
rest frame.

The apparent shape is the collection of points (in the rest frame of the
observer) where any one of those photons has been emitted which make up
the picture seen by the observer at a given instance. Since the emission is a
spacetime event, it is possible to give this apparent shape a physical, observable
meaning by the following construction:

Suppose we could identify each photon that enters the camera at a given
moment, e.g. by giving each photon a unique frequency. Suppose we have
filled the space that the lattice traverses with detectors which are at rest with
respect to the observer. These detectors store the information which photons
have been emitted in their vicinity. For each photon in the picture, we find the
detector which saw it being emitted, and make this detector raise a flag. All
the detectors with raised flags then make up the ’apparent shape’ of the lattice
which is depicted in Fig. 1. The observer could then leave his fixed position and



Figure 2: Pictures of a cube passing a camera non-centrally, taken when the
cube appears at its closest distance to the camera. The side of the cube facing
the camera is colored green, the back side (with respect to the direction of
motion) is colored yellow. The velocity (from left to right and top to bottom)
isv~0,v=0.5¢v=0.9c and v = 0.99¢c.



Figure 3: Passing through the Brandenburg gate (Berlin, Germany). The dif-
ferent sides of the gate have been given distinctive colors in order to identify
them more easily. On the left, the camera is moving at a non-relativistic speed;
the bottom picture shows a look backwards towards the back side of the gate.
In the middle and on the right, the camera moves at v = 0.99¢.




view this (static) arrangement of detectors from any position and any direction
he chooses.

2.1.3 Projection and field of view

The process of projecting the threedimensional scene onto a twodimensional
image can cause deceptions as well. In the scene (Fig. 2) where a cube passes the
observer non-centrally at some distance, the impression is that the cube is not
stretched or contracted, but mostly rotated. However, when we regard the cube
as a part of the lattice in Fig. 1, we realize that it cannot be rotated. Rather, it
appears sheared along the direction of travel. For the setup sketched in Fig. 4,
Fig. 5 shows how the apparent shape of the cube (left), when projected on the
image plane, gives the same picture as a cube which is not distorted, but merely
rotated (right). The cube in Figs. 4 and 5 is assumed to be small relative to its
distance from the camera. The moment of observation is chosen such that the
apparent image of the cube is seen in a direction perpendicular to its direction
of motion, but the same general argument applies for an arbitrary combination
of directions.

Camera

Figure 4: A cube passing a camera.

Finally, the field of view we use can have a profound influence: With a
fish-eye lens, we will obtain effects which look very similar to the ones we have
seen here. In order to exclude artificial effects caused by using an inappropriate
perspective or camera size, one should always record a scene at non-relativistic
speeds in order to use it as a standard against which the relativistic scene can
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Figure 5: Projection effect for the cube passing a camera.

be judged.

2.2 Lighting

In the last section, we have discussed the geometry of the pictures that we
obtain. In order to see anything, we need light. In order to obtain the pictures of
the last section, we assumed that all objects in the scene are self-luminous, with
an isotropic emission. All effects of objects being illuminated by other parts
of the scene, or of the spectral shift and the intensity change of the emitted
radiation due to the Doppler effect, have been neglected. For realistic (and
more impressive) images, however, we will have to take into account the effects
of exterior light sources as well as the Doppler effect on the radiation emitted
or reflected by the scene.

2.2.1 Spectral shift

The relativistic Doppler effect shifts the frequency of emitted radiation for an
approaching or receding object according to:

v/ _ 1—[cosf
BV

where 6 is the angle between the direction of movement and the direction of
observation. If the object is moving directly towards or away from the observer
(0 ==, 0), then

(3)

1+
vive = % = 2.000 (0.5000) B =0.60 app. (rec.)



= 6.245 (0.1601) B =0.95 app. (rec.) (4)
= 14.11 (0.0709) B =099 app. (rec.)

If the object is emitting monochromatically somewhere in the visible range of
the spectrum, then its image will be shifted towards the ultraviolet when it is
approaching, and towards the infrared when it is receding. Even at a mildly
relativistic speed, it may completely disappear from the visible range of the
spectrum. In order to keep the object visible for the whole time, it has to have
a continuous spectrum (e.g. a Planck spectrum) with considerable intensity in
the ultraviolet and in the infrared.

2.2.2 Intensity shift

Along with the spectral shift due to the relativistic Doppler effect comes a
change in the specific intensity. This change can easily be computed since

% = const. (5)
is an invariant scalar along the path of any photon.

Using (5), in order to compare the brightness of an object when it is ap-
proaching vs. when it is receding, we have to keep in mind that we compare
intensities at different observed frequencies, i.e. at those determined by (3). If
we keep the observed frequency fixed, we may assume a spectrum which is flat
over the relevant range, or we take into account how the (emitted) intensity
depends on the frequency. Using the values of (4), we see that even for a mildly
relativistic speed of v/c = 0.6, the ratio of the intensity of the approaching to
that of the receding object is 64! This will make it impossible to display the
intensity change realistically without losing almost all the resolution in bright-
ness that a computer screen offers. The situation becomes worse for a higher
speed, of course.

2.2.3 The influence of aberration

The direction of a plane wave emitted by a moving object is tilted towards the
(forward) direction of motion. Therefore, radiation emitted (or reflected) by an
object will be focussed towards the line of motion in the forward direction and
spread away from it in the backward direction. This beaming results in a change
of intensity in a given direction. This change, however, is already covered by
(5). Therefore, all we need to know is the relativistic Doppler shift for a light
ray reaching the observer from a given direction.

Conversely, if a light source is at rest with respect to the observer, then a
moving object will see it closer to the forward direction of motion than it appears
in the observer’s frame. Within our approach of “hyperbolic transformation (1)
+ polygon shading”, we can take this change of direction into account if we
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restrict ourselves to point sources at infinity: We just have to move each light
source to the position it would have in the object’s rest frame. The beaming of
light emitted (or reflected) by the object, on the other hand, has to be included
separately, even for an object which emits radiation isotropically in its rest
frame. The invariant intensity (5) can be used for this purpose.

2.2.4 Obstructions and Shadows

Usually, parts of a scene are obstructed from view by other parts. In addition,
one part of a scene might block light from an exterior light source from reaching
another part of the scene. The ‘transformation approach’ we described in the
last section will correctly include obstruction, but not shadows: shadows can
only be treated correctly by a full ray-tracing approach. This is also true, of
course, of light that is reflected by one object and illuminates another.

3 Ray-Tracing General Relativity

In special relativity, light rays can still be considered straight lines in flat space-
time. This is different in general relativity, and therefore, the paths of all
photons reaching an observer will have to be integrated explicitly, using the
geodesic equation. The resulting image is therefore determined not only by the
object itself, but also by the spacetime surrounding this object.

A general relativist will probably be quite happy with the possibility of
visualizing relativistic effects of the results of numerical calculations. A more
astrophysically minded person might ask, however, if it would not be better to
build telescopes powerful enough to actually look at an object like an X-ray
pulsar in nature. In Table 1 we give the necessary aperture of an ideal telescope
(one whose resolution is limited by diffraction) needed to resolve a ten kilometer
object at various typical distances. It is obvious that such a telescope cannot
be realized for objects which are outside our own solar system.

Also, current technology does not allow us to take a closer look by traveling
to objects outside our own solar system, and this is likely to remain the same
for at least several thousand years to come. Therefore, the computer is the only
telescope, and the only spaceship, that will allow us to have a good look at, say,
the X-ray pulsar Her X-1.

3.1 Requirements

The requirements for a universal general relativistic visualization code are the
following:

We want to be able to work in any metric. In particular, this means a metric
without any symmetry, which may also be time dependent. If the metric is the
result of a numerical calculation, it may be given in terms of numerical data on
a (possibly irregular) lattice.
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Distance Telescope aperture

20 000 km Australia 1 mm

400 000 km Earth — Moon 20 mm

80 million km Earth — Mars 4m

4 billion km Earth — Neptune 200 m

4 x 10" km = 4ly. Nearest star 2 000 km
400 light years Cosmic neighborhood 200 000 km

12 000 light years X-ray pulsar Her X-1 6 million km

Table 1: Telescope apertures necessary for a diffraction limited resolution of a
ten kilometer object for some typical cosmic distances.

We want a resolution which corresponds to that of a standard computer
monitor, i.e. about 10002 pixels. Since realistic, astrophysical systems will
generally carry information about specific intensity, we should have about 3 x 8
bit color resolution. Luckily, the null geodesics of photons do not depend on
the energy of the photon, so we don’t have to compute several paths for one
pixel. On the other hand, spectral changes due to gravitational redshift and
Doppler shift have to be taken into account explicit For an animated sequence
of, say, 24 frames per second and a duration of 1 minute, more than 10° light
rays have to be integrated and intersections with objects in the scene have to
be checked. To our knowledge, presently no such fully universal code exists.
If it did, it would require too much CPU time to generate sequences in an
acceptable time. Therefore, compromises based on symmetries have to be made
and adaptive techniques have to be used in order to reduce the computational
resources that are required. Since individual light rays don’t influence each
other, parallelization is also a promising possibility.

3.2 Geodesic equation

Photons follow null geodesics in the given spacetime:

it 4 TH "3 =0 . (6)

The immediate consequence is that there are no simple ‘tricks’ such as the
transformation (1) in special relativity any more. It will be necessary to explic-
itly follow the path of each photon. Therefore, algorithms like polygon shading
will not be applicable any more, and a full ray-tracing, or at least ray-casting,
approach is required.

A related problem concerns the definition and description of objects in the
scene, rather than the light rays. As long as we are dealing with objects which
are the result of some calculation, such as the surface of a neutron star, the
description of it is coordinate invariant if the underlying problem is formulated
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correctly. However, in order to demonstrate the effect of a certain geometry,
we may want to visualize simple objects, like spheres, cubes, etc. These objects
have to be described in terms of some coordinates. However, an object which
satisfies the equation for a sphere in one set of coordinates may not do so in
another. It is thus necessary to construct a coordinate invariant description of
the properties of the objects. In addition, something like a cube may even be
impossible to construct in an arbitrary spacetime.

3.3 Camera

In a general relativistic framework, we should also consider the influence that the
spacetime may have on the camera. In order to avoid unnecessary complications,
we will assume the simplest possible camera, i.e. a pinhole camera. There are
two basic possibilities for the location of the camera:

1) The camera is located in the asymptotically flat part of the spacetime.

For actual observations, this is clearly the most realistic possibility. It has the
advantage that we do not need a general relativistic description of the camera.
However, the angles which distinguish the different light rays making up the
picture vanish in the asymptotic limit. This technical problem may be solved
by using a large, but finite distance, or — more elegantly — by using other
quantities, such as the impact parameter, to characterize light rays.

2) The camera is located near the source of the gravitational field.

This possibility is potentially more interesting, but now we need a fully
relativistic description of the camera. In general, we can assume the camera to
be small with respect to the length scale of the spacetime we are picturing. It
will then fit into its own locally inertial frame, and in the case of acceleration, we
can assume that it accelerates ‘as a whole’. However, we will need to determine
alocal tetrad corresponding to the motion of the camera through the spacetime.
All angles have to be measured with respect to this tetrad.

3.4 Realizing relativistic ray-tracing with conventional
ray-tracing programs

There are two major modifications that have to be applied to conventional ray-
tracing programs in order to handle relativistic spacetimes:

e In addition to the three space coordinate, we have to keep track of the
time coordinate as a photon travels through spacetime.

e Light rays are now geodesics of the spacetime, rather than just straight
lines.

The first modification is rather straightforward. In fact, for stationary space-
times and stationary scenes, it may even be omitted. The second modification
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is much more demanding: Ray-tracing codes need efficient algorithms to deter-
mine intersections between light rays and objects in the scene. These algorithms
rely heavily on the light rays being straight lines. Changing this is much more
involved than the integration of the photon path itself, and it will considerably
reduce the efficiency of the code.

It is therefore desirable to leave the intersection algorithms as they are, and
approximate the light rays by segments of straight lines [7]. Fig. 6 demonstrates
that even a strongly bent light ray can be approximated adaptively with only a
few segments. These segments are then passed to the intersection algorithm.

Figure 6: Approximating the path of a photon by straight line segments.

Figure 7 shows how relativistic visualization can be incorporated into a con-
ventional ray-tracing program in such a way that the physicist using this soft-
ware has to supply only information about the spacetime he is studying, without
having to worry about the integration of the photon paths, the intersection with
objects, or the rendering of the image.

The ray-tracer calls an interface which performs the integration of the light
rays and adaptively converts them into straight line segments. Given the last
position in terms of coordinates z,, it returns the next position z,41 such
that the ray-tracer may assume that light travels in a straight line between z,
and z,4+1. In order to integrate the light ray (which should typically be done
with a much smaller step size than the conversion to straight line segments),
the interface calls a subroutine supplied by the user, passing the position and
direction of the photon to the subroutine, and expecting the second derivative
in return. This is just the information which can be provided using the geodesic
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equation (6).
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(Zn,Zn) Zn

Description

Physics of Spacetime

Figure 7: Including relativistic ray-tracing in a ‘conventional’ ray-tracing pro-
gram.

3.5 Astrophysical Examples

Figure ?? in [9] shows a picture of the surface of a realistic, rotating neutron
star, as seen by an asymptotic observer. Due to the rotation, the surface be-
comes oblate and is not spherically symmetric any more. However, its internal
structure is still rotationally symmetric with respect to the rotation axis of the
star. In the picture, however, the surface looks different on either side of the
rotation axis. This effect is especially pronounced near the equator of the star.
The reason is the different bending of light rays: Due to the dragging of inertial
frames near the star, photons are deflected differently depending on whether
they are traveling with or against the star’s rotation.

Figure 8 shows a thin disc around a Kerr black hole. This arrangement can
be regarded as a schematic representation of an accretion disc around a massive,
rotating black hole, as they occur in active galactic nuclei. The disc is assumed
to be rigid and to have negligible mass. The checkerboard pattern on the disc
is not defined in a coordinate-independent way; rather, each patch covers a
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given range of ¢ in Boyer-Lindquist coordinates. For comparison, both the
mass and the angular momentum of the black hole are set to zero in the upper
left picture. The mass is nonzero in the upper right picture, the disc appears
distorted and the Einstein ring, consisting of the indirect images, appears. In
the lower left picture, the angular momentum becomes nonzero as well. The
additional distortion due to frame dragging is clearly visible. The Einstein ring,
however, disappears: Due to frame dragging, photons hit the disc again before
being able to complete an orbit around the black hole. The picture on the lower
right shows a close-up view of the central region.

A well-known consequence of gravitational lensing is the so-called Einstein
ring: Due to symmetry, the image of an object right behind a gravitational
lens will have the form of a ring in the image plane. In Fig. 9 we present the
‘true’ Einstein ring: Imagine a giant billboard at the end of the universe with
a portrait of a famous physicist painted on it. While viewing this portrait, a
black hole passes between us and the billboard.

While it is unlikely that this ‘true’ Einstein ring will ever be observed, im-
ages of galaxies distorted by gravitational lensing have actually been seen [10].
Figure 10 shows an image of the galaxy cluster Abell 2218 taken with the Hub-
ble Space Telescope. Due to gravitational lensing, this galaxy cluster provides
a powerful ”"zoom lens” for galaxies that are so far away they may not normally
be observable with even the largest available telescopes. In particular, several
hundred arclets can be identified. These are distorted images of a very distant
galaxy population extending 5-10 times farther than the lensing cluster. In addi-
tion, Abell 2218 has a total of seven multiple images generated by gravitational
lensing.

3.6 Astrophysical Application: Light curves of X-ray pul-
sars

Another consequence of relativistic light deflection is not directly related to
visualization, but we want to point it out here because it is of great significance
for astrophysics: The change of light curves of X-ray pulsars or of accretion
discs around black holes.

X-ray pulsars consist of binary systems where one component is a magnetic
neutron star. Matter is accreted from the companion star, it is eventually
funneled, by the strong magnetic field, towards the magnetic poles where it
forms two hot spots. Light deflection increases the fraction of the rotation
period of the star where each of these hot spots remains visible, resulting in a
reduced modulation of the light curve. Conversely, the interpretation of light
curves of X-ray pulsars without taking light deflection into account results in
improbably large hot spots (up to 60° half opening angle), which are needed
to reduce the modulation [11]. We have shown that the same analysis, with
light deflection included, yields hot spots with reasonable sizes (around 10° half
opening angle) [12].
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Figure 8: A thin disc around a black hole. Upper left: M = 0, J = 0. Upper
right: M # 0, J = 0. Lower left: M # 0, J # 0. Lower right: close-up of the
central region.
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Figure 9: The ‘true’ Einstein ring.

4 Discussion

This approach of simulating ‘realistic’ images has, of course, advantages as well
as drawbacks:

+ The resulting pictures are generally pretty and impressive.
+ They represent what an actual observer would see.

+ Therefore, they may help in the interpretation of actual measurements, such
as light curves of X-ray pulsars.

+ Any physical system can be visualized, since the simulation corresponds to
the process of just looking at something.

On the other hand:

— It may be very expensive to carry out, making compromises necessary.

— It may be hard to predict which conclusions somebody will draw from a given
image.
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Gravitational Lens in Abell 2218 HST - WFPC2

PF95-14 - ST Scl OPO - April 5, 1995 - W. Couch (UNSW), NASA

Figure 10: Gravitational lensing by the galaxy cluster Abell 2218. Image cour-
tesy of W. Couch (University of New South Wales), R. Ellis (Cambridge Uni-
versity), and NASA.

— It may be hard to interpret because many effects are superimposed: The
object itself, the metric surrounding it, projection effects, etc. (cf. the
picture of the rotating neutron star).

— Drastic changes in specific intensity can make a realistic visualization impos-
sible.

Existing structure may be insufficient for visualization (e.g. the surface of a
neutron star), thus artificial structure may have to be introduced.

Invisible properties (magnetic fields, etc.), even though they can be included
in the visualization, don’t quite fit the concept of producing ‘realistic’
images.
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